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Abstract

The recent expert programmers who have been forced to develop large and
complicated programs have strong desire to write “good codes” from the
viewpoints of both runtime efficiency and understandability, and they expect
a translator to generate a good code just to fit their own needs if possible.
This fitting usually requires complicated customization of the translator
which could only be done by the experienced compiler experts, and the
programmers cannot reflect their ideas on the translators so easily, especially
when the programmer’s demands to the quality of practical programming
tools are severe. These situations lead us to the necessity to develop a
more flexible approach by which the specific programmers can reflect their
experience and knowledge on the translators by themselves. The technology
that enables the reuse of larger software components have become available
with the emergence of the object-oriented paradigm, which have widened
the applicability of reusable code pieces. However, the class-based object-
oriented modularization cannot always encapsulate every design decisions
perfectly; especially when they crosscut the module structure of a program,
code pieces crosscutting a program tangle with other codes and scatter over
the entire program; hence, class-based modularization is eventually violated.
This kind of violation may happen modern network programming involving
distribution or security issues.

This thesis addresses how to solve these crosscutting problems without
losing object-oriented framework’s appearance or runtime performance. To
cope with both of these two problems, transformational system is to be used
to embed the crosscutting code among the entire program automatically
and hide the scattered code from the appearance. Runtime performance
can be achieved so that the transformational approaches could inherently
produce only the necessary and elaborate code based on the expert pro-
grammer’s experiences. For this purpose, we propose a class-object model
for transforming object-oriented programs, and develop powerful transfor-
mational systems not only for compiler experts but also for object-oriented
programming experts. The proposed class-object model is the abstract data
model representing the logical structure of an object-oriented program and
its logical alternations. In order to ease the description, the transforma-

i



ii

tional systems allow users to describe transformations of programs in the
intuitive notions of object-oriented programming rather than the notions of
compiler implementations. The proposed class-object model makes power-
ful transformations not only of the compiler experts but also of the object-
oriented programming experts expected to exist more than compiler experts,
who must also be familiar with object-oriented programming. The reuse of
well-defined program code modules could be regarded to reduce the cost
of software development, keeping programmers away from the continuous
rediscovery and reinvention of concepts across the software industry.

Also, this thesis discloses the design and implementation of practical
program-transformation systems based on the proposed class-object model;
namely, OpenJava and Javassist as general-purpose transformational sys-
tems, and Addistant as a special-purpose system for the support of dis-
tributed programming. OpenJava is an object-oriented macro system for
transformations of source-code program written in Java. Javassist is a Java
bytecode manipulating tool for transformations of binary programs for Java
virtual machines. Addistant is a bytecode translator built on Javassist as
an application case-study of Javassist. By the use of Addistant, legacy
Java software can be modified so that it can be translated to the programs
which can be executed in the distributed environment. In these applica-
tions, programmers can select how remote references are implemented for
each class. From the viewpoint of reflection, these transformational systems
are regarded as reflective systems providing architectures for structural re-
flection, avoiding the runtime overhead of general reflection. These systems
are freely available and have been used widely in the world.
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Chapter 1

Introduction

The recent expert programmers who have been forced to develop large and
complicated programs have strong desire to write “good codes” from the
viewpoints of both runtime efficiency and understandability, and they ex-
pect a translator to generate a good code just to fit their own needs if
possible. However, such fitting usually requires complicated customization
of the translator which could only be done by the experienced compiler ex-
perts, and the programmers cannot reflect their ideas on the translators so
easily, especially when the programmer’s demands to the quality of practical
programming tools are severe. These situations lead us to the necessity to
develop a more flexible approach by which the specific programmers can re-
flect their experience and knowledge on the translators by themselves. The
technology that enables the reuse of larger software components is one of
the means to reflect those experiences on the actual programming [54]. The
reuse technologies themselves have become available with the emergence of
the object-oriented paradigm since SIMULA-67 [24], and dynamic-binding
and polymorphism of classes have widened the applicability of reusable code
pieces. These mechanisms enable inversion of control for the reuse of com-
ponents, which allows to build a framework [45]. A larger component of the
main system design is now reusable as an object-oriented framework in ad-
dition to the reusable sub-systems. Thus, the reuse of well-defined program
code modules could be regarded to reduce the cost of software development,
keeping programmers away from the continuous rediscovery and reinvention
of concepts across the software industry.

However, the class-based object-oriented modularization cannot always
encapsulate every design decisions perfectly; especially when they cross-
cut the module structure of a program, code pieces crosscutting a program
tangle with other codes and scatter over the entire program; hence, class-
based modularization is eventually violated. This kind of violation may
happen modern network programming involving distribution or security is-
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CHAPTER 1. INTRODUCTION 2

sues. We address how to solve these crosscutting problems without losing
object-oriented framework’s appearance or runtime performance. To cope
with both of these two problems, transformational system is to be used
to embed the crosscutting code among the entire program automatically
and hide the scattered code from the appearance. Runtime performance
can be achieved so that the transformational approaches could inherently
produce only the necessary and elaborate code based on the expert pro-
grammer’s experiences. For this purpose, we propose a class-object model
for transforming object-oriented programs, and develop powerful transfor-
mational systems not only for compiler experts but also for object-oriented
programming experts. The proposed class-object model is the abstract data
model representing the logical structure of an object-oriented program and
its logical alternations. In order to ease the description, the transforma-
tional systems allow metaprogrammers as users to describe transformations
of programs in the intuitive notions of object-oriented programming rather
than the notions of compiler implementations.

This thesis discloses the design and implementation of practical program-
transformation systems based on the proposed class-object model; namely,
OpenJava [80, 82, 81] and Javassist [20] as general-purpose program-transformation
systems, and Addistant [83, 79] as a special-purpose system for the sup-
port of distributed programming. From the viewpoint of reflection, these
transformational systems are regarded as reflective systems providing archi-
tectures for structural reflection, avoiding the runtime overhead of general
reflection.

1.1 Limitations in Object-Orientation

Though the object-oriented modularization using classes is powerful, it some-
times fails to encapsulate some design decisions that crosscut the module
structure of the program. Code pieces crosscutting a program tangle with
other code and scatters over the program. An example of a crosscutting de-
sign decision is objects distribution in a network. Code related to concerns
of objects distribution is often tangled with other code and scatters over a
number of classes. Lack of modularization implies low reusability and low
maintainability of code pieces. When programmers change the decompos-
ing points of program in distributed environment for reducing the overhead
of network communication, this change of design decision brings about the
modification of remote or local object allocation code scattering over the
program. They have to modify a number of code pieces for implementing a
simple change of distributed design decision.

The responsibility of this low reusability weighs not only on the designer
of a problematic program but also the language with which programmers
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describes the program. Actually, it is often impossible to give a settlement
of design as long as they use the language. Even though design patterns[32]
give you well-sophisticated designs for solving a design problem but a design
given by a pattern which offers benefits often implies additional drawbacks
to the program.

For example, to preserve the maintainability of the design structure and
algorithm of a non-distributed part of a program, it is typical to represent a
remote object by a proxy object. This design is known as the Proxy pattern
and enables writing simple clients code using remote objects as if the remote
objects were local objects. However, describing a proxy class is a tedious
task and programmers must provide lots of proxy classes for every class
whose instances are remotely accessed. Special compilers who automatically
generates proxy classes according to the original classes have been proposed
for addressing this modularization limitation of object-oriented languages.

Another example in distributed programming is distributed allocation
coding. The Abstract Factory pattern allows you to write a centered
code controlling instance allocations as a Factory class. You can change the
policy of distribution of objects by overriding factory methods in a subclass
of the Factory class. But, with this design, a class of the Factory role must
provide a number of factory methods for all the combinations of instantiated
classes and contexts creating instances. You must write very redundant code
and it is a tedious and error-prone task.

The software industry needs a more flexible and fine-grained modular-
ization mechanism for software because the complexity of software increases
drastically as computing power, massive storage, pervasive network infras-
tructures and growing heterogeneity of computing platforms become avail-
able. One of the most important challenges is to enhance the fundamen-
tal support for reuse beyond object-orientation in order to draw out the
abilities of frameworks, design patterns, and other techniques for reuse of
software. Since application frameworks and design patterns are techniques
to make most of the existing reuse mechanism, object-oriented application
frameworks and object-oriented design patterns suffers from the limitation of
their base object-oriented models provided by object-oriented programming
languages.

The limitation of simple object-oriented languages with class mechanisms
is well-known and domain specific language extensions (DSLE) are known
to solve this problem. A language with a DSLE is a specialized, problem-
oriented language and it allows solutions to be expressed in the idiom and
at the level of abstraction of the problem domain. Thus a modularization
mechanism supplied by a DSLE can be quite suitable to reuse. A multi-
purpose super-rich language providing DSLEs for many specific application
domain cannot be a solution for every application domain. Though it di-
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rectly supports programmers in some specific application domains, it cannot
be expressive enough for all the applications. In order to achieve suitability
for all the applications, a language is desired to have several facilities sup-
porting primitives in every application domain. However, a multi-paradigm
language, which supports tons of language primitives from the beginning,
tends to have too complex specifications to learn. Moreover, it cannot sup-
port applications which are unknown when the language is designed.

1.2 Problems in Program Transformations

One choice to be free from the limitation of a language is to extend the
language with the desired features for yourself. You can implement this
extension as a translator. A transformation, a mapping from programs
to programs, is often an implementation of a language extension, and we
can implement it on demand. According to Krueger [54], transformational
systems are one of the eight different approaches to software reuse. Imple-
mentation of a transformation can be a kind of software library which can
be applied to another software. The approach to reusable software by fully-
featured transformations can provide more flexible reusability than other
approaches since the decomposing points of software for modules are freely
definable with the transformational approach.

1.2.1 Development Costs of a Translator

Developing a transformation as a reusable unit, however, tends to cost rel-
atively more than other approaches while the reusability of developed units
can be very good. A naive system with a lifted abstraction level of transfor-
mation reduces that difficulty but it also spoils the flexibility of modulariza-
tion, which is the advantage of the transformational approach to software
reuse. For instance, the #define macro of C/C++ is very simple to use but
what we can do with it is very limited to just a substitution of a keyword
or a keyword followed by parenthesizes with parameter variables.

Developing translators as stand-alone programs from scratch is the most
effort-intensive way of building translators. You have to design and im-
plement the internal source representation as well as the code performing
analysis, optimization, and generation from scratch. In case the translator
expects input in text form, you will need to build a lexer and a parser for
converting the source text into the internal representation. The lexer and
the parser can be generated using tools, such as lex and yacc. But this is
the only piece of reusable infrastructure that is available in this approach.
In addition to a large effort needed to build a translator from scratch, this
approach also impairs the integration of different notations and development
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tools. This is because each translator uses its own internal source represen-
tation and does not provide any interfacing facilities. As a result, we get a
language landscape consisting of islands of noninteroperable domain-specific
languages.

Typically, we implement a translator as follows:

1. Input for the internal representation: If the source is given in the
form text, the translator needs to parse the text into the internal
representation. In many cases, the internal program representation has
the form of an abstract syntax tree. Other examples of representations
are data and control flow graphs.

2. Code analysis: It often analyzes code to obtain some information of
program such as data and control flow. They are needed to check
the structure of the input program and also to choose where to apply
adequate transformations.

3. Transformation: It performs required transformations to the internal
program representation.

4. Output from the internal representation: It needs to transform the
internal representation back into a textual representation. One class
of output facilities are code-generation backends, which generate the
machine code for a given target platform.

1.2.2 Transformational Systems

Transformational systems are support system for the development of transla-
tors. A transformational system provides toolkits and frameworks for partial
transformation processes commonly used by several translators.

Transformational systems consist of the following elements:

• A data-structure for the internal program representation: A built-in
data structure for representing program save metaprogrammers (trans-
lator developers) from providing it by them-selves.

• Code analysis facilities: Transformational systems often provide code
analysis facilities, such as data and control flow analysis. They are
needed to check the structure of the input program and also to guide
the selection of appropriated transformations.

• A transformation engine (also called a rewrite engine): A transforma-
tion engine applies user-provided transformations to the internal pro-
gram representation. One of the responsibilities of a transformation
engine is scheduling transformations, that is, determining the order of
applying transformations.
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• Input and output facilities for the internal representation: If the source
is given in the form text, we need a parser to transform it into the in-
ternal representation. We can also use various unparsers to transform
the internal representation back into a textual representation. One
class of output facilities are code-generation backends, which gener-
ate the machine code for a given target platform. Another class of
input/output facilities are editors, which allow us to directly edit the
internal representation and to render it in different ways. The latter
are provided by the Intentional Programming system.

1.3 Goal — Higher Abstractions for Powerful Trans-

formations

The goal of this thesis is to provide a design model with high-level ab-
stractions for building object-oriented transformational systems. Preserving
the most of expressive power in a fully featured transformational system, a
transformational system should give metaprogrammers a way to simply and
intuitively describe object-oriented program transformations.

A transformational system for simple descriptions of object-oriented pro-
gram transformations should provide:

• A declarative data format for the internal program representation: The
format of abstract syntax tree or the format of procedural data/control
flow graphs are not suitable for representing an object-oriented logical
structure of a program.

• Capsularation analysis facilities: Transformational systems should pro-
vide code analysis facilities suitable for capturing the capsularation
mechanism of the base object-oriented language.

• An event-driven style rewrite engine: Determining where to apply
transformations are complicated task thus it should be automated.

• Abstracted input and output facilities: Fetching the source files of a
program should be hidden.

1.4 A Class-Object Model Approach

A higher abstraction design model has been required for a system of program
transformation with which programmers can simply write metaprogram
dealing with large and complex code transformation. Especially, a num-
ber of transformations typical in object-oriented program require a highly
abstracted data model with which they can directly deal with the object-
oriented logical structure of program.
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The class-object model proposed in this thesis gives metaprogrammers
a logical class representation for a class declaration in program source. This
design model captures declarative construct of classes including the inher-
itance mechanism and access controlling by data hiding. Supporting the
callee-side transformation, it also addresses the polymorphic mechanism of
dynamic binding.

In our approach, a translator program can directly manipulate impor-
tant object-oriented language constructs; Declaration (Inheritance), Encap-
sulation (Access control), and Polymorphism (Dynamic binding). Thus
metaprogrammers can simply and intuitively describe object-oriented trans-
formations with a transformational systems designed with our model.

1.5 Related Work

A translator, or a generator, is a program that takes a higher-level speci-
fication of a piece of software and produces its implementation. The piece
of software could be a large software system, a component, a class, a pro-
cedure, and so on. This approach to software reuse has been researched as
generators [5] and cutting-edge implementation technologies include C++
templated metaprogramming [64], aspect-oriented programming [48], inten-
tional programming [72], and others. Krzysztof Czarnecki and Ulrich W.
Eisenecker tied these kinds of closely-related researches as the concept of
generative programming [23]. The work of this thesis is also in this stream.

1.5.1 Macro Systems and Preprocessor Toolkits

Macro systems have been typical systems manipulating source-text to source-
text transformation from early days [13]. Lisp macros [75, 53] and Scheme
macros[27] are known as powerful macro systems with which programmers
can describe the transformation process in a procedural manner in the lan-
guages themselves. In the traditional Lisp-style macro systems, a metapro-
gram as a macro needs to handle the abstract syntax tree (AST) of the source
text piece in the original program. They were designed for implementing
small, localized transformations.

Java Syntax Extender [3] (JSE) adds Java language a macro facility
similar to the one of Dylan[71] but offers a fully procedural macro engine.
With JSE, programmers must begin with a keyword for writing code in
an extended syntax. They define a translator implementing the extension,
and the translator is bound to the keyword. The translator transforms the
code written in the extended syntax. We call this type in applying macros
keyword-driven macro application. This is a typical macro which is a lisp-
style macro system applied to Java. With JSE, metaprogram handles code
in the form of skeleton syntax tree which they insist has fewer categories
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than a typical AST and instead represents the basic shapes and distinctions
necessary for macro processing. A translator transforms a code piece us-
ing a library providing syntactical pattern matching and code construction
utilities.

The Jakarta Tool Suite [6] is a set of precompiler-compiler tools for
extending Java with domain-specific constructs. Its main tools are Jak and
Bali. Jak supports the definitions of AST constructors. ASTs are created
using typed code quotes and are manipulated using AST cursors which is a
library for tree traversing from left to right. Bali is a parser generator with
which its users can create syntactic extensions in a more familiar BNF style
with regular-expression repetitions. The result of parsing is an AST which
can be further modified through a tree walk. A large AST is hard to handle
with a fixed traversal style.

EPP [42] is an extensible preprocessor kit for Java. It is an application
framework for preprocessor type language extension systems. The parser
of EPP is written by recursive descent style and provides many hooks for
extensions. By using these hooks, the extension programmer can introduce
new features, possibly associated with new syntax. Because all grammar
rules are handled in a modular way, it is also possible to remove some original
grammar rules from standard Java. EPP enables preprocessor programmers
to write an extension as a separate module, called EPP plug-ins. If only plug-
ins do not cause a collision, the end-user can incorporate multiple plug-ins
into EPP simultaneously. In fact, it is powerful for locally limited translation
though programmers must write recursive descent parser.

1.5.2 Reflection

The reflection is often used as a model of language extension. The con-
cept of reflection was originally proposed by Smith [73] as 3-Lisp. It can
be generally parted into two kinds of functions. One is introspection and
another is intercession. The introspection is the mechanism to obtain infor-
mation of program and use it in program. And the intercession is the one to
change the behavior and implementation of program in program. The pro-
gram which performs reflective computation, intercession or introspection,
is called meta-level program while the program on which reflective compu-
tation is performed is called base-level program. Generally, it is difficult
to archive fully available intercession without execution overheads of meta-
level computation. If it were not for reflection mechanisms, programmers
could not handle the behavior of program since it is not a first-class in the
language, unlike string, integer, boolean, and so on. In reflection of object-
oriented programming, it is usual to provide a class (metaclass) representing
instance objects (metaobjects) for these non-first level things [22].

From a software engineering viewpoint, reflection is a tool for separa-
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tion of concerns and thus it can be used for letting programmers write
a program with higher-level abstraction and with good modularity. This
is because reflection is a technique for changing the program behavior ac-
cording to another program. For example, a number of reflective systems
provide metaobjects for intercepting object behavior, that is, method in-
vocations and field accesses. Those metaobjects can be used for weaving
several programs separately written from distinct aspects, such as an appli-
cation algorithm, distribution, resource allocation, and user interface, into
a single executable program.

However, previous reflective systems do not satisfy all the requirements
in software engineering. Although the abstraction provided by the metaob-
jects for intercepting object behavior is easy to understand and use, they
can be used for implementing only limited kinds of separation of concerns.
Moreover, this type of reflection often involves runtime penalties. Reflective
systems should enable more fine-grained program weaving and perform as
much reflective computation as possible at compile time for avoiding runtime
penalties.

The point is how to define an interface to these metaobjects, and how to
realize these mechanisms, which is called metaobject protocol (MOP). [50] If
MOPs are simply designed and implemented, it would provide interpreters
on the executional environment. The source program run on one of these
interpreter and it can modify the interpreter to change its behavior. Though
reflection mechanisms are fully provided by this method, such a design and
implementation causes too serious overhead of execution.

Runtime Reflection

The CLOS (Common Lisp Object System) MOP [49] is an exemplary model
of how to provide fully-functional reflective support in a language. It was
an open and adaptable implementation which could be modified to provide
features that were not part of standard CLOS behavior. It employs class
metaobjects instead of the metaobjects for objects. Although the curry-
ing [12] technique allows metaobjects in the CLOS MOP to partly run at
compile time, the rest of computation by the metaobjects is still performed
at runtime. At least, which metaobject is selected for given source program
is determined at runtime.

ABCL/R3 [61] is a compilation framework in object-oriented reflective
languages. In their framework, the meta-level of the language is exposed to
the programmer as a pure meta-circular interpreter organized in an object-
oriented way, as is with traditional approaches. The interpretation overhead
is effectively eliminated by the compiler with the technique based on partial
evaluation [31]. Programmers can write meta program more easily on this
system since they can consider how to execute other than how to compile.



CHAPTER 1. INTRODUCTION 10

But implementing an effective partial evaluator is very difficult. In fact, it
seems that there is no effective one for Java.

Reflection in Java

The Java provides limited reflection mechanisms. One is the Java Reflection
API which enables introspection. Another is the class loader API which
enables intercession. And, there is other researches on reflection in Java.

The Java Core Reflection API [44] provides a type-safe API that supports
introspection about the classes and objects in the current Java VM(Virtual
Machine) at runtime. This API can be used to:

• construct new class instances and new arrays

• access and modify fields of objects and classes

• invoke methods on objects and classes

• access and modify elements of arrays

Programmers might want to easily handle classes unknown at program-
ming time in order to provide applications like debugger, JavaBeans or Java
Object Serialization. And these applications have needs:

• getting information about classes and its members

• using classes and its members

But the kind of information above are often unavailable at compile-time and
it is impossible to write program using unknown classes in strongly typed
languages without this API.

Through the Java Reflection API, programmers can handle classes, fields,
methods and constructors as objects. For instance, with these metaobject,
they can get the name of a class, invoke a method on a object, and so on
like following code:

Object unknown = ...
Class clazz = unknown.getClass();
Field field = clazz.getField( "name" );
String name = (String) field.get( p );

This API is refined for introspection at runtime, especially for security
issues at runtime, but it does not have intercession mechanism.

As of version 1.3 of the standard Java2, java.reflect.Proxy is pro-
vided.

The Java VM uses class loaders to load class files and create class ob-
jects. Since class loaders are instances of subclasses of the class ClassLoader
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provided as Java API, programmers can define new subclasses of it in Java
program. In a subclass of ClassLoader, programmers might change the be-
havior of program by modifying loaded bytecode. Though execution over-
heads of loading and modifying bytecodes are not small, it is still useful.
Several applications are demonstrated by Liang [56] and Kirby [51].

Even though changing the source of class files (e.g. to remote host beyond
a network) is easy to do with this dynamic class loading mechanism, there
is difficulty of programming to do more because it is not easy to manipulate
bytecodes directly.

MetaXa [52] is an extended Java interpreter that allows structural and
behavioral reflection. The system consists of the OS, the application pro-
gram (the base system), and the meta system. The computation in the base
system raises events and that events are delivered to the meta system. The
meta system evaluates the events and reacts in a specific manner. All events
are handled synchronously. Base-level computation is suspended while the
meta object processes the event. This gives the meta level complete control
over the activity in the base system. What actually happens depends en-
tirely on the meta object used. A base object also can invoke a method of
the meta object directly. This is called explicit meta interaction and is used
to control the meta level from the base level.

By limiting the point of alteration only in behavioral reflection, it suc-
ceeded in achieving efficient execution of its applications comparatively as
runtime MOP. Also, it does not allow syntax extensions in language.

1.5.3 Compile-time MOPs (Meta-Object Protocols)

OpenC++ version 2 [15, 18] provides an extensible C++ language. Its trans-
lation is performed according to each type of objects, that is, classes. Since,
in higher level languages, the basic constructs are more complicated for com-
pilers, namely, the basic constructs of class-based object-oriented languages
are objects, classes and methods, this kind of translation controlling is very
effective to extending the behavior of objects, which needs local translation
scattered in program.

However, it is not easy to write translation of class declaration with
OpenC++. This is because it gives programmer a part of AST (abstract
syntax tree) to translate. Though it also gives contextual information with
parse tree, its not suitable for handling object-oriented semantics.

1.6 Thesis Organization

The rest of this thesis are organized as follows. First, in Chapter 2, we give
the concept of our class-object model for program transformations.
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We implemented two program transformation frameworks with this model
for Java [36]. The first is for transforming program in source text written in
the Java programming language, and the other is for transforming program
in Java byte code, which is the compiled code for direct execution on Java
virtual machines. The former framework is named OpenJava [82, 81], and
the latter is Javassist [17, 20]. Chapter 3 describes the design and imple-
mentation of OpenJava, which is a macro system employing the class-object
model for source-text to source-text transformation. Chapter 4 describes
the design and implementation of Javassist, which is a bytecode editing tool
employing the class-object model for bytecode to bytecode transformation.

While these two systems are designed for general purpose of transfor-
mations of object-oriented program, we designed a transformational system
specially targeting a support of distributed programming. This system is
named Addistant and build on top of Javassist. Chapter 5 describes the
design and implementation of Addistant. Addistant is also a proof of the
expressing power of transformational systems with the class-object model is
enough for constructing a non-trivial relatively-large application.

The thesis concludes with a projection into the future in Chapter 6.



Chapter 2

A Class-Object Model

The class-object model proposed in this thesis is the representation of pro-
gram transformations in a higher-level abstraction. This abstract data
model directly represents a logical structure of a class and the type-driven
application of transformation.

What we are focusing in this thesis is object-oriented languages with the
mechanism of class and inheritance. Including SIMULA-67 [24], which is
the founder of object-oriented languages, most of object-oriented languages
share these language constructs. Popular object-oriented languages such
as Smalltalk [34], C++ [28] and Java [36] also do. The core concept of
the proposing model is applicable to transformations of programs in these
object-oriented languages with classes and inheritance though we use Java
for explanation of object-oriented program and the systems we implemented
are based on Java,

Demands for a support of programming according to design patterns are
a good motivation for object-oriented transformations. Design patterns help
developers choose design alternatives that make a system reusable and avoid
alternatives that compromise reusability. A description of communicating
objects and classes in a pattern has been polished and used a number of
times for a long time. Only if programmers or designers apply patterns to
their program adequately, we can say that the design using a pattern should
be well sophisticated for the particular context. The problems like coding
overhead in implementing a design pattern are what we must address with a
programming support but not what we can address by changing the design
of program.

In this chapter, we first show motivating examples which represents the
typical requirements of object-oriented program transformations. Then, we
describe the core concept and design of the class-object model.

13
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2.1 Motivating Examples

Although design patterns [32] are useful guidelines for writing good object-
oriented programs, some of the programs written according to design pat-
terns are complex and errorprone and the overall structure of the programs
is not easy to understand. First, programmers using design patterns have to
write annoying code to implement the patterns because the concept of a de-
sign pattern is orthogonal to programming languages such as Smalltalk and
C++. Moreover, since most of design patterns are just descriptions apart
from code, any line of the code explicitly represents neither which design
pattern is used in that program nor which role in that design pattern each
class plays. A number of researchers [9, 26, 33] have argued these problems
and they have proposed that syntax extensions and extended language con-
structs help design pattern users write programs and improve the readability
of programs written with design patterns.

In order to support programming in some kinds of specific application
domains such as distributed programming, extended languages are very use-
ful. But such languages do not have all-round power for all the applications
though they are very suitable for applications in each domain. Achieving
suitability for all the applications, a language is desired to have several
mechanisms supporting primitives in every application domain. However,
a multi-paradigm language, which supports many mechanisms of language
primitives from the beginning, tends to have too complex specifications to
learn. Thus an extensible language, in which programmers can choose ap-
propriate language mechanisms on demand, meets. Moreover, programmers
may add a new extension for a new application domain.

The rest of this section shows example applications which need support
by extended language mechanisms and motivate us to provide an extensible
language.

2.1.1 Implementing Adapter Classes

Suppose that a programmer has to adapt a class Vector (Listing 2.1) to an
interface Stack (Listing 2.2), which are declared as follows:

Listing 2.1 Vector.java
public class Vector

{

boolean isEmpty();

Enumeration elements();

Object lastElement() { .... }

void addElement(Object o) { .... }

....

}

Listing 2.2 Stack.java
public interface Stack
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{

boolean isEmpty();

Enumeration elements();

Object peek();

void push( Object o );

Object pop();

}

The Adapter pattern should be used in this case, to:

convert the interface of a class into another interface clients ex-
pect. Adapter lets classes work together that could not otherwise
because of incompatible interfaces [32].

Figure 2.1 shows a structure of the Adapter pattern.

Client

Target

Adapter

Adaptee

+request()

+request()

...

request() {
  adaptee.specificRequest()
}

1..* 1

Uses 1

1

+specificRequest()

<<interface>>

Uses

adaptee

Figure 2.1: A structure of the Adapter pattern.

A class Vector and an interface Stack corresponds to the Adaptee and
the Target respectively in Figure 2.1. According to the Adapter pattern,
programmers must write a class VectorStack correspondent to the Adapter:

Listing 2.3 VectorStack.java
public class VectorStack implements Stack

{

private Vector v;

VectorStack(Vector v) { this.v = v; }

boolean isEmpty() { return v.isEmpty(); }

Enumeration elements() { return v.elements(); }

Object peek() { return v.lastElement(); }

void push(Object o) { return v.addElement( o ); }

Object pop() { .... }

}

The class VectorStack extends the class Vector to have the interface Stack.
Here, the class VectorStack is not a subclass of the class Vector so that a
single Adapter may work with several Adaptees, that is, the Vector itself
and all of its subclasses.

In the case above, programmers are faced with some problems when
writing the class VectorStack which plays the role of the Adapter. The
problems are:
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1. Although the class VectorStack is written for the Adapter of the Adapter
pattern, it is difficult to find out this fact from the source code. Which
design pattern is used? What is the role of the class VectorStack?

2. The programmers must add a field which holds a reference to an Vec-

tor object and a constructor to accept it. Although isEmpty() and
elements() are shared between the class Vector and the class Vec-

torStack, programmers must repeatedly write code for both of them.

3. Programmers cannot reuse any part of this implementation when they
apply the Adapter pattern to another coding though the design of a
pattern is reusable.

4. In the body of the method peek(), only the method lastElement() is
invoked on the Vector object and the value obtained by this invocation
is returned intactly. Such a trivial operation of object also appears in
the method push(). Describing those operations is a boring task and
errorprone.

The above problems are also found in most of other design patterns and
these problems have been reported by a number of researchers [74, 69, 8, 63,
26]. Bosch called these problems traceability loss, self problem, no reusability
and implementation overhead [9].

2.1.2 Implementing Proxy Classes

The Proxy pattern is often used in distributed programming to:

Provide a surrogate or placeholder for another object to control
access to it. [32]

Figure 2.2 shows a structure of the Proxy pattern.

Client

Subject

+request()
...

request(){
  ...
  realSubject.request()
  ...
}

1..* 1

Uses

11

<<interface>>

Uses
Proxy

+request()
...

RealSubject

+request()
...

realSubject

Figure 2.2: A structure of the Proxy pattern.

For making a class Window accessible remotely, a Proxy class Window-

Proxy must be provided in the Proxy pattern as follows:
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Listing 2.4 Window.java
public class Window extends Component

{

void addComponent(Component c, int direction) {

...

}

boolean isVisible() {

...

}

....

}

Listing 2.5 WindowProxy.java
public class WindowProxy extends Window

{

void addComponent(Component c, int dir) {

int classID = .., objectID = .., methodID = ..;

Object[] args = new Object{c, new Integer(dir)};

broker.invoke(classID, objectID, methodID, args);

}

boolean isVisible() {

int classID = .., objectID = .., methodID = ..;

Object[] args = new Object[]{};

return broker.invoke(classID, objectID, methodID, args);

}

boolean equals(Object obj) {

int classID = .., objectID = .., methodID = ..;

Object[] args = new Object[]{obj};

return broker.invoke(classID, objectID, methodID, args);

}

....

}

For being a surrogate of a Window object, the WindowProxy class must
provide the same interface of Window, which include the equals() method
which Window implicitly inherited from its superclass Component. Each
method of WindowProxy must implement the packing of method arguments
and communication through an object request broker. Even though we can
see a lot of similarity between methods, programmers had to write these one
by one from scratch if there were not for programming supports.

Code translator support for distributed programming [4] is a common
technique helping programmers to write program easily. As for Java, there
are several systems which support distributed object programming. Such a
system provides a compiler transforming a source program written in ordinal
Java into the one which works in distribute environment and run on the
ordinal Java VM (Virtual Machine). For instance, the standard Java RMI
developed by Sun Microsystems provides rmic compiler, and HORB [39]
provides horbc compiler.

With such systems, programmers can describe a class representing an
object which are produced and works on remote systems as if that object
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exists on the local system. They can write program handling remote objects
without considering how to communicate with these objects through the net-
work. To achieve that transparency of programming remote objects, these
compilers accepts a source program written as like local object in the ordinal
way and produce a proxy class representing that actual communication to
remote systems and a server skeleton class working on remote systems.

The problem is that they must provide each new compiler for every new
system supporting distributed programming. In the research level, there are
many proposal of such distributed systems. The researchers have to imple-
ment a new compiler to provide their proposing systems. In the industry,
there are also a lot of distributed systems.

2.1.3 Ordinal Transformational Systems

Ordinal Abstract Syntax Tree Representation

It is not easy for metaprogrammers to implement transformations spreading
in source program as a localized translator. For example, it is not easy to
write a metaprogram adding a method of a certain name only in case that
there is no such methods of the name in a class. It is because of the design
of preprocessors; The order to invoke each method translate() on node
objects of parse tree is fixed in post-order or pre-order. Such design of a
preprocessor makes it difficult for meta programmers to translate a part of
parse tree according to the information of another part of parse tree.

Because the definition of fields or methods in a class is declarative in
most of object-oriented languages, the availability of information can not
be fixed neither in post-order nor in pre-order of parse tree. Furthermore,
inherited fields and methods are not described in the local parse tree directly.
Whether a class has a method or not may be distinguishable after processing
the whole source program.

For example, in translating a part of class Panel, it is not easy to test
whether the class Panel has a method validate() or not because the method
validate() may be defined after the part being translated or may be in-
herited from the superclass Container of the class Panel (Figure 2.3).

Consequently, localized translators cannot handle examples shown above
though they can handle application examples like what can be handled by
Lisp macro and its advanced system.

Syntax-driven Translation

Metaprogrammers must define how to translate program in order to im-
plement their desiring behavior. In the case to change a regular method
invocation as an invocation of a method of object on another remote com-
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class Panel
  extends Container
{

  Graphic gc;
  
  void add()

}

validate()

class Container
  extends Container
{

  Graphic gc;
  
  void add()

  void remove()

  void validate()
}

class Panel
  extends Container
{

  Graphic gc;
  
  void add()

}

?

Does this class
have

Figure 2.3: Scattered and spreading information over a program.

puter, programmers define a meta-level program implementing an algorithm
of source code translation through which the program:

p.setName( "Thomas" );

are translated into the program which call the method invoke() of an object
remoteObject, which make a network connection and access to a remote
server :

remote.invoke( p, "setName", new Object[]{ "Thomas" } );

With most of current preprocessors, programmers would represent an
algorithm of translation by transforming parse tree or AST while way of
defining how to translate varies for each system. Here suppose a language
system with the simplest compile-time MOP (Meta-Object Protocol). The
MOP should have a model as follows:

• Each node of parse tree would be a metaobject. And classes varies for
kinds of syntactic elements such as a variable declaration, expression,
or statement.

• Each metaobject has a method translate() which transforms the
corresponding part of parse tree and returns transformed one.

Before compiling it into an executable code, the system invokes the method
translate() of the metaobject at the root of the given parse tree and
each method translate() recursively from the root to its leaves. In order
to implement a language extension, programmers can redefine classes with
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ExpressionStmt ExpressionStmt

MethodCall BinaryExpr

FieldAccess Number

.....

AST Node

method call

metaobject
translate()

translate()

translate()

translate()

translate()

translate()

AST

Figure 2.4: Translation with the naive MOP.

another method translate() which returns parse tree representing desired
behavior (Figure 2.4).

For instance, the above example can be implemented by defining a
class RemoteMethodCall(Listing 2.7) substituting the regular class Method-

Call(Listing 2.6).

Listing 2.6 A class for default method call metaobjects
class MethodCall implements ParseTree

{

Expression ref;

String name;

Expressions args;

MethodCall( Expression ref, String name, Expressions args ) {

this.ref = ref; this.name = name; this.args = args;

}

Expression translate() {

this.arguments = arguments.translate();

return this;

}

}

Listing 2.7 A class for customized method call metaobjects
class RemoteMethodCall extends MethodCall

{

...

MethodCall translate() {

Expression expr = new ClassName( "Remote" );

ArrayAllocation aryalloc

= new ArrayAlloc( "Object", this.args );

Expressions virtualargs

= new Expressions( this.ref, this.name, aryalloc );

MethodCall result
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= new MethodCall( expr, "invoke", virtualargs );

return result.translate();

}

}

It is natural that end users should want to use both remote objects and
non remote, local, objects in the same source program. However, switching
several translations with the naive MOPs described above is very difficult
because they only distinguish syntactical difference but its semantical dif-
ference. For example, there are two method call expressions in the code
below:

String name = info.getName()
remote.setName( name )

With the naive MOPs, it is difficult to make the access to info be remote
method invocation and not to make the access to remote be regular one.

2.2 Modeling Object-Oriented Programs as Class-
Objects

A translator must handle object-orientation in order to provide code gen-
eration or modification for addressing the problems stated in the previous
section with transformations. The class-object model proposed in this the-
sis is a model for metaprogramming interfaces, through which metaprogram
can directly state this object-orientation. This section describes the object-
orientation treated by the model.

Classes play one of the most important roles in the logical structure of
program in object-oriented program written in class-based languages like
Java. Classes are declarative language constructs and they provide declara-
tive methods or fields as their attributes. Thus, the data structures of ab-
stract syntax tree or raw bytecode instructions are not suitable for directly
describing object-oriented high-level transformation in a metaprogram. In
addition to the ability of directly handling data flows which were addressed
by ordinal program transformation systems, object-oriented program trans-
formation requires the direct support of declarative language constructs.

The class-object model is the abstract data model for representing trans-
formations of an abstract data type denoted by a class. A class-object, which
is an instance of class-object model, has two-aspects. One is a logical struc-
ture of a class, and the other is a transformation framework suitable for
object-oriented program transformations.
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2.2.1 Representing Abstract Data Type

Object-oriented programs are made up of objects. An object packages both
data and the procedures that operate on that data. The procedures are
called methods. An object performs an operation when it receives a message
from a client. Messages are the only way to get an object to execute an
operation.

Interfaces are fundamental in object-oriented systems. Objects are known
only through their interfaces. There is no way to know anything about an
object or to ask it to do anything without going through its interface. An
object’s interface says nothing about its implementation — different objects
are free to implement requests differently. That means two objects having
completely different implementations can have identical interfaces.

Types

Every operation declared by an object specifies the operation’s name, the
objects it takes as parameters, and the operation’s name, the objects it takes
as parameters, and the operation’s return value. This is known as the oper-
ation’s signature. The set of all signatures defined by an object’s operations
is called the interface to the object. An object’s interface characterizes the
complete set of requests that can be sent to the object. Any request that
matches a signature in the object’s interface may be sent to the object.

A type is a name used to denote a particular interface. We speak of
an object as having the type “Window” if it accepts all requests for the
operations defined in the interface named “Window.” An object may have
many types, and widely different objects can share a type. Part of an object’s
may have many types, and widely different objects can share a type. Part
of an object’s interface may be characterized by one type, and other parts
by other types. Two objects of the same type need only share parts of
their interfaces. Interfaces can contain other interfaces as subsets. We say
that a type is a subtype of another if its interface contains the interface of
its supertype. Often we speak of a subtype inheriting the interface of its
supertype.

In a class-based object-oriented language, programmers describe a par-
ticular interface by declaring a type. We speak of an object as having the
type “Window” if it accepts all requests for the operations defined in the
interface named “Window.” An object may have many types, and widely
different objects can share a type. Part of an object’s interface may be char-
acterized by one type, and other parts by other types. Two objects of the
same type need only share parts of their interfaces. Interfaces can contain
other interfaces as subsets. We say that a type is a subtype of another if its
interface contains the interface of its supertype. Often we speak of a subtype



CHAPTER 2. A CLASS-OBJECT MODEL 23

inheriting the interface of its supertype.
In Java, programmers use the reserved words class and interface for

declaring types. Every object has a class that defines its data and behavior.
Each class has two kinds of members except member classes:

• Fields are data variables associated with a class and its objects. Fields
store results of computations performed by the class.

• Methods contain the executable code of a class. Methods are built
from statements. The way in which methods are invoked, and the
statements contained within those methods, is what ultimately directs
program execution.

Inheritance

One of the major benefits of object orientation is the ability to extend, or
subclass, the behavior of an existing class and continue to use code written
for the original class when acting upon an instance of the subclass. The
original class is known as the superclass. When you extends a class to
create a new class, the new extended class inherits fields and methods of the
superclass.

If the subclass does not specifically override the behavior of the super-
class, the subclass inherits all the behavior of its superclass because it in-
herits the fields and methods of its superclass. In addition, the subclass can
add new fields and methods and so add new behavior.

Let’s look at an example of extending a class. Here we extends a Point

class to represent a pixel that might be shown on a screen. The new Pixel

class requires a color in addition to x and y coordinates declared in Point:

class Pixel extends Point {
Color color;

public void clear() {
super.clear();
color = null;

}
}

Pixel extends both the data and behavior of its Point superclass. Pixel

extends the data by adding a field named color. Pixel also extends the
behavior of Point by overriding Point’s clear() methods.

Pixel objects can be used by any code designed to work with Point ob-
jects. If a method expects a parameter of type Point, you can hand it a Pixel

object and it just works. All the Point code can be used by anyone with a
Pixel in hand. This feature is known as polymorphism — a single object like
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Pixel can have many (poly) forms (-morph) and can be used as both a Pixel

object and a Point object.
Pixel’s behavior extends Point’s behavior. Extended behavior can be

entirely new (adding color in this example) or can be a restriction on old
behavior that follows all the original requirements. An example of restricted
behavior might bePixel objects that live inside some kind of Screen object,
restricting x and y to the dimensions of the screen. If the original Point

class did not forbid restrictions for coordinates, a class with restricted range
would not violate the original class’ behavior.

An extended class often overrides the behavior of its superclass by pro-
viding new implementations of one or more of the inherited methods. To
do this the extended class defines a method with the same signature and
return type as a method in the superclass. In the Pixel example, we override
clear() to obtain the proper behavior that Pixel requires. The clear()
that Pixel inherited from Point knows only about Point’s fields but obviously
can’t know about the new color field declared in the Pixel subclass.

Dynamic Binding

When a request is sent to an object, the particular operation that’s per-
formed depends on both the request and the receiving object. Different
objects that support identical requests may have different implementations
of the operations that fulfill these requests. The run-time association of a
request to an object and one of its operations is known as dynamic binding.

Dynamic binding means that issuing a request doesn’t commit you to
a particular implementation until run-time. Consequently, you can write
programs that expect an object with a particular interface, knowing that
any object that has the correct interface will accept the request. Moreover,
dynamic binding lets you substitute objects that have identical interfaces for
each other at run-time. This substitutability is known as polymorphism, and
it’s a key concept in object-oriented systems. It lets a client object make few
assumptions about other objects beyond supporting a particular interface.
Polymorphism simplifies the definitions of clients, decouples objects from
each other, and lets them vary their relationships to each other at run-time.

Capsulation

If every member of every class and object was accessible to every other class
and object then understanding, debugging and maintaining programs would
be an almost impossible task. The contracts presented by classes could not
be relied upon because any piece of code could directly access a field and
change it in such a way as to violate the contract. One of the strengths
of object-oriented programming is its support for encapsulation and data-



CHAPTER 2. A CLASS-OBJECT MODEL 25

hiding. To achieve this we need a way to control who has access to what
members of a class or interface, and even access to the class or interface
itself.

In Java, this control is specified by using access modifiers on class, in-
terface and member declarations.

private members declared private are accessible only in the class itself.

package members declared with no access modifier are accessible in classes
in the same package, as well as in the class itself.

protected members declared protected are accessible in subclasses of the
class, in classes in the same package, and in the class itself.

package members declared public are accessible anywhere the class is ac-
cessible.

The available methods differs depending on from which class the class
(objects) is accessed.

2.2.2 How to Apply Transformations

Controlling the scope of translation is important. A system should provide
the ability to apply translation to pieces of programs only when they satisfy
given conditions and only in a restricted region of programs. To incorporate
several extensions in a language, the system should control the scope of its
translation by each extension otherwise unexpected collisions among exten-
sions occurs. Without any scope control, programmers must carefully define
their meta program for the compatibility against other extensions. At least,
it must be specified how the system behaves when any collision occurs.

Type-driven Translation

For extending the behavior of a class, it is useful for programmers if a
translation can be applied only to code pieces related to the class. The
type-driven translation is the mechanism of a translation scope control for
that. With this mechanism, Translations are performed according to types
of each object, that is, classes.

A possible design for this mechanism is to let metaprogrammers to de-
scribe a metaclass which define the transformations of its instances, base
classes. Every base class corresponds to an instance of a metaclass. A de-
fault metaclass is defined not to make any translation. Meta programmers
define a new subclass of the default class to implement their desiring exten-
sions and specify the relation of this new metaclass and appropriate classes.
Then, the system applies that translation only to program pieces of the
objects which instantiates the class related to the metaclass.
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The following is a simple base level code declaring a class Hello.

Listing 2.8 Hello.oj
public class Hello instantiates VerboseClass

{

public String say() {

return "Hello World.";

}

}

The notation:

class C instantiates M

specifies the class C is related to the metaclass M, that is, the class object
representing the class C is an instance of the class M. As a result, the trans-
lation around objects of type C will be performed according to the definition
in the class M.

Here, the class VerboseClass is defined to change the behavior of method
call on its instance class object to the one which prints out the called
method’s name, for the purpose of debugging or something. Then, the
notation in Listing 2.8 makes Hello objects have an additional behavior of
printing out the method’s name when it is called.

From the point of view in extending Java, an object-oriented language,
it is natural to switch the extension by the type of objects. We believe this
method of scope control is one of the best ways, though there’s several al-
ternatives for the choice of the translation scope controls, such as delegation
in MPC++ [43], system mixins in EPP [42] or pattern matching in A* [55].
Our scope controlling method is founded upon OpenC++’s and it has been
demonstrated to be very useful for many applications by Chiba [15, 16].

Translation at Callee-side and Caller-side

Here, what region of source code is to be translated as the part related to
an object is discussed. The parts of source code are categorized into three
from this point of view. The categories of relation to an object are:

1. callee-side: the declaration of the class

2. caller-side: where accesses to the object performed occurs

3. non related parts

Parts of source code in the category 3 are to be protected from translation
around the object. The part of 1 is callee side, where the class is declared
with its field declarations, method declarations and constructor declarations
described. And the rest, 2 is caller side, where accesses to the object through
its fields, methods or constructors of the class are performed.
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To implement a transformation which makes a method print out their
name for each invocation, one candidate is to translate the method declara-
tion in the declaration of the class Hello into the program as follows:

public class Hello
{

public String say() {
System.out.println( ”say() is called.” );
String result = original say();
System.out.println( ”done.” );
return result;

}
private String original say() {

return ”Hello World.”;
}

}

In order to change the behavior of Hello objects, another candidate is
to translate the part of each program where methods of the class Hello are
called. It is also possible to achieve the purpose of the metaclass Verbose-

Class, as same as callee-side translation, by translating the code below:

Hello a = new Hello();
String str = a.say();

into the code below:

Hello a = new Hello();
String str = invoke_Hello_say( a );

using a function:

String invoke Hello say( Hello obj ) {
System.out.println( ”say() is called.” );
String result = obj.say();
System.out.println( ”done.” ) );
return result;

}

The applicability of two kind of translation is different though the exam-
ple above seems to be able to be achieved by any side of translation. In fact,
there are trade-offs between the caller-side translation and the callee-side
translation.

First, we present a limitation of callee-side translation. In order to use
large numbers of fine-grained objects efficiently, a programming technique
to give rather shared objects than objects to be generated each time if the
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shared objects can be used interchangeably. And such a technique is well
known as the Flyweight design pattern [32]. Here, suppose a simple program
providing this feature as follows:

public class BitmapFont
{

Image bitmap;
private FontFace(Font f, int height) {

bitmap = generateImage( f, height )
}

static Font[] fontcache = null, null, ..;

public static genBitmapFont(Font f, int height) {
if (height < 15) {

if (fontcache[height] == null)
fontcache[height] = new BitmapFont(f, height)

return fontcache[height]
}
return new FontFace( f, height );

}
}

In this case, this program saves system memory and computation time by
providing a method genBitmapFont() which recycles generated objects and
by hiding the constructor of the class BitmapFont.

In order to implement this optimization transparent against its users, a
caller-side translation can replace the constructor invocation by a method
call for genBitmapFont(). However, such implementation seems to be im-
possible with callee-side translations.

Then, we present the problem of caller-side translation. Suppose that a
class Hello is a subclass of a class Object. The class Object has an instance
method toString() which return a String object representing the identical
string of this Object object and the class Hello overrides that method to
return a String object "Hello". If we execute the program below, which is
compiled and run on the regular Java environment:

Object obj = new Hello();
System.out.println( obj.toString() );

the Java VM prints out as follows:

"Hello"

This means the method toString() is chosen by the active type of the
object obj but not by the static type. This causes thanks to the dynamic
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binding mechanism of the object-oriented language. However, at compile-
time, the type of obj can only be detected to be the superclass Object at
least since the variable obj is binded to it in this example. Generally, it is
impossible to determine the active type of obj at compile-time. Thus even if
a caller-side translation defined for the class Hello, the system cannot apply
it to obj.

The consistency of changing behavior is lost in the translation of instance
member accesses at caller-side, though it is still useful for the purpose of op-
timization and it can keep consistency for class (static) member accesses.
For changing behavior of object according to its type, callee-side transla-
tion is useful to keep the consistency of translation. Thus the system must
provide powerful callee-side translation in addition to translating at caller-
side.



Chapter 3

OpenJava

This chapter presents OpenJava, which is a macro system that we have
developed for Java. With traditional macro systems designed for non object-
oriented languages, it is difficult to write a number of macros typical in
object-oriented programming since they require the ability to access a logical
structure of programs. One of the drawbacks of traditional macro systems
is that abstract syntax trees are used for representing source programs.
This chapter first points out this problem and then shows how OpenJava
addresses this problem. A key idea of OpenJava is to use metaobjects,
which was originally developed for reflective computing, for representing
source programs.

Reflection is a technique for changing the program behavior according to
another program. From software engineering viewpoint, reflection is a tool
for separation of concerns and thus it can be used for letting programmers
write a program with higher-level abstraction and with good modularity. For
example, a number of reflective systems provide metaobjects for intercept-
ing object behavior, that is, method invocations and field accesses. Those
metaobjects can be used for weaving several programs separately written
from distinct aspects, such as an application algorithm, distribution, re-
source allocation, and user interface, into a single executable program.

However, previous reflective systems do not satisfy all the requirements
in software engineering. Although the abstraction provided by the metaob-
jects for intercepting object behavior is easy to understand and use, they
can be used for implementing only limited kinds of separation of concerns.
Moreover, this type of reflection often involves runtime penalties. Reflective
systems should enable more fine-grained program weaving and perform as
much reflective computation as possible at compile time for avoiding runtime
penalties.

On the other hand, a typical tool for manipulating a program at compile
time has been a macro system. It performs textual substitution so that a

30
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particular aspect of a program is separated from the rest of that program.
For example, the C/C++ macro system allows to separate the definition
of a constant value from the rest of a program, in which that constant
value is used in a number of distinct lines. The Lisp macro system provides
programmable macros, which enables more powerful program manipulation
than the C/C++ one. Also, since macro expansion is done at compile
time, the use of macros does not imply any runtime penalties. However, the
abstraction provided by traditional macro systems is not sophisticated; since
macros can deal with only textual representation of a program, program
manipulation depending on the semantic contexts of the program cannot be
implemented with macros.

This chapter proposes a macro system integrating good features of the
reflective approach, in other words, a compile-time reflective system for not
only behavioral reflection but also structural reflection. A key idea of our
macro system, called OpenJava, is that macros (meta programs) deal with
class-objects representing logical entities of a program instead of a sequence
of tokens or abstract syntax trees (ASTs). Since the class-objects abstract
both textual and semantic aspects of a program, macros in OpenJava can
implement more fine-grained program weaving than in previous reflective
systems. They can also access semantic contexts if they are needed for macro
expansion. This chapter presents that OpenJava can be used to implement
macros for helping complex programming with a few design patterns.

In the rest of this chapter, section 3.2 presents a problem of ordinary
macro systems and section 3.3 discusses the design and implementation of
OpenJava, which addresses this problem. We compare OpenJava with re-
lated work in section 3.4. Finally, section 3.5 concludes this chapter.

3.1 Problems with Ordinary Macros

Macro systems have been typical language-extension mechanisms. With
C/C++’s #define macro system, programmers can specify a symbol or a
function call to be replaced with another expression, although this replace-
ment is simple token-based substitution. In Common Lisp, programmers
can write more powerful macros. However, even such powerful macros do
not cover all requirements of object-oriented languages programming.

3.1.1 Programmable Macros

Macros in Common Lisp are programmable macros. They specify how to
replace an original expression in Common Lisp itself. A macro function
receives an AST (abstract syntax tree) and substitutes it for the original ex-
pression. Since this macro system is powerful, the object system of Common
Lisp (CLOS) is implemented with this macro system.
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Programmable macros have been developed for languages with more
complex syntax like C. MS2 [84] is one of those macro systems for C. Macro
functions are written in an extended C language providing special data struc-
ture representing ASTs. The users of MS2 can define a new syntax and how
it is expanded into a regular C syntax. The parameter that a macro function
receives is an AST of the code processed by that macro function.

One of the essential issue in designing a programmable macro system is
a data structure representing an original source program. Another essential
issue is how to specify where to apply each macro in a source program. For
the former, most systems employed ASTs. For the latter, several mecha-
nisms were proposed.

In Common Lisp and MS2, a macro is applied to expressions or state-
ments beginning with the trigger word specified by the macro. For example,
if the trigger word is unless, all expressions beginning with unless are ex-
panded by that macro. In this way, they cannot use macros without the
trigger words. For instance, it is impossible to selectively apply a macro to
only + expressions for adding string objects.

Some macro systems provide fine-grained control of where to apply a
macro. In A∗ [55], a macro is applied to expressions or statements matching
a pattern specified in the BNF. In EPP [42], macros are applied to a specified
syntax elements like if statements or + expressions. There’s no need to put
any trigger word in front of these statements or expressions.

3.1.2 Representation of Object-Oriented Programs

Although most of macro systems have been using ASTs for representing a
source program, ASTs are not the best representation for all macros: some
macros typical in object-oriented programming require a different kind of
representation. ASTs are purely textual representation and independent of
logical or contextual information of the program. For example, if an AST
represents a binary expression, the AST tells us what the operator and the
operands are but it never tells us the types of the operands. Therefore,
writing a macro is not possible with ASTs if the macro expansion depends
on logical and contextual information of that binary expression.

There is a great demand for the macros depending on logical and con-
textual information in object-oriented programming. For example, some of
design patterns [32] require relatively complicated programming. They of-
ten require programmers to repeatedly write similar code. [9]. To help this
programming, several researchers have proposed to extend a language to
provide new language constructs specialized for particular patterns. [9, 33]
Those constructs should be implemented with macros although they have
been implemented so far by a custom preprocessor. This is because macros
implementing those constructs depend on the logical and contextual infor-
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mation of programs and thus they are not implementable on top of the
traditional AST-based macro systems.

Suppose that we write a macro for helping programming with the Ob-

server [32] pattern, which is for describing one-to-many dependency among
objects. This pattern is found in the Java standard library although it is
called the event-and-listener model. For example, a Java program displays
a menu bar must define a listener object notified of menu-select events.
The listener object is an instance of a class MyMenuListener implementing
interface MenuListener:

class MyMenuListener implements MenuListener {
void menuSelected(MenuEvent e) { .. }
void menuDeselected(MenuEvent e) { return; }
void menuCanceled(MenuEvent e) { return; }

}

This class must declare all the methods for event handling even though some
events, such as the menu cancel event, are simply ignored.

We write a macro for automating declaration of methods for handling
ignored events. If this macro is used, the definition of MyMenuListener should
be re-written into:

class MyMenuListener follows ObserverPattern
implements MenuListener

{
void menuSelected(MenuEvent e) { .. }

}

The follows clauses specifies that our macro ObserverPattern is applied to
this class definition. The declarations of menuDeselected() and menuCanceled()
are automated. This macro first inspects which methods declared in the in-
terface MenuListener are not implemented in the class MyMenuListener. Then
it inserts the declarations of these methods in the class MyMenuListener.

Writing this macro is difficult with traditional AST-based macro sys-
tems since it depends on the logical information of the definition of the
class MyMenuListener. If a class definition is given as a large AST, the
macro program must interpret the AST and recognize methods declared in
MenuListener and MyMenuListener. The macro program must also construct
ASTs representing the inserted methods and modify the original large AST
to include these ASTs. Manipulating a large AST is another difficult task.
To reduce these difficulties, macro systems should provide logical and con-
textual information of programs for macro programs. There are only a few
macro systems providing the logical information. For example, XL [59] is
one of those systems although it is for a functional language but not for an
object-oriented language.
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3.2 OpenJava

OpenJava is our advanced macro system for Java. In OpenJava, macro
programs can access the data structures representing a logical structure
of the programs. We call these data structure class-objects. This section
presents the design of OpenJava.

3.2.1 Macro Programming in OpenJava

OpenJava produces an object representing a logical structure of class defi-
nition for each class in the source code. This object is called a class-object.
A class-object also manages macro expansion related to the class it repre-
sents. Programmers customize the definition of the class-objects for describ-
ing macro expansion. We call the class for the class-object metaclass. In
OpenJava, the metaprogram of a macro is described as a metaclass. Macro
expansion by OpenJava is divided into two: the first one is macro expansion
of class declarations (callee-side), and the second one is that of expressions
accessing classes (caller-side).

Applying Macros

Fig. 3.1 shows a sample using a macro in OpenJava. By adding a clause
instantiates M in just after the class name in a class declaration, the pro-
grammer can specify that the class metaobject for the class is an instance of
the metaclass M. In this sample program, the class-object for MyMenuLis-

tener is an instance of ObserverClass. This metaobject controls macro ex-
pansion involved with MyMenuListener. The declaration of ObserverClass is
described in regular Java as shown in Fig. 3.2.

class MyMenuListener
instantiates ObserverClass
extends MyObject
implements MenuListener

{ .... }

Figure 3.1: Application of a macro in OpenJava

Every metaclass must inherit from the metaclass OJClass, which is a
built-in class of OpenJava. The translateDefinition() in Fig. 3.2 is a
method inherited from OJClass, which is invoked by the system to make
macro expansion. If an instantiates clause in a class declaration is found,
OpenJava creates an instance of the metaclass indicated by that instantiates
clause, and assigns this instance to the class-object representing that de-
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class ObserverClass
extends OJClass

{
void translateDefinition() { ... }
....

}

Figure 3.2: A macro in OpenJava

clared class. Then OpenJava invokes translateDefinition() on the cre-
ated class metaobject for macro expansion on the class declaration later.

Since the translateDefinition() declared in OJClass does not perform
any translation, a subclass of OJClass must override this method for the
desired macro expansion. For example, translateDefinition() can add
new member methods to the class by calling other member methods in
OJClass. Modifications are reflected on the source program at the final
stage of the macro processing.

Describing a Metaprogram

The method translateDefinition() implementing the macro for the Ob-

server pattern in section 3.1.2 is shown in Fig. 3.3. This metaprogram
first obtains all the member methods (including inherited ones) defined in
the class by invoking getMethods() on the class-object. Then, if a member
method declared in interfaces is not implemented in the class, it generates
a new member method doing nothing and adds it to the class by invoking
addMethod() on the class-object.

void translateDefinition() {

OJMethod[] m = this.getMethods(this);

for (int i = 0; i < m.length; ++i) {

OJModifier modif = m[i].getModifiers();

if (modif.isAbstract()) {

OJMethod n = new OJMethod(this,

m[i].getModifiers().removeAbstract(),

m[i].getReturnType(), m[i].getName(),

m[i].getParameterTypes(),

m[i].getExceptionTypes(),

makeStatementList("return;"));

this.addMethod(n);

}

}

}

Figure 3.3: translateDefinition() in ObserverClass

As a class is represented by a class-object, a member method is also rep-
resented by a method metaobjects. In OpenJava, classes, member methods,
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member fields, and constructors are represented by instances of the class OJ-

Class, OJMethod, OJField, and OJConstructor, respectively. These metaob-
ject represent logical structures of class and member definitions. They are
easy to handle, compared to directly handling large ASTs representing class
declarations and collecting information scattered in these ASTs.

3.2.2 Class-Objects

As shown in section 3.1, a problem of ordinary macro systems is that their
primary data structure is ASTs (abstract syntax trees) but they are far
from logical structures of programs in object-oriented languages. In object-
oriented languages like Java, class definitions play an important role as a
logical structure of programs. Therefore, OpenJava employs the class-object
model, which was originally developed for reflective computing, for repre-
senting a logical structure of a program. The class-objects make it easy for
meta programs to access a logical structure of program.

Hiding Syntactical Information

In Java, programmers can use various syntax for describing the logically
same thing. These syntactical differences are absorbed by the metaobjects.
For instance, there are two notations for declaring a String array member
field:

String[] a;
String b[];

Both a and b are String array fields. It would be awkward to write a metapro-
gram if the syntactical differences of the two member fields had to be con-
sidered. Thus OJField provides only two member methods getType() and
setType() for handling the type of a member field. getType() on the OJ-

Field metaobjects representing a and b returns a class-object representing
the array type of the class String.

Additionally, some elements in the grammar represent the same element
in a logical structure of the language. If one of these element is edited,
the others are also edited. For instance, the member method setName() in
OJClass for modifying the name of the class changes not only the class name
after the class keyword in the class declaration but also changes the name
of the constructors.

Logically Structured Class Representation

Simple ASTs, even arranged and abstracted well, cannot properly represent
a logical structure of a class definition. The data structure must be carefully
designed to corresponded not only to the grammar of the language but also
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to the logical constructs of the language like classes and member methods.
Especially, it makes it easy to handle the logical information of program
including association between names and types.

For instance, the member method getMethods() in OJClass returns all
the member methods defined in the class which are not only the methods
immediately declared in the class but also the inherited methods. The class-
objects contain type information so that the definition of the super class can
be accessible.

3.2.3 Class-Object API in Details

The root class for class-objects is OJClass. The member methods of OJ-

Class for obtaining information about a class are shown in Tab. 3.1 and
Tab. 3.2. They cover all the attributes of the class. In OpenJava, all the
types, including array types and primitive types like int, have corresponding
class-objects. Using the member methods shown in Tab. 3.1, metaprograms
can inspect whether a given type is an ordinary class or not.

Tab. 3.3 gives methods for modifying the definition of the class. Metapro-
grams can override translateDefinition() in OJClass so that it calls these
methods for executing desired modifications. For instance, the example
shown in Fig. 3.3 adds newly generated member methods to the class with
addMethod().

Table 3.1: Member methods in OJClass for non-class types

boolean isInterface()

Tests if this represents an interface type.

boolean isArray()

Tests if this represents an array type.

boolean isPrimitive()

Tests if this represents an primitive type.

OJClass getComponentType()

Returns a class-object for the type of array components.

Metaobjects Obtained through Class-Objects

The method getSuperclass() in OJClass, which is used to obtain the su-
perclass of the class, returns a class-object instead of the class name (as a
string). As the result, metaprogram can use the returned class-object to
directly obtain information about the superclass. OpenJava automatically
generates class metaobjects on demand, even for classes declared in another
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Table 3.2: Member methods in OJClass for introspection (1)

String getPackageName()

Returns the package name this class belongs to.

String getSimpleName()

Returns the unqualified name of this class.

OJModifier getModifiers()

Returns the modifiers for this class.

OJClass getSuperclass()

Returns the superclass declared explicitly or implicitly.

OJClass[] getDeclaredInterfaces()

Returns all the declared superinterfaces.

StatementList getInitializer()

Returns all the static initializer statements.

OJField[] getDeclaredFields()

Returns all the declared fields.

OJMethod[] getDeclaredMethods()

Returns all the declared methods.

OJConctructor[] getDeclaredConstructors()

Returns all the constructors declared explicitly or implicitly.

OJClass[] getDeclaredClasses()

Returns all the member classes (inner classes).

OJClass getDeclaringClass()

Returns the class declaring this class (outer class).
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Table 3.3: Member methods in OJClass for modifying the class

String setSimplename(String name)

Sets the unqualified name of this class.

OJModifier setModifiers(OJModifier modifs)

Sets the class modifiers.

OJClass setSuperclass(OJClass clazz)

Sets the superclass.

OJClass[] setInterfaces(OJClass[] faces)

Sets the superinterfaces to be declared.

OJField removeField(OJField field)

Removes the given field from this class declaration.

OJMethod removeMethod(OJMethod method)

Removes the given method from this class declaration.

OJConstructor removeConstructor(OJConstructor constr)

Removes the given constructor from this class declaration.

OJField addField(OJField field)

Adds the given field to this class declaration.

OJMethod addMethod(OJMethod method)

Adds the given method to this class declaration.

OJConstructor addConstructor(OJConstructor constr)

Adds the given constructor to this class declaration.

source file or for classes available only in the form of bytecode, that is, classes
whose source code is not available.

The returned value of the member method getModifiers() in Tab. 3.2
is an instance of the class OJModifier. This class represents a set of class
modifiers such as public, abstract or final. Metaprograms do not have
to care about the order of class modifiers because OJModifier hides such
useless information.

The class OJMethod, which is the return type of getDeclaredMethods()
in OJClass, represents a logical structure of a method. Thus, similarly to the
class OJClass, this class has member methods for examining or modifying
the attributes of the method. Some basic member methods in OJMethod are
shown in Tab. 3.4. Any type information obtained from these methods is
also represented by a class-object. For instance, getReturnType() returns
a class-object as the return type of the method. This feature of OJMethod

is also found in OJField and OJConstructor, which respectively represent a
member field and a constructor.

The class StatementList, which is the return type of the member method
getBody() in the class OJMethod, represents the statements in a method
body. An instance of StatementList consists of objects representing either
expressions or statements. StatementList objects are AST-like data struc-
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Table 3.4: Basic methods in OJMethod

String getName()

Returns the name of this method.

OJModifier getModifiers()

Returns the modifiers for this method.

OJClass getReturnType()

Returns the return type.

OJClass[] getParameterTypes()

Returns the parameter types in declaration order.

OJClass[] getExceptionTypes()

Returns the types of the exceptions declared to be thrown.

String[] getParameterVariables()

Returns the parameter variable names in declaration order.

StatementList getBody()

Returns the statements of the method body.

String setName(String name)

Sets the name of this method.

OJModifier setModifiers(OJModifier modifs)

Sets the method modifiers.

OJClass setReturnType()

Sets the return type.

OJClass[] setParameterTypes()

Sets the parameter types in declaration order.

OJClass[] setExceptionTypes()

Sets the types of the exceptions declared to be thrown.

String[] setParameterVariables()

Sets the parameter variable names in declaration order.

StatementList setBody()

Sets the statements of the method body.
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tures although they contain type information. This is because we thought
that the logical structure of statements and expressions in Java can be well
represented with ASTs.

Logical Structure of a Class

Tab. 3.5 shows the member methods in OJClass handling a logical struc-
ture of a class. Using these methods, metaprograms can obtain information
considering class inheritance and member hiding. Although these member
methods can be implemented by combining the member methods in Tab.3.2,
they are provided for convenience. We think that providing these methods is
significant from the viewpoint that class-objects represent a logical structure
of a program.

Table 3.5: Member methods in OJClass for introspection (2)

OJClass[] getInterfaces()

Returns all the interfaces implemented by this class or the all
the superinterfaces of this interface.

boolean isAssignableFrom(OJClass clazz)

Determines if this class/interface is either the same as, or is a
superclass or superinterface of, the given class/interface.

OJMethod[] getMethods(OJClass situation)

Returns all the class available from the given situation,
including those declared and those inherited from super-
classes/superinterfaces.

OJMethod getMethod(String name, OJClass[] types, OJClass situation)

Returns the specified method available from the given situation.

OJMethod getInvokedMethod(String name, OJClass[] types, OJClass

situation)

Returns the method, of the given name, invoked by the given
arguments types, and available from the given situation.

In considering the class inheritance mechanism, the member methods
defined in a given class are not only the member methods described in that
class declaration but also the inherited ones. Thus, method metaobjects
obtained by invoking getMethods() on a class-object include the methods
explicitly declared in its class declaration but also the methods inherited
from its superclass or superinterfaces.

Moreover, accessibility of class members is restricted in Java by member
modifiers like public, protected or private. Thus, getMethods() returns
only the member methods available from the class specified by the argument.
For instance, if the specified class is not a subclass or in the same package,
getMethods() returns only the member methods with public modifier. In



CHAPTER 3. OPENJAVA 42

Fig. 3.3, since the metaprogram passes this to getMethods(), it obtains all
the member methods defined in that class.

3.2.4 Type-Driven Translation

As macro expansion in OpenJava is managed by metaobjects corresponding
to each class (type), this translation is said to be type-driven. In the above
example, only the member method translateDefinition() of OJClass is
overridden to translate the class declarations of specified classes (callee-side
translation).

In addition to the callee-side translation, OJClass provides a framework
to translate the code related to the corresponding class spreading over whole
program selectively (caller-side translation). The parts related to a certain
class is, for example, instance creation expressions or field access expressions.

Here, we take up an example of a macro that enables programming with
the Flyweight [32] pattern to explain this mechanism. This design pattern
is applied to use objects-sharing to support large numbers of fine-grained
objects efficiently. An example of macro supporting uses of this pattern
would need to translate an instance creation expression of a class Glyph:

new Glyph(’c’)

into a class method call expression:

GlyphFactory.createCharacter(’c’)

The class method createCharacter() returns an object of Glyph cor-
respondent to the given argument if it was already generated, otherwise it
creates a new object to return. This way, the program using Glyph objects
automatically shares an object of Glyph representing a font for a letter c
without generating several objects for the same letter. In ordinary pro-
gramming using Glyph objects with the Flyweight pattern, programmers
must explicitly write createCharacter() in their program with creations
of Glyph objects. With a support of this macro, instance creations can be
written in the regular new syntax and the pattern is used automatically.

In OpenJava, this kind of macro expansions are implemented by defin-
ing a metaclass FlyweightClass to be applied to the class Glyph. This meta-
class overrides the member method expandAllocation() of OJClass as in
Fig.3.4. This method receives a class instance creation expression and re-
turns a translated expression. The system of OpenJava examines the whole
source code and apply this member method to each Glyph instance creation
expression to perform the macro expansion.

The member method expandAllocation() receives an AllocationExpres-

sion object representing a class instance creation expression and an Environ-

ment object representing the environment of this expression. The Environ-
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Expression expandAllocation(AllocationExpression expr, Environment env) {

ExpressionList args = expr.getArguments();

return new MethodCall(this, "createCharacter", args);

}

Figure 3.4: Replacement of class instance expressions

ment object holds name binding information such as type of variable in the
scope of this expression.

OpenJava uses type-driven translation to enable the comprehensive macro
expansion of partial code spreading over various places in program. In
macro systems for object-oriented programming languages, it is not only
needed to translate a class declaration simply but translating expressions
using the class together is also needed. In OpenJava, by defining a methods
like expandAllocation(), metaprogrammers can selectively apply macro
expansion to the limited expressions related to classes controlled by the
metaclass. This kind of mechanism has not been seen in most of ordinary
macro systems except some systems like OpenC++ [15]. Tab. 3.6 shows
the primary member methods of OJClass which can be overridden for macro
expansion at caller-side.

Table 3.6: Member methods for each place where the macro-expansion is
applied

Member method Place applied the macro expansion to
translateDefinition() Class declaration

expandAllocation() Class instance allocation expression
expandArrayAllocation() Array allocation expression

expandTypeName() Class name
expandMethodCall() Method class expression
expandFieldRead() Field-read expression
expandFieldWrite() Field-write expression

expandCastedExpression() Casted expression from this type
expandCastExpression() Casted expression to this type

3.2.5 Translation Mechanism

Given a source program, the processor of OpenJava:

1. Analyzes the source program to generate a class-object for
each class.

2. Invokes the member methods of class-objects to perform
macro expansion.

3. Generates the regular Java source program reflecting the
modification made by the class-objects.
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4. Executes the regular Java compiler to generate the corre-
sponding byte code.

The Order of Translations

Those methods of OJClass whose name start from expand performs caller-
side translation, and they affect expressions in source program declaring an-
other class C. Such expressions may also be translated by translateDefinition()
of the class-object of C as callee-side translation. Thus different class-objects
affect the same part of source program.

In OpenJava, to resolve this ambiguousness of several macro expansion,
the system always invokes translateDefinition() first as callee-side trans-
lation, then it apply caller-side translation to source code of class declara-
tions which was already applied callee-side translation. Metaprogrammers
can design metaprogram considering this specified order of translation. In
this rule, if translateDefinition() changes an instance creation expres-
sion of class X into Y’s, expandAllocation() defined in the metaclass of X

is not performed.
Moreover, the OpenJava system always performs translateDefinition()

for superclasses first, i.e. the system performs it for subclasses after super-
classes. As a class definition strongly depends on the definition of its su-
perclass, the translation of a class often varies depending on the definition
of its superclass. To settle the definition of superclasses, the system first
translates the source program declaring superclasses. Additionally, there
are some cases where the definition of a class D affects the result of trans-
lation of a class E. In OpenJava, from translateDefinition() for E, a
metaprogrammer can explicitly specify that translateDefinition() for D

must be performed before.
In the case there are dependency relationships of translation among sev-

eral macro expansions, consistent order of translation is specified to address
this ambiguousness of translation results.

Dealing with Separate Compilation

In Java, classes can be used in program only if they exist as source code or
byte code (.class file). If there is no source code for a class C, the system
cannot specify the metaclass of C, as is. Then, for instance, it cannot per-
form the appropriate expandAllocation() on instance creation expressions
of C.

Therefore, OpenJava automatically preserves meta-level information such
as the metaclass name for a class when it processes the callee-side transla-
tion of each class. These preservation are implemented by translating these
information into a string held in a field of a special class, which is to be
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compiled into byte code. The system uses this byte code to obtain neces-
sary meta-level information in another process without source code of that
class. Additionally, metaprogrammers can request the system to preserve
customized meta-level information of a class.

Meta-level information can be preserved as special attributes of byte
code. In OpenJava, such information is used only at compile-time but not
at runtime. Thus, in order to save runtime overhead, we chose to preserve
such information in separated byte code which is not to be loaded by JVM
at runtime.

3.2.6 Syntax Extension

With OpenJava macros, a metaclass can introduce new class/member mod-
ifiers and clauses starting with the special word at some limited positions of
the regular Java grammar. The newly introduced clauses are valid only in
the parts related to instances of the metaclass.

In a class declaration (callee-side), the positions allowed to introduce
new clauses are:

• before the block of member declarations,

• before the block of method body in each method declaration,

• after the field variable in each field declaration.

And in other class declarations (caller-side), the allowed position is:

• after the name of the class.

Thanks to the limited positions of new clauses, the system can parse
source programs without conflicts of extended grammars. Thus, metapro-
grammers do not have to care about conflicts between clauses.

class VectorStack instantiates AdapterClass

adapts Vector in v to Stack

{

....

}

Figure 3.5: An example of syntax extension in OpenJava

Fig. 3.5 shows an example source program using a macro, a metaclass
AdapterClass, supporting programming with the Adapter pattern [32]. The
metaclass introduces a special clause beginning with adapts to make pro-
grammers to write special description for the Adapter pattern in the class
declaration. The adapts clause in the Fig. reffig:VectorStack VectorStack is
the adapter to a class Stack for a class Vector. The information by this clause
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is used only when the class-objects representing VectorStack performs macro
expansion. Thus, for other class-objects, semantical information added by
the new clause is recognized as a regular Java source code.

static SyntaxRule getDeclSuffix(String keyword) {

if (keyword.equals("adapts")) {

return new CompositeRule(

new TypeNameRule(),

new PrepPhraseRule("in", new IdentifierRule()),

new PrepPhraseRule("to", new TypeNameRule()) );

}

return null;

}

Figure 3.6: A meta-program for a customized suffix

To introduce this adapts clause, metaprogrammers implement a mem-
ber method getDeclSuffix() in the metaclass AdapterClass as shown in
Fig. 3.6. The member method getDeclSuffix() is invoked by the sys-
tem when needed, and returns a SyntaxRule object representing the syntax
grammar beginning with the given special word. An instance of the class
SyntaxRule implements a recursive descendant parser of LL(k), and ana-
lyzes a given token series to generate an appropriate AST. The system uses
SyntaxRule objects obtained by invoking getDeclSuffix() to complete the
parsing.

For metaprogrammers of such SyntaxRule objects, OpenJava provides
a class library of subclasses of SyntaxRule, such as parsers of regular Java
syntax elements and synthesizing parser for tying, repeating or selecting
other SyntaxRule objects. Metaprogrammers can define their desired clauses
by using this library or by implementing a new subclass of SyntaxRule.

3.2.7 Metaclass Model of OpenJava

A class must be managed by a single metaclass in OpenJava. Though it
would be useful if programmers could apply several metaclasses to a class,
we did not implement such a feature because there is a problem of conflict
of translation between metaclasses. And, a metaclass for a class A does not
manage a subclass A’ of A, that is, the metaclass of A does not perform
the callee-side and caller-side translation of A’ it is not specified to be the
metaclass of A’ in the source program declaring A’.

For innerclasses such as member classes, local classes, anonymous classes
in the Java language, each of them are also an instance of a metaclass in
OpenJava. Thus programmers may apply a desired metaclass to such classes.
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3.3 Related Work

There are a number of systems using the class-object model for representing
a logical structure of a program: 3-KRS [60], ObjVlisp [22], CLOS MOP [49],
Smalltalk-80 [34], and so on. The reflection API [44] of the Java language
also uses this model although the reflection API does not allow to change
class-objects; it only allows to inspect them. Furthermore, the reflection API
uses class metaobjects for making class definition accessible at runtime. On
the other hand, OpenJava uses class-objects for macro expansion at compile-
time.

OpenC++ [15] also uses the class-object model. OpenJava inherits sev-
eral features, such as the type-driven translation mechanism, from OpenC++.
However, the data structure mainly used in OpenC++ is still an AST (ab-
stract syntax tree). MPC++ [43] and EPP [42] are similar to OpenC++
with respect to the data structure. As mentioned in section 3.1, an AST is
not an appropriate abstraction for some macros frequently used in object-
oriented programming.

3.4 Summary

This chapter described OpenJava, which is a macro system for Java provid-
ing a data structure called class-objects. A number of research activities have
been done for enhancing expressive power of macro systems. This research
is also in this stream. OpenJava is a macro system with a data structure
representing a logical structure of an object-oriented program. This made
it easier to describe typical macros for object-oriented programming which
was difficult to describe with ordinary macro systems. To show the effective-
ness of OpenJava, we implemented some macros in OpenJava for supporting
programming with design patterns.
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Javassist

This chapter presents Javassist, which is a bytecode editor that we have de-
veloped for Java. Like OpenJava, Javassist employs the class-object model
proposed in this thesis. In Javassist, we apply the design of the class-object
to transformations of Java bytecode, which are compiled, binary represen-
tation of Java program. Since Javassist handles bytecode, transformations
with Javassist are not limited at compile-time.

Java is a programming language supporting reflection. The reflective
ability of Java is called the reflection API. However, it is almost restricted
to introspection, which is the ability to introspect data structures used in
a program such as a class. The Java’s ability to alter program behavior is
very limited; it only allows a program to instantiate a class, to get/set a
field value, and to invoke a method through the API.

To address the limitations of the Java reflection API, several extensions
have been proposed. Most of these extensions enable behavioral reflection,
which is the ability to intercept an operation such as method invocation
and alter the behavior of that operation. If an operation is intercepted,
the runtime systems of those extensions call a method on a metaobject for
notifying it of that event. The programmer can define their own version of
metaobject so that the metaobject executes the intercepted operation with
customized semantics, which implement a language extension for a specific
application domain such as fault tolerance [30].

However, behavioral reflection only provides the ability to alter the be-
havior of operations in a program but not provides the ability to alter data
structures used in the program, which are statically fixed at compile time
(or, in languages like Lisp, when they are first defined). The latter ability
called structural reflection allows a program to change, for example, the
definition of a class, a function, and a record on demand. Some kinds of
language extensions require this ability for implementation and thus they
cannot be implemented with a straightforward program using behavioral

48
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reflection; complex programming tricks are often needed.
To simply implement these language extensions, this chapter presents

Javassist, which is a class library for enabling structural reflection in Java.
Since portability is important in Java, we designed a new architecture for
structural reflection, which can be implemented without modifying an ex-
isting runtime system or compiler. Javassist is a Java implementation of
that architecture. An essential idea of this architecture is that structural
reflection is performed by bytecode transformation at compile-time or load
time. Javassist does not allow structural reflection after a compiled program
is loaded into the JVM. Another feature of our architecture is that it pro-
vides source-level abstraction: the users of Javassist do not have to have a
deep understanding of the Java bytecode. Our architecture can also execute
structural reflection faster than the compile-time metaobject protocol used
by OpenC++ [15] and OpenJava [82].

In the rest of this chapter, we first overview previous extensions enabling
behavioral reflection in Java and point out limitations of those extensions.
Then we present the design of Javassist in Section 3 and show typical appli-
cations of Javassist in Section 4. In Section 5, we compare our architecture
with related work. Section 6 is conclusion.

4.1 Extensions to the Reflection Ability of Java

The Java reflection API dose not provide the full reflective capability. It does
not enable alteration of program behavior but it only supports introspection,
which is the ability to introspect data structures, for example, inspecting a
class definition. This design decision was acceptable because implementing
the full capability was difficult without a decline in runtime performance. An
implementation technique using partial evaluation has been proposed [62, 11]
but the feasibility of this technique in Java has not been clear.

However, several extensions to the Java reflection API have been pro-
posed. To avoid performance degradation, most of these extensions enable
restricted behavioral reflection. They only allow alteration of the behavior
of specific kinds of operations such as method calls, field accesses, and object
creation. The programmers can select some of those operations and alter
their behavior. The compilers or the runtime systems of those extensions
insert hooks in programs so that the execution of the selected operations is
intercepted. If these operations are intercepted, the runtime system calls a
method on an object (called a metaobject) associated with the operations
or the target objects. The execution of the intercepted operation is imple-
mented by that method. The programmers can define their own version of
metaobject for implementing new behavior of the intercepted operations.

The runtime overheads due to this restricted behavioral reflection are low
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since only the execution of the intercepted operations involves a performance
penalty and the rest of the program runs without any overheads. Especially,
if hooks for the interception are statically inserted in a program during com-
pilation, the runtime overheads are even lowered. To statically insert hooks,
Reflective Java [86] performs source-to-source translation before compila-
tion and Kava [85] performs bytecode-level transformation when a program
is loaded into the JVM. MetaXa [52, 35] internally performs bytecode-level
transformation with a customized JVM. It uses a customized just-in-time
compiler (JIT) for improving the execution speed of the inserted hooks.
This hook-insertion technique is well known and has been applied to other
languages such as C++ [19].

Although the restricted behavioral reflection is useful for implementing
various language extensions, there are some kinds of extensions that cannot
be intuitively implemented with that kind of reflection. An example of these
extensions is binary code adaptation (BCA) [47], which is a mechanism for
altering a class definition in binary form to conform changes of the definitions
of other classes. Suppose that we write a program using a class library
obtained from a third party. For example, our class Calendar implements an
interface Writable included in that class library:

class Calendar implements Writable {

public void write(PrintStream s) { ... }

}

The class Calendar implements method write() declared in the interface
Writable.

Then, suppose that the third party gives us a new version of their class
library, in which the interface Writable is renamed into Printable and it de-
clares a new method print(). To make our program conform this new class
library, we must edit the definitions of all our classes implementing Writable,
including Calendar:

class Calendar implements Printable {

public void write(PrintStream s) { ... }

public void print() { write(System.out); }

}

The interface of Calendar is changed into Printable and method print() is
added.

BCA automates this adaptation; it automatically alters class definitions
in binary form according to a configuration file specifying how to alter them.
Note that the method body of print() is identical among all the updated
classes since print() can be implemented with the functionality already
provided by write() for the old version. If that configuration file is supplied
by the library developer, we can run our program without concern about
evolution of the class library.
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Unfortunately, implementing BCA with behavioral reflection is not intu-
itive or straightforward. Since behavioral reflection cannot directly provide
the ability to alter data structures such as a class definition or construct a
new data structure, these reflective computation must be indirectly imple-
mented. For example, the implementation of BCA with behavioral reflec-
tion defines a metaobject indirectly performing the adaptation specified by a
given configuration file. For the above example, this metaobject is made to
be associated with Calendar and it watches method calls on Calendar objects.
If the method print() is called, the metaobject intercepts that method call
and executes the computation corresponding to print() instead of the Cal-

endar object. The metaobject also intercepts runtime type checking so that
the JVM recognizes Calendar as a subtype of Printable. Recall that Java is a
statically typed language and the original Calendar is a subtype of Writable.

The ability to alter data structures used in a program is called struc-
tural reflection, which has not been directly supported by previous systems.
Although a number of language extensions are more easily implemented
with structural reflection than with behavioral reflection, the previous sys-
tems have not been addressing those extensions. They have been too much
focused on language extensions that can be implemented by altering the
behavior of method calls and so on.

4.2 Javassist

To simply implement language extensions like BCA shown in the previous
section, we developed Javassist, which is our extension to the Java reflection
API and enables structural reflection instead of behavioral one. Javassist
is based on our new architecture for structural reflection, which can be
implemented without modifying an existing runtime system or a compiler.

4.2.1 Implementations of Structural Reflection

Structural reflection is the ability to allow a program to alter the defini-
tions of data structures such as classes and methods. It has been provided
by several languages such as Smalltalk [34], ObjVlisp [22], and CLOS [49].
These languages implement structural reflection with support mechanisms
embedded in runtime systems. Since the runtime systems contain internal
data representing the definitions of data structures such as a class, the sup-
port mechanisms allow a program to directly read and change those internal
data and thereby execute structural reflection on the correspondent data
structures.

We could not accept this implementation technique for Javassist since it
needs to modify a standard JVM but portability is important in Java. Fur-
thermore, a naive application of this technique to Java would cause serious
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performance degradation of the JVM because this technique makes it diffi-
cult for runtime systems to employ optimization techniques based on static
information of executed programs. Since a program may be altered at run-
time, efficient dynamic recompilation is required for redoing optimization on
demand. For example, method inlining is difficult to perform. If an inlined
method is altered at runtime with structural reflection, all the inlined code
must be updated. To do this, the runtime system must record where the code
is inlined. This will spend a large amount of memory space. Another exam-
ple is the “v-table” technique used for typical C++ implementations [29].
This technique statically constructs method dispatch tables so that invoked
methods are quickly selected with a constant offset in the tables. If a new
method is added to a class at runtime, then the dispatch tables may be
updated and all offsets in the tables may be recomputed. Since the dynamic
recompilation technique has been used so far for gradually optimizing “hot
spots” of compiled code at runtime [40], it has been assuming that a pro-
gram is never changed at runtime. Effectiveness of dynamic recompilation
without this assumption is an open question.

Another problem is correctness of types. Since Java is a statically typed
language, a variable of type X must be bound to an object of X or a subclass
Y of X. If a program can freely access and change the internal data of the
JVM, it may dynamically change the super class of Y from X to another
class. This change causes a type error for the binding between a variable
of type X and an object of Y. To address this problem, extra runtime type
checks or restrictions on the range of structural reflection are needed.

4.2.2 Load-time Structural Reflection

To avoid the problems mentioned above, we designed a new architecture for
structural reflection; it does not need to modify an existing runtime system
or a compiler. On the other hand, it enables structural reflection only before
a program is loaded into a runtime system, that is, at load time. Javassist
is a class library enabling structural reflection based on this architecture.
In Java, the bytecode obtained by compilation of a program is stored in
class files, each of which corresponds to a distinct class. Javassist performs
structural reflection by translating alterations by structural reflection into
equivalent bytecode transformation of the class files. After the transforma-
tion, the modified class files are loaded into the JVM and then no alterations
are allowed after that. Thereby, Javassist can be used with a standard JVM,
which may use various optimization techniques.

Javassist is used with a user class loader. Java allows programs to define
their own versions of class loader, which fetch a class file from a not-standard
resource such as a network. A typical definition of the class loader is as
follows:
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class MyLoader extends ClassLoader {

public Class loadClass(String name) {

byte[] bytecode = readClassFile(name);

return resolveClass(defineClass(bytecode));

}

private byte[] readClassFile(String name) {

// read a class file from a resource.

}

}

The methods defineClass() and resolveClass() are inherited from Class-

Loader. They request the JVM to load a class constructed from the bytecode
given as an array of byte. The returned value is a Class object representing
the loaded class. Once a class X is manually loaded with an instance of My-

Loader, all classes referenced by that class X are loaded through that class
loader. The JVM automatically calls loadClass() on that class loader for
loading them on demand.

Javassist helps readClassFile() shown above obtain the bytecode of a
requested class. It can be regarded as a class library for reading bytecode
from a class file and altering it. However, unlike similar class libraries such
as the BCEL [25] and JOIE [21], Javassist provides source-level abstraction
so that it can be used without knowledge of bytecode or the data format of
the class file. Also, Javassist was designed to make it difficult to wrongly
produce a class file rejected by the bytecode verifier of the JVM.

4.2.3 The Javassist API

We below present the overview of the Javassist API.

Reification and Reflection

The first step of the use of Javassist is to create a CtClass (compile-time class)
object representing the bytecode of a class loaded into the JVM. This step
is for reifying the class to make it accessible from a program. If stream is an
InputStream for reading a class file (from a local disk, memory, a network,
etc.), then:

CtClass c = new CtClass(stream);

creates a new CtClass object representing the bytecode of the class read from
the class file, which contains enough symbolic information to reify the class.
Also, the constructor of CtClass can receive a String class name instead of an
InputStream. If a String class name is given, Javassist searches a class path
and finds an InputStream for reading a class file.

One can call various methods on the CtClass object for introspecting and
altering the class definition. Changes of the class definition are reflected on
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the bytecode represented by that object. To obtain the bytecode for loading
the altered class into the JVM, method toBytecode() is called on that
object:

byte[] bytecode = c.toBytecode();

Loading the obtained bytecode into the JVM is regarded as the step for
reflecting the CtClass object on the base level. Javassist provides several
other methods for this step. For example, method compile() writes byte-
code to a given output stream such as a local file and a network. Method
load() directly loads the class into the JVM with a class loader provided
by Javassist. It returns a Class object representing the loaded class. Recall
that Class is included in the Java reflection API while CtClass is in Javassist.

Note that Javassist does not provide any framework for specifying how
and what classes are processed with Javassist. The programmer of the class
loader has freedom with respect to this framework. For example, the class
loader may process classes with Javassist only if they are specified by a
configuration file read at the beginning. It may process them according to
a hard-coded algorithm.

Javassist allows a user class loader to define a new class from scratch
without reading any class file. This is useful if a program needs to dynam-
ically define a new class on demand. To do this, a CtClass object must be
created as follows:

CtClass c2 = new CtNewClass();

The created object c2 represents an empty class that has no methods or
fields although methods and fields can be added to the class later through
the Javassist API shown below. If toBytecode() is called on this object,
then it returns the bytecode corresponding to that empty class.

Introspection

Javassist provides several methods for introspecting the class represented by
a CtClass object. This part of the Javassist API is compatible with the Java
reflection API except that Javassist does not provide methods for creating
an instance or invoking a method because these methods are meaningless at
load time. Table 4.1 lists selected methods for introspection.

CtClass objects returned by getSuperclass() and getInterfaces() are
constructed from class files found on a class path. They represent the original
class definitions and thus accept only introspection but not alteration. To
alter a class, another CtClass object must be explicitly created with the new
operator. Modifications to this object have no effect on the CtClass object
returned by getSuperclass() or getInterfaces(). For example, suppose
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Table 4.1: Methods in CtClass for introspection

Method Description

String getName() gets the class name
int getModifiers() gets the class modifiers such as public

boolean isInterface() determines whether this object represents
a class or an interface

CtClass getSuperclass() gets the super class
CtClass[] getInterfaces() gets the interfaces
CtField[] getDeclaredFields() gets the fields declared in the class
CtMethod[] getDeclaredConstructors() gets the constructors declared in the class
CtMethod[] getDeclaredMethods() gets the methods declared in the class

Table 4.2: Methods in CtField and CtMethod for introspection

Method in CtField Description

String getName() gets the field name
CtClass getDeclaringClass() get the class declaring the field

int getModifiers() gets the field modifiers such as public
CtClass getType() get the field type

Method in CtMethod Description

String getName() gets the method name
CtClass getDeclaringClass() get the class declaring the method

int getModifiers() gets the method modifiers such as public
CtClass[] getParameterTypes() gets the types of the parameters
CtClass[] getExceptionTypes() gets the types of the exceptions that the

method may throw
boolean isConstructor() returns true if the method is a constructor
boolean isClassInitializer() returns true if the method is a class initializer

that a class C inherits from a class S. If a CtClass object for S is created
with new and a method m() is added to that object, this modification is not
reflected on the object returned by getSuperclass() on a CtClass object
for C. The class C inherits m() from S only if the CtClass object created with
new is converted into bytecode and loaded into the JVM.

The information about fields and methods is provided by objects sepa-
rate from the CtClass object; it is provided by CtField objects obtained by
getDeclaredFields() and CtMethod objects obtained by getDeclaredMethods(),
respectively. The information about a constructor is also provided by a Ct-

Method object. Table 4.2 lists methods in CtField and CtMethod for intro-
spection.
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Table 4.3: Methods for alteration

Method in CtClass Description

void bePublic() make the class public
void beAbstract() make the class abstract
void notFinal() remove the final modifier from the class
void setName(String name) change the class name
void setSuperclass(CtClass c) change the super class
void setInterfaces(CtClass[] i) change the interfaces
void addConstructor(...) add a new constructor
void addDefaultConstructor() add the default constructor
void addAbstractMethod(...) add a new abstract method
void addMethod(...) add a new method
void addWrapper(...) add a new wrapped method
void addField(...) add a new field

Method in CtField Description

void bePublic() make the field public

Method in CtMethod Description

void bePublic() make the method public

void instrument(...) modify a method body
void setBody(...) substitute a method body
void setWrapper(...) substitute a method body

Alteration

A difference between Javassist and the standard Java reflection API is that
Javassist provides methods for altering class definitions. Several methods
for alteration are defined in CtClass (Table 4.3). These methods are cat-
egorized into methods for changing class modifiers, methods for changing
class hierarchy, and methods for adding a new member. They were carefully
selected to satisfy our design goals.

Our design goals are three. (1) The first goal is to provide source-level
abstraction for programmers. Javassist was designed so that programmers
can use it without knowledge of the Java bytecode. (2) The second goal is
to execute structural reflection as efficiently as possible. (3) The last goal is
to help programs perform structural reflection in a safe manner in terms of
types.

As for the first goal, the most significant design decision was how pro-
grammers specify a method body. Suppose that a new method is added
to a class. If a sequence of bytecode is used for specifying the body of
that method, the programmers would get great flexibility but have to learn
details of bytecode. To achieve the first goal, Javassist allows to copy a
method body from another existing method although this design decision
restricts the flexibility of the added method. The copied bytecode sequence
is adjusted to fit the destination method. For example, the bytecode for



CHAPTER 4. JAVASSIST 57

accessing a member through the this variable contains a symbolic reference
to the type of this. This reference is replaced with one to the class declaring
the destination method.

Despite the well-known quasi-equivalence between Java source code and
bytecode, the correspondence between source-level and bytecode-level alter-
ations are not straightforward. Hiding the gap between the two levels from
programmers is also a part of the first goal.

For example, setName() renames a class but it also substitutes the new
name for all occurrences of the old name in the definition of that class,
including method signatures and bodies. Modifying a single constant-pool
item never performs this substitution. If a constructor calls another con-
structor in the same class (if it executes this()), then the bytecode of the
former constructor is modified since the bytecode contains a symbolic refer-
ence to the name of the class declaring the latter constructor. This reference
must be modified to indicate the new name.

setSuperclass() performs similar substitution. If it is called, all oc-
currences of the old super class name is replaced with a new name and all
constructors are modified so that they call a constructor in the new super
class. However, there is an exception to this substitution. If the name of
the original super class is java.lang.Object (the root of the class hierarchy),
setSuperclass() does not perform the substitution except it modifies con-
structors. This is because java.lang.Object is often used for representing any
class. For example, although addElement() in java.util.Vector takes a pa-
rameter of class java.lang.Object, which is the super class of java.util.Vector,
this never means that addElement() takes an instance of the super class.

The second design goal is to reduce overheads due to class loading with
Javassist. Since we will use Javassist for implementing a mobile-agent sys-
tem, in which Javassist inserts security-check code into bytecode, Javassist
must transform bytecode received through a network as efficiently as possi-
ble. Mobile agents frequently move among hosts and thus we cannot ignore
the loading time of the bytecode implementing the mobile agents.

Our design decision on how programmers specify a method body was
influenced by the second goal as well as the first one. Javassist does not use
source code for specifying the body of an added method. If source code is
used, it must be compiled on the fly when a class is loaded into the JVM.
A naive implementation of this source-code approach would produce a com-
plete class definition including the added method at source level and then
compile it with a Java compiler such as javac. As we show later, however,
this implementation implies serious performance penalties. To achieve prac-
tical efficiency, we need a special compiler that can quickly compile only a
method body. We did not adopt the source-code approach because of lim-
itations of our resources. Instead, Javassist allows to copy a pre-compiled
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method body from a class to another. This approach does not imply over-
heads due to source-code compilation at load time.

The third design goal is to prevent programs to wrongly produce a class
including type incorrectness. To achieve this goal, Javassist allows only
limited kinds of alteration of class definitions. In general, reflective systems
should impose some restrictions on structural reflection so that programs
do not falsely collapse themselves with reflection. Suppose that a reflective
system allows to remove a field from a class at runtime. If there are already
instances of that class, is it appropriate that the system simply discards the
value of the removed field of those instances?

Since erroneous bytecode produced with Javassist is rejected by the byte-
code verifier, it can never damage the JVM. However, restricting the reflec-
tive capability of Javassist is still necessary because it is often awkward to
correct a program producing erroneous bytecode. For this reason, Javassist
does not provide methods for removing a method or a field from a class
because they cause type incorrectness if there is a method accessing the
removed method or field. Javassist also imposes restrictions on the class
passed to setSuperclass(), which is a method for changing a super class.
The new super class must be a subclass of the original super class since there
may be methods that implicitly cast an instance of that class to the original
super class. Of course, the new super class must not be final. Further-
more, Javassist does not provide a method for changing the parameters of
a method. Programmers are recommended to add a new method with the
same name but with different parameters.

Adding a New Member

Javassist provides methods for adding a new method to a class. To avoid
the abstraction and performance problems mentioned above, addMethod()
receives a CtMethod object, which specifies a method body. The signature
of addMethod() is as shown below:

void addMethod(CtMethod m, String name, ClassMap map)

name specifies the name of the added method. The method body is copied
from a given method m. Since a method body is copied from an existing
compiled method, no source-code compilation is needed at load time or no
raw bytecode is given to addMethod(). Programmers can describe a method
body in Java and compile it in advance. Javassist reads the bytecode of the
compiled method and adds it to another class. This improves execution
performance of Javassist since a compiler is not run at load time.
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When a method body is copied, some class names appearing in the body
can be replaced according to a hash table map.1 For example, programmers
can declare a class XVector:

public class XVector extends java.util.Vector {

public void add(X e) {

super.addElement(e);

}

}

and copy the method add() into a class StringVector:

CtMethod m = /* method add() in XVector */;

CtClass c = /* class StringVector */;

ClassMap map = new ClassMap();

map.put("X", "java.lang.String");

c.addMethod(m, "addString", map);

The class name java.lang.String is substituted for all occurrences of the class
name X in add(). The added method is as follows:

public void addString(java.lang.String e) {

super.addElement(e);

}

Javassist provides another method addWrapper() for adding a new method.
It allows more generic description of a method body:

void addWrapper(int modifiers, CtClass returnType, String name,
CtClass[] parameters, CtClass[] exceptions,
CtMethod body, ConstParameter constParam)

The first five parameters specify the modifiers, the return type, the method
name, the parameter types, and the exceptions that the method may throw.
The body of the added method is copied from the method specified by body.
No matter what the signature of the added method is, the method specified
by body must have the following signature:

Object m(Object[] args, value-type constValue)

To fill the gap between this signature and the signature of the added method,
addWrapper() implicitly wraps the copied method body in glue code, which
constructs an array of actual parameters passed to the added method and
assigns it to args before executing the copied method body. The glue code
also sets constValue to a constant value specified by constParam passed
to addWrapper(). In the current version of Javassist, an integer value or

1At least, addMethod() replaces all occurrences of the name of the class declaring the
copied method. Even if that class name does not appear at source level, the corresponding
bytecode may include references to it.
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a String object can be specified for the constant value. For example, this
constant value can be used to pass the name of the added method.

The value returned by the copied method body is an Object object. The
glue code also converts it into a value of the type specified by returnType.
Then it returns the converted value to the caller to the added method. If
type conversion fails, then an exception is thrown. Although methods added
by addWrapper() involve runtime overheads due to type conversion, a single
method body can be used as a template of multiple methods receiving a
different number of parameters. Examples of the use of addWrapper() are
shown in Section 4.3.

Javassist also provides a method for adding a new field to a class:

void addField(int modifiers, CtClass type, String fieldname,
String accessor, FieldInitializer init)

If accessor is not null, this method also adds an accessor method, which
returns the value of the added field. The name of the accessor is specified
by accessor. Moreover, the last parameter init specifies the initial value
of the added field. The initial value is either one of parameters passed to a
constructor, a newly created object, or the result of a call to a static method.

Altering a Method Body

Although Javassist does not allow to remove a method from a class, it pro-
vides methods for changing a method body. setBody() and setWrapper()
in CtMethod substitute a given method body for an original body:

void setBody(CtMethod m, ClassMap map)

void setWrapper(CtMethod m, ConstParameter param)

They correspond to addMethod() and addWrapper() respectively. setBody()
copies a method body from a given method m. Some class names appearing in
the body are replaced with different names according to map. setWrapper()
also copies a method body from m but it wraps the copied body in glue code.
The signature of m must be:

Object m(Object[] args, value-type constValue)

Javassist also provides a method for modifying expressions in a method
body. instrument() in CtMethod performs this modification:

void instrument(CodeConverter converter)

The parameter converter specifies how to instrument a method body. The
CodeConverter object can perform various kinds of instrumentation. Ta-
ble 4.4 lists methods provided by the current implementation of Javassist.
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Table 4.4: Methods in CodeConverter

Method Description

void redirectFieldAccess() change a field-access expression to access
a different field.

void replaceNew() replace a new expression with a static method
call.

void replaceFieldRead() replace a field-read expression with a static

method call.
void replaceFieldWrite() replace a field-write expression with a static

method call.

They direct a CodeConverter object to replace a specific kind of expressions
with hooks, which invoke static methods for executing the expressions in a
customized manner. The idea of CodeConverter came from C++’s operator
overloading. CodeConverter was designed for safely altering the behavior of
operators such as new and . (dot) independently of the context.

For example, expressions for instantiating a specific class can be replaced
with expressions for calling a static method. Suppose that variables xclass
and yclass represent class X and Y, respectively. Then a program:

CtMethod m = ... ;

CodeConverter conv = new CodeConverter();

conv.replaceNew(xclass, yclass, "create");

m.instrument(conv);

instruments the body of the method represented by the CtMethod object m.
All expressions for instantiating the class X such as:

new X(3, 4);

are translated into expressions for calling a static method create() declared
in the class Y:

Y.create(3, 4);

The parameters to the new expression are passed to the static method.

Reflective Class Loader

The class loader provided by Javassist allows a loaded program to control
the class loading by that class loader. If a program is loaded by Javassist’s
class loader L and it includes a class C, then it can intercept the loading
of C by L to self-reflectively modify the bytecode of C. For avoiding infinite
recursion, while the loading of a class is intercepted, further interception
is prohibited. The load() method in CtClass requires that a program is
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loaded by Javassist’s class loader although the other methods work without
Javassist’s class loader.

Java’s standard class loader never allows this self-reflective class loading
for security reasons. If it is allowed, a program may change some private
fields to public ones at load time for reading hidden values. Furthermore,
in Java, if a program creates a class loader and loads a class C with that class
loader, the loaded class is regarded as a different one from the class denoted
by the name C appearing in that program. The latter class is loaded by the
class loader that loaded the program.

Using Javassist without a Class Loader

Javassist can be used without a user class loader. There are three kinds of
usage of Javassist: with a user class loader, with a web server, and off line.

For security reasons, an applet is usually prohibited from using a user
class loader. However, we can write an applet working with Javassist if we
use a web server as a replacement of a user class loader. Since classes used
in an applet are loaded from a web server into the JVM of a web browser,
we can customize the web server so that it runs Javassist for processing
the classes before sending them to the web browser. Javassist includes a
simple web server written in Java as a basis for such customization. We can
extend it to perform structural reflection with Javassist. The program of
the customized web server would be as follows:

for (;;) {

receive an http request from a web browser.

CtClass c = new CtClass(the requested class);

do structural reflection on c if needed.

byte[] bytecode = c.toBytecode();

send the bytecode to the web browser.

}

Before sending a requested class to a web browser, it performs structural
reflection on the class according to the algorithm, for example, given as a
configuration file.

Another usage of Javassist is “off line”. We can perform structural re-
flection on a class and overwrite the original class file of that class with the
bytecode obtained as the result. The altered class can be later loaded into
the JVM without a user class loader. The following is an example of the
off-line use of Javassist:

CtClass c = new CtClass("Rectangle");

do structural reflection on c if needed.

c.compile(); // writes bytecode on the original class file.

This program performs structural reflection on class Rectangle and over-
writes the class file of that class with the bytecode obtained by c.toBytecode().
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4.3 Examples

This section shows three applications of Javassist. We illustrate that Javas-
sist can be used to implement non-trivial alteration required by these appli-
cations despite the level of the abstraction.

4.3.1 Binary Code Adaptation

The mechanism of binary code adaptation (BCA) [47] automatically alters
class definitions according to a file written by the users, called a delta file:

delta class implements Writable {

rename Writable Printable;

add public void print() { write(System.out); }

}

This delta file specifies adaptation that we mentioned in Section 4.1.
If Javassist is used, the implementor of BCA has only to write a parser

of delta file and a user class loader performing adaptation with Javassist.
For example, the parser translates the delta file shown above into the Java
program shown below:

class Exemplar implements Printable {

public void write(PrintStream s) { /* dummy */ }

public void print() { write(System.out); }

}

class Adaptor {

public void adapt(CtClass c) {

CtMethod printM = /* method print() in Exemplar */;

CtClass[] interfaces = c.getInterfaces();

for (int i = 0; i < interfaces.length; ++i)

if (interfaces[i].getName().equals("Writable")) {

interfaces[i] = CtClass.forName("Printable");

c.setInterfaces(interfaces);

c.addMethod(printM, new ClassMap());

return;

}

}

}

The class Exemplar is compiled together with Adapter in advance so that
adapt() can obtain a CtMethod object representing print(). adapt() uses
the reification and introspection API of Javassist for obtaining it. It first
constructs a CtClass object representing Exemplar and then obtains the
CtMethod object by getDeclaredMethods() in CtClass. The class file for
Exemplar is automatically found by Javassist on the class path used for
loading Adapter.

The user class loader calls adapt() in Adaptor whenever a class is loaded
into the JVM. It creates a CtClass object representing the loaded class and
calls adapt() with that object. The method adapt() performs adaptation
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if the loaded class implements Writable. Then the user class loader converts
the CtClass object into bytecode and loads into the JVM.

Note that this implementation is more intuitive than the implementation
with behavioral reflection. Moreover, it is simpler than the implementation
without reflection since the implementor does not have to care about low-
level bytecode transformation. If the users of BCA can directly write the
classes Exemplar and Adaptor instead of a delta file, then the implementation
would be much simpler since we do not need the parser of delta file.

4.3.2 Behavioral Reflection

Behavioral reflection enabled by MetaXa [52, 35] and Kava [85] can be im-
plemented with an approximately 750-line program (including comments)
using Javassist. A key idea of their implementations is to insert hooks in a
program when a class is loaded into the JVM. We below see an overview of
a user class loader performing this insertion with Javassist.

Let a metaobject be an instance of MyMetaobject, which is a subclass of
Metaobject:

p

public class MyMetaobject extends Metaobject {

public Object trapMethodcall(String methodName, Object[] args) {

/* called if a method call is intercepted. */ }

public Object trapFieldRead(String fieldName) {

/* called if the value of a field is read. */ }

public void trapFieldWrite(String fieldName, Object value) {

/* called if a field is set. */ }

}

If field accesses and method calls on an instance of C:

public class C {

public int m(int x) { return x + f; }

public int f;

}

are intercepted by the metaobject, then the user class loader alters the
definition of the class C into the following:2

public class C implements Metalevel {

public int m(int x) { /* notify a metaobject */ }

public int f;

private Metaobject _metaobject = new MyMetaobject(this);

public Metaobject _getMetaobject() { return _metaobject; }

public int orig_m(int x) { return x + f; }

public static int read_f(Object target) {

/* notify a metaobject */ }

public static void write_f(Object target, int value) {

/* notify a metaobject */ }

}

2For simplicity, this implementation ignores static members although extending the
implementation for handling static members is possible within the ability of Javassist.
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class Exemplar {

private Metaobject _metaobject;

public Object trap(Object[] args, String methodName) {

return _metaobject.trapMethodcall(methodName, args);

}

public static Object trapRead(Object[] args, String name) {

Metalevel target = (Metalevel)args[0];

return target._getMetaobject().trapFieldRead(name);

}

public static Object trapWrite(Object[] args, String name) {

Metalevel target = (Metalevel)args[0];

Object value = args[1];

target._getMetaobject().trapFieldWrite(name, value);

}

}

Figure 4.1: Class Exemplar

where the interface Metalevel declares the method getMetaobject().
This alteration can be performed within the ability of Javassist. The

interface Metalevel is added by setInterfaces() in CtClass. The field
metaobject and the accessor getMetaobject() are added by addField()
in CtClass.

For intercepting method calls, the user class loader first makes a copy of
every method in C by calling addMethod() in CtClass. For example, it adds
orig m()3 as a copy of m(). Then it replaces the body of every method in C

with a copy of the body of the method trap() in Exemplar (see Figure 4.1).
This modification is performed by setWrapper() in CtMethod. The gap
between the signatures of m() and trap() is filled by setWrapper(). The
substituted method body notifies a metaobject of interception. The first
parameter args is a list of actual parameters and the second one name
is the name of the copy of the original method such as "orig m". These
two parameters are used for the metaobject to invoke the original method
through the Java reflection API.

For intercepting field accesses, the user class loader instruments the bod-
ies of methods in all classes. All accesses to a field f in C are translated
into calls to a static method read f() or write f(). This instrumenta-
tion is performed by instrument() in CtMethod and replaceFieldRead()
and replaceFieldWrite() in CodeConverter. The methods read f() and
write f() notify a metaobject of the accesses. They are added by add-
Wrapper() in CtClass as copies of trapRead() and trapWrite() in Ex-

emplar. The gap between the signatures of read f() (or write f()) and
3If a method name is overloaded, a copy of each method must be given a different name

such as orig m1(), orig m2(), ...
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trapRead() (or trapWrite()) is filled by addWrapper(). For example, ac-
tual parameters to read f() are converted into the first parameter args to
trapRead(). The second parameter name to trapRead() is the name of the
accessed field such as "f".

4.3.3 Remote Method Invocation

Generating stub code for remote method invocation is another application of
Javassist. A Java program cannot directly call a method on a remote object
on a different computer. It needs the Java RMI tools generating stub code,
which translates a method call into lower-level network data transfer such
as TCP/IP communication. However, the Java RMI tools are compile-time
ones; a program must be processed by the RMI compiler, which generates
and saves stub code on a local disk. Also, a program using the Java RMI
must be subject to a protocol (i.e. API) specified by the Java RMI.

Javassist allows programmers to develop their own version of the RMI
tools, which specify a customized protocol and produce stub code at ei-
ther compile-time or even runtime. Suppose that an applet needs to call a
method on a Counter object on a web server written in Java. For remote
method invocation, the applet needs stub code defining a proxy object of
the Counter object, which has the same set of methods as the Counter ob-
ject. If the Counter object has a method setCount(), the proxy object also
has a method setCount() with the same signature. However, the method
on the proxy object serializes given parameters and sends them to the web
server, where setCount() is invoked on the Counter object with the received
parameters.

This stub code can be generated at runtime with Javassist at the server
side and it can be sent on demand to the applet side. The applet program-
mer can easily write the applet without concern about low-level network
programming. The stub code for accessing the Counter object is as follows:

public class ProxyCounter {

private RmiStream rmi;

public ProxyCounter(int objectRef) {

rmi = new RmiStream(objectRef);

}

public int setCount(int value) { /* remote method invocation */ }

}

An instance of ProxyCounter is a proxy object. An RmiStream object handles
low-level network communication. The class RmiStream is provided by a
runtime support library.

ProxyCounter can be defined within the confines of Javassist. The field
rmi is added by addField() in CtClass and the initialization of rmi in a
constructor can be specified by a FieldInitializer object passed to addField().
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The method setCount() is added by addWrapper() in CtClass as a copy
of the method invoke() in Exemplar shown below:

class Exemplar {

private RmiStream rmi;

Object invoke(Object[] args, String methodName) {

return rmi.rpc(methodName, args);

}

}

The gap between the signatures of setCount() and invoke() is filled by
addWrapper(). If setCount() is called, the actual parameter value is con-
verted into an array of Object and assigned to args. methodName is set to a
method name "setCount"4. Then rpc() is called on the RmiStream object
for serializing the given parameters and sends them to the web server. Note
that the parameters can be serialized within the ability of the standard Java
if they are converted into an array of Object.

Stub code generation is another example, which is not straightforward
to implement with behavioral reflection. In a typical implementation with
behavioral reflection, a proxy object is an instance of the class Counter al-
though all method calls on the proxy object are intercepted by a metaobject
and forwarded to a remote object; the class ProxyCounter is not produced.
Therefore, if the proxy object is created, a constructor declared in Counter

is called and may cause fatal side-effects since the class Counter is defined
as a class at the server side but the proxy object is not at that side.

4.4 Related Work

Reflection in Java

MetaXa [52, 35] and Kava [85] enable behavioral reflection in Java whereas
Javassist enables structural reflection. They are suitable for implementing
different kinds of language extensions. However, Javassist indirectly covers
applications of MetaXa and Kava since a class loader providing functionality
equivalent to MetaXa and Kava can be implemented with Javassist as we
showed in Section 4.3.2.

Although Kava performs bytecode transformation of class files before the
JVM loads them as Javassist does, they only insert hooks for interception in
bytecode but do not run metaobjects at that time. They enable reflection
at runtime and their ability is not structural reflection but the restricted
behavioral reflection.

The Java reflection API was recently extended in the JDK 1.3 beta to
partially enable behavioral reflection [78]. The new API allows a program

4If a method name is overloaded, this should be setCount1, setCount2, ... for distinc-
tion.
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to dynamically define a proxy class implementing given interfaces. An in-
stance of this proxy class delegates all method invocations to another object
through a type-independent interface.

Javassist is not the first system enabling structural reflection in Java.
For example, Kirby et. al. proposed a system enabling structural reflection
(they called it linguistic reflection) in Java although their system only allows
to dynamically define a new class but not to alter a given class definition at
load time [51]. With their system, a Java program can produce a source file
of a new class, compile it with an external compiler such as javac, and load
the compiled class with a user class loader. They reported that their system
could be used for defining a class optimized for a given runtime condition.

Compile-time MetaObject Protocol

The compile-time metaobject protocol [15] is another architecture enabling
structural reflection without modifying an existing runtime system. Open-
Java [82] is a Java implementation of this architecture. As Javassist does,
it restricts structural reflection within the time before a class is loaded into
the JVM although it was designed mainly for off-line use at compile time.
However, OpenJava is source-code basis although Javassist is bytecode ba-
sis; OpenJava reads source code for creating an object representing a class, a
method, or a field. Alteration to the object is translated into corresponding
transformation of the source code. The bytecode for the altered class is ob-
tained by compiling the modified source code. Since OpenJava is source-code
basis, it can deal with syntax extensions within a framework of structural
reflection. For example, one can extend the syntax of class declaration and
make it possible to add an annotation to a class declaration.

On the other hand, the source-code basis means that OpenJava needs the
source file of every processed class whereas Javassist needs only a class file
(compiled binary). This is a disadvantage because source files are not always
available if the class is provided by a third party. OpenJava also involves a
performance overhead due to handling source code; the source file of every
class must be parsed for reification and compiled for reflection. Although this
overhead is compensation for the capability for fine-grained transformation
of source code (including syntax extension), it is not negligible if OpenJava is
used by a class loader for altering a loaded class. Some kinds of applications
such as a mobile agent system do not need fine-grained transformation but
fast class loading.

Although the implementations of OpenJava or Javassist have not been
tuned up, the performance difference between OpenJava and Javassist is
notable with respect to reification and reflection. If a class loader can be
implemented with either OpenJava or Javassist, Javassist achieves shorter
loading time. To show this performance difference, we compared Javassist
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Figure 4.2: Execution time of reification and reflection

and OpenJava for classes in SPECjvm98 which is supplied with source text.
We measured the time needed for reifying a given class so that it can be
altered.

Figure 4.2 lists the results. The execution time is the minimum of three
trial. For each trial, we repeated reification continuously and we mesured
the second repetition. Since a program is gradually loaded into the JVM
during the first repetition, the first one is tremendously slow. For compiling
a modified source file, OpenJava requires to run a Java compiler. Thus the
actual time for reification in OpenJava takes the compiling time of a Java
compiler like Jikes compiler or the standard Javac compiler in addition to
the processing time of the OpenJava parser.

Javassist processed a class more than ten times faster than OpenJava.
Note that the execution time by Javassist is shorter than the time needed
only for compiling a modified source file. This is because Javassist can
move compilation penalties to an earlier stage. Even a method body is not
compiled while Javassist is running; it is pre-compiled in advance and the
resulting bytecode is directly copied to a target class at run time.

Bytecode Translators

Bytecode translators such as JOIE [21] and the BCEL [25] provide a func-
tionality similar to Javassist. They enable a Java program to alter a class
definition at load time. However, they are toolkits for directly dealing with
bytecode, that is, the raw data structure of a class file. For example, classes
included in JOIE are ClassInfo, Code, and Instruction. They show that JOIE
was designed for experienced programmers who have a deep understanding
of the Java bytecode and want to implement complex transformation. On
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the other hand, Javassist was designed to be easy to use; it does not require
programmers to have knowledge of the Java bytecode but instead it provides
source-level abstraction for manipulating bytecode in a relatively safe man-
ner. Although a range of instrumentation of a method body is restricted,
we showed that Javassist can be used to implement non-trivial applications.
Javassist can be regarded as a front end for easily and safely using a bytecode
translator like JOIE; it is not a replacement of the bytecode translators.

Using bytecode instrumentation for implementing a reflective facility is
a known technique in Smalltalk [10]. A uniqueness of Javassist against this
is the design of the API providing source-level abstraction. The Javassist
API was carefully designed to avoid wrongly producing a class definition
containing type incorrectness.

X-time MOPs

OpenJIT [66] is a just-in-time compiler that allows a Java program to control
how bytecode are compiled into native code. It provides better flexibility
than Javassist with respect to instrumenting a method body while OpenJIT
does not allow to add a new method or field to a class. However, using
OpenJIT is more difficult than using Javassist because OpenJIT requires
programmers to have knowledge of both the Java bytecode and native code.
Although OpenJIT can be used without knowledge of the Java bytecode if
programmers use a mechanism of OpenJIT for translating bytecode into a
parse tree of an equivalent Java program, overheads due to that translation
has not been reported.

The idea of enabling reflection only at load time for avoiding performance
problems is found in the CLOS MOP [49]. For example, the CLOS MOP
allows a program to alter the algorithm of determining the super classes
of a given class but the super classes are statically determined when the
class is loaded; the program cannot dynamically change the super classes at
runtime.

4.5 Summary

This chapter presented Javassist, which is an extension to the Java reflection
API. Unlike other extensions, it enables structural reflection in Java; it
allows a program to alter a given class definition and to dynamically define
a new class. A number of language extensions are more easily implemented
with structural reflection than with behavioral reflection.

For avoiding portability and performance problems, the design of Javas-
sist is based on our new architecture for structural reflection. Javassist
performs structural reflection by instrumenting bytecode of a loaded class.
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Therefore, it can be used with a standard JVM and compiler although struc-
tural reflection is allowed only before a class is loaded into the JVM, that is,
at load time. Since a standard JVM is used, the classes processed by Javas-
sist are subject to the bytecode verifier and the SecurityManager of Java.
Javassist never breaks security guarantees given by Java.

The followings are important features of Javassist:

• Javassist is portable. It is implemented in only Java without native
methods and it runs with a standard JVM. It does not need a platform-
dependent class library. Portability is significant in Java programming.

• Javassist provides source-level abstraction for manipulating bytecode
in a safe manner while bytecode translators, such as JOIE [21] and the
BCEL [25], provide no higher-level abstraction. The users of Javassist
do not have to have a deep understanding of the Java bytecode or to
be careful for avoiding wrongly making an invalid class rejected by the
bytecode verifier.

• Javassist never needs source code whereas OpenJava [82], which is
another system for structural reflection with source-level abstraction,
does. Since OpenJava performs structural reflection by transform-
ing source code, it must parse and compile source code for reifying
and reflecting a class. Thus a class loader using Javassist can load
a class faster than one using OpenJava. However, OpenJava enables
fine-grained manipulation of class definitions so that the resulting def-
initions may be smaller and more efficient than ones by Javassist.

The architecture that we designed for Javassist can be applied to other
object-oriented languages if a compiled binary program includes enough
symbolic information to construct a class object. However, the API must
be individually designed for each language so that it allows a program to
alter class definitions in a safe manner with respect to the semantics of that
language.



Chapter 5

Addistant

This chapter proposes a system named Addistant, which enables the dis-
tributed execution of “legacy” Java bytecode. Here “legacy” means the
software originally developed to be executed on a single Java virtual ma-
chine (JVM). For adapting legacy software to distributed execution on mul-
tiple JVM, developers using Addistant have only to specify the host where
instances of each class are allocated and how remote references are imple-
mented. According to that specification, Addistant automatically trans-
forms the bytecode at load time. A technical contribution by Addistant is
that it covers a number of issues for implementing distributed execution in
the real world. In fact, Addistant can adapt a legacy program written with
the Swing library so that Swing objects are executed on a local JVM while
the rest of objects are on a remote JVM.

Object-oriented distributed software can be developed with various pro-
gramming tools and environments. For example, a number of object re-
quest brokers have been proposed[37, 38, 39, 76], just to mention a few, and
they allow programmers to easily make an object accessed by a remote host
through a network. The programmers only have to define the interface of
the object in an interface definition language. Another example is to use
a distributed programming language like Emerald[7]. Such a language pro-
vides language constructs for creating objects on remote hosts, migrating
them to another host, and so on.

However, these programming tools and environments are mainly for de-
veloping new distributed software from scratch; they are not for adapting
“legacy” software to distributed execution on multiple hosts. Here, “legacy”
means that the software was originally developed with intent to be executed
on a single host. The existing tools or environments are not helpful in mod-
ifying the legacy software so that part of the software can be executed on a
remote host. The programmers have to manually modify the source text of
the program to follow a programming conventions specified by the tools, or
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to use special language constructs. This modification takes long time and it
is error-prone. It is even impossible if the program text is not available or
modifiable. Practical demands for adapting legacy software to distributed
execution will never disappear. While there is already a number of such
legacy software, programmers will continue to develop legacy software since
non-distributed software is easier to develop than distributed software.

To support distributed execution of legacy software written in Java[36],
we have developed a system named Addistant . Addistant helps develop-
ers modify legacy Java programs to run on multiple Java virtual machines
(JVM). It performs:

• Letting developers specify where to allocate the instances of each class
among multiple hosts, in a policy file separated from the original pro-
gram. All the instances of a class must be subject to the same alloca-
tion policy. Since real software contains a large number of objects, it
is not realistic to individually specify where each object is allocated.

• Translating the bytecode of the legacy Java software according to the
specification above so that specified classes are executed on the JVM
running on a remote host. Addistant does not need source code for
the translation. The translated bytecode is the regular Java bytecode.
No custom JVM is needed for execution. And,

• Delivering the translated bytecode to remote JVM. This delivery is
also performed by the runtime system of Addistant.

The translation by Addistant has been implemented by a synthesis and
re-engineering of ideas found in existing programming tools and environ-
ments for distributed software. It is based on the proxy-master model,
in which a proxy object forwards method invocations to a remote object
through a network although the generation of the classes for proxy objects
automatically managed by Addistant; it is hidden from the developers. A
technical contribution by Addistant is rather that it covers all the issues that
we encounter if applying the proxy-master model to real software develop-
ment in Java. For example, since the JVM does not allow modifying the
bytecode of the system classes at load time, the proxy-master model cannot
be implemented with only a well-known straightforward translation, which
requires the bytecode translation of all related classes including the system
classes. To avoid these problems, Addistant provides multiple implementa-
tion approaches, which developers can choose for each class.

A typical application of Addistant is to apply functional distribution to
a legacy Java program so that some modules of that program are executed
on a remote host suitable for the functionality of those modules. For exam-
ple, Addistant can be used to adapt a legacy program using the Swing class
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library[77], which is Java’s graphical user interface (GUI) library, so that
GUI objects are executed on a host in front of the user while other objects
are on a remote high-performance host. The resulting program produced
by Addistant achieves good performance. Although the same effects can be
achieved by using the X Window System[70], which enables the program to
show windows on a remote display, our experiments showed that Addistant
could achieve better response time of the GUI than the X Window Sys-
tem. This is because the X Window System implements distribution at the
level of runtime library and thus it needs network communication for every
drawing primitive. On the other hand, Addistant implements distribution
by translating a whole program including both library code and user code.
This higher-level distribution significantly reduces the amount of network
communication. This fact suggests that a distributed program developed
with a program translator can give better performance than one with a
runtime library.

In the rest of this chapter, Section 2 presents the architecture of Ad-
distant. Section 3 describes Java-related implementation issues. In Section
4, we show how Addistant can be used for adapting legacy software using
the Swing class library to distributed execution. Section 5 discusses related
work. Finally, section 6 concludes the chapter.

5.1 Addistant

Addistant is a Java programming tool for adapting legacy software, which
was developed with intent to be executed on a single JVM, to distributed
execution so that some objects of that software are executed on a remote
host. This adaptation is performed by a bytecode translator at load time.
This section first mentions design issues of the tools like Addistant, and then
presents how Addistant deals with them.

5.1.1 Design Goal

Unlike developing distributed software from scratch, adapting legacy soft-
ware written in Java to distributed execution needs special tool support.
Without such tool support, programmers would have to read the program
of that software and modify it so that some objects should be allocated
on a remote host and method invocations be specially treated as if they are
across a network. Since manual modification is troublesome and error-prone,
a programming tool should automate this modification.

Although a number of researchers have been proposing Java-based dis-
tributed languages[46, 65, 67], those languages are not suitable for this pur-
pose. Using such a distributed language, the programmer needs to obtain
the source code of the program, which is usually unavailable if supplied by a
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third party. Moreover, she has to modify the program to use special syntax
provided by that language. For example, in case of a language proposed by
Nagaratnam[65], a regular Java statement for creating an object:

Frame f = new Frame("The Great Encyclopedia");

must be replaced with a statement:

Frame f = remotenew Frame("The Great Encyclopedia");

using special syntax remotenew. She has to obtain the source code and edit
all such statements.

Existing object request brokers (ORB)[14, 37, 38, 39, 76] are not suitable
as well. They are mainly for making legacy software as a component of larger
distributed software. To use such an ORB for distributing some modules
of that software to a remote host, a programmer has to manually split the
software into several modules and modify the program so that interactions
among the modules are subject to the protocols of the ORB. For example,
the Java RMI requires that all remote method invocations be performed
through interface types. Suppose a method show() is called on a remote
instance f of a class Frame. First, the programmer must declare a new
interface DistributedFrame and modify the declaration of the class Frame so
that the class Frame implements the interface DistributedFrame. Then she
has to substitute DistributedFrame for occurrences of the class name Frame

in the program. Also, she has to care about a number of issues such as
remote object creation and polymorphism.

An ideal tool for adapting legacy software to distributed execution must
provide the following features:

• Remote reference: The tool must hide implementation details of
remote-object references from the programmers. The programmers
should not have to modify the program so that remote references in
the program follow a particular protocol specified by the tool.

• Policy of object allocation: The tool must allow the programmers
to easily specify whether each object is allocated on a local host or
a remote host. Since the programmers may not know details of the
program of legacy software, the object allocation should be specified
at an appropriate abstract level.

• Program delivery: The tool must be able to automatically deliver
the program of modules to a remote host if those modules are executed
on that host.
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In the rest of this section, we first focus on the implementation of the
remote reference. Then we describe how the users of Addistant specify the
policy of object allocation. We also describe how Addistant implements the
program delivery.

5.1.2 Remote Reference

Addistant implements remote references by bytecode translation at load
time. To run the translated software, no custom JVM is needed; Addistant
only needs that the regular JVM is running on every host.

Addistant employs the proxy-master model, which is also known as the
Remote Proxy pattern[32, 68], so that a remote method can be transpar-
ently invoked with the same syntax as a local method. In this model, an
object whose methods can be invoked from a remote host is associated with
an object called proxy existing on that remote host. For distinction, we call
the former object master. A proxy provides the same set of methods as
its master and delegates every method invocation to its master. It encap-
sulates details of network communication necessary for the remote method
invocations.

Unfortunately, any single implementation approach of the proxy-master
model cannot deal with all kinds of classes. Each approach covers only the
classes satisfying the criteria peculiar to that approach. Since we design a
programming tool for legacy software, which someone else may have writ-
ten, we cannot choose a single approach and enforce the criteria on the
whole program. For example, one of the approaches needs to modify the
declaration of the class of master objects. Since the JVM does not accept
modified system classes, if an instance of a system class is a remote object,
that approach cannot be used. A different approach must be used for that
case.

To avoid this problem, Addistant provides several different approaches
for implementing the proxy-master model. It currently provides four ap-
proaches: replace, rename, subclass, and copy . The developers can choose
one from the four for each class of master. The differences among the four
approaches are mainly how a proxy class is declared, how caller-side code,
that is, expressions of remote method invocations, is modified, and how a
master class is modified. The four approaches cover most of cases in prac-
tical development according to our experiences with the Swing library. To
choose one from these four approaches, the developers must know whether
a given class of master meets some of the following features or not:

• Call by reference: The master object must be passed to a remote
method as a parameter in the call-by-reference manner. It cannot be
passed in the call-by-value manner.
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• Heterogeneity: A variable with that class type must be able to hold
both local and remote references. Some kinds of master objects do not
require this feature. For example, all the instances of a GUI class would
exist on the same host in front of the user. If so, all the references to
those instances are local on that host while they are remote on the
other host. In this case, local and remote references do not coexist on
a single host.

• Unmodifiable bytecode: The implementation must be done with-
out transforming the unmodifiable bytecode. This is required as JVM
prohibits the developers from modifying or replacing the bytecode of
the system classes such as java.util.Vector. This feature is divided into
three sub-features: the class declaration of the master objects (original
class) is unmodifiable, other master classes accessing the master ob-
jects (referrer classes) are, or other master classes creating the master
objects (factory classes) are, respectively.

The remainder of this subsection presents details of the four approaches,
and conditions in which the approaches can be used. The summary of the
conditions is listed in Table 5.1.

Table 5.1: Applicability of the four approaches. The mark of x ([x]) indicates
that the approach is (probably) unavailable in case the feature is required.

Replace Rename Subclass Copy
Call by reference x
Heterogeneity x x
Unmodifiable bytecode of original class x [x] [x]

referrer classes x
factory classes x x

Replace Approach.

The first approach is the replace approach. It is available unless the hetero-
geneity feature is required or the original class is unmodifiable. Developers
should apply this approach to non-system classes whose masters are allo-
cated at the same host.

Suppose that the class of a master object is Widget. Since the hetero-
geneity feature is not required, all the references to the Widget objects are
either local or remote. Therefore, Addistant uses the original Widget class
for local references on one host while it generates another version of the
Widget class for remote references on the other hosts (Table 5.2). This ver-
sion corresponds to a proxy class for the original Widget class. Addistant
sends the bytecode of this proxy class to the host where there are remote
references to Widget masters.
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Table 5.2: The feature of a proxy class for a class Widget used by each
approach. Here, we assume that the original Widget is a subclass of Object.

Replace Rename Subclass
Proxy class Widget† WidgetProxy WidgetProxy

Superclass of proxy Object Object Widget
Variable type for proxy Widget† WidgetProxy Widget

†A different version of the Widget class.

Rename Approach.

The second approach is the rename approach. The replace approach is not
available if the declaration of the original class is not modifiable. The rename
approach can be used in that case although it requires that the referrer
classes and the factory classes are modifiable. As the replace approach, the
rename approach is not available if the heterogeneity feature is required.
Developers should apply this approach to classes like java.awt.Window.

In the rename approach, Addistant generates a proxy class of the original
class Widget with a different name such as WidgetProxy. Then Addistant
uses that proxy class for remote references. It modifies the bytecode of
all the referrer classes on the hosts where references to the Widget objects
are remote so that all the occurrences of the original class name Widget are
replaced with the proxy class name WidgetProxy. Addistant does not modify
the other referrer classes on the host where references to the Widget objects
are local.

Addistant also modifies the factory classes if they are used on the host
where references to the Widget objects are remote. Since the Widget objects
must be created on the other host, Addistant also replaces all the occurrences
of Widget with WidgetProxy in the bytecode of the factory classes. For
example, it translates the following statement:

Frame w = new Frame();

into this statement:

FrameProxy w = new FrameProxy();

The latter statement creates a proxy object, which requests a remote host
to create a master object.

Subclass Approach.

The third approach is the subclass approach. It is available even if the
heterogeneity feature is required. Developers should apply this approach to
classes like java.util.Vector.
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In this approach, a proxy class WidgetProxy is a subclass of the original
class Widget. Both local and remote references have the reference type to
Widget so that they can coexist on the same host. If a reference is local, it
points to a Widget object. If a reference is remote, it points to a WidgetProxy

object.
However, as the rename approach, this approach needs to modify the

factory classes if they are used on the host on which references to master
objects are remote. Furthermore, this approach may require that the original
class is modifiable. First, if the original class is a final class or it includes
a final method, it must be modified to be a non-final class and to include
no final method. Otherwise, the proxy class cannot be a subclass of the
original class or override methods declared in the original class. Second, if
the constructor of the original class causes inappropriate side-effects and fails
to create an object, Addistant must add to that class another constructor
performing nothing so that the constructor of the proxy class can call it.
Remember that a constructor must call a constructor of the super class in
Java. For example, the original constructor of the class Widget may access a
local graphic device. If it is called by the constructor of WidgetProxy (since
WidgetProxy is a subclass of Widget), it may throw an error because of the
absence of the graphic device on the host where the WidgetProxy object is
created.

Note that the subclass approach does not require that the original class
is modifiable if the original class is not a final class and the constructors do
not cause inappropriate side-effects. For instance, the bytecode of a system
class java.io.File is unmodifiable. Since that class is used by other system
classes, the referrer classes are also unmodifiable. Thus, even if the het-
erogeneity feature is not required, either the replace or rename approaches
cannot be used for java.io.File. On the other hand, the subclass approach
can be used for that class.

Copy Approach.

The last is the copy approach. This approach can be used for primitive
types such as int and classes like java.lang.String, instances of which are
immutable.

If the copy approach is chosen for a class C, a remote reference to an
instance of C cannot exist. If a local reference to an instance of C is passed
to a remote method, Addistant makes a shallow copy of that instance on the
remote host. A local reference to that copy is passed to the method. Thus,
the copy approach cannot be used if a reference must be passed to a remote
method in the call-by-reference manner. However, the copy approach does
not need to modify bytecode at all.

Addistant also provides a slightly different version of the copy approach:
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the write-back copy approach. If this approach is chosen, the contents of
the copy passed to the remote method are written back to the master object
after executing that remote method. For example, suppose that the write-
back copy approach is chosen for an array of byte. Then in the following
code:

byte[] buf = ... ;
inputstream.read(buf);

the call to read() on a remote object inputstream makes a copy of buf
on the remote host. A local reference to that copy is passed to read().
Since the write-back copy approach is chosen, the contents of that copy are
written back to buf after executing read(). Therefore, the byte data read
from the input stream are eventually stored in buf.

5.1.3 Object Allocation

Addistant allows the developers to specify a policy of object allocation for
each class. It does not allow to use a different policy for each object because
Addistant is a tool for modifying legacy software; it is not realistic for the
developers to specify a policy for every occurrence of “new” (the operator
of object creation) appearing in a program, which someone else may have
written.

The developers can declare that all the instances of a class are allocated
on a specific host. If a host D is specified for a class C, an expression “new
C()” (create an instance of C) executed on any host is interpreted as that
an instance of C is created on the (probably remote) host D. On the other
hand, if any host is not specified for the class C, an expression “new C()”
executed on a host D′ is interpreted as that an instance of C is locally created
on the host D′.

The declaration by the developers is written in a policy file, which Ad-
distant reads at startup time. The policy file is written in an XML-like
syntax. For example, a declaration below:

<import proxy="rename" from="display">
java.awt.*

</import>

means that all the instances of classes included in the java.awt package are
allocated on a host specified by a variable display. Remote references to
these instances are implemented with the rename approach. The variable
display is bound to a real host name at run time. If the “from” attribute
is not given, the instances of a class C are allocated on a host where an
expression “new C()” is executed.
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Note that java.awt.* means all the classes included in the java.awt
package. It does not mean sub-packages of java.awt, such as java.awt.image
because sub-packages are irrelevant to the parent package with respect to
the language semantics. For example, the access rights of a class in a sub-
package are equivalent to ones in other packages than the parent package of
that sub-package. To specify all the classes and sub-packages in java.awt,
java.awt.- should be used.

Besides all classes included in a package, all subclasses of a class in a
package can be specified. For example, a declaration below:

<import proxy="rename" from="display">
subclass@java.awt.Component

</import>

means that the rename approach is used for all the subclasses of the class
Component, including Component itself. To specify only the subclasses ex-
cluding the parent class, exactsubclass should be used instead of subclass.

Some implementation approaches of remote references restrict policies
of object allocation. Since the replace and rename approaches require that
local and remote references do not coexist, the “from” field must be specified
so that instances are created on the same host. On the other hand, the copy
approach does not allow the developers to specify the “from” field since it
does not deal with remote references.

5.1.4 Bytecode Delivery

Addistant provides a mechanism for automatically distributing bytecode
from a host to other hosts. The users have to only run a class loader of
Addistant on every host. If a program starts on a host A and creates an
object on a remote host D, the class loader on the host A sends necessary
bytecode to the class loader on the host D so that the object can be created
on the host D. If the bytecode must be modified, it is modified by the class
loader on the host A before it is sent to the host D. If the bytecode is of
system classes, the class loader on the host D loads it from a local file system
instead of the host A.

Although the regular class loader of Java fetches bytecode on demand,
the class loader of Addistant may fetch the bytecode of certain classes in
advance. For example, suppose that the rename approach is specified for
all subclasses of a class C. If the class loader of Addistant loads a class U,
it must read the bytecode of the class specified by every name appearing in
the bytecode of U and examine whether each class is a subclass of C. If so,
the class name must be replaced with the name of the proxy class. Thus,
while the class loader of Addistant loads a class U, it may fetch a number
of other classes as well as the class C and subclasses of C.
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5.2 Implementation Issues

5.2.1 Single System Image

There are several implementation issues for keeping the semantics of the
Java language in distributed program execution, that is, providing a single
system image with multiple JVMs. This sub section describes how Addistant
deals with those issues.

Remote Field Access.

Although a naive implementation of the proxy-master model cannot support
remote field accesses, Addistant translates a field access at the bytecode
levelinto a static method invocation on that class and thereby enables remote
field accesses. Suppose that a class Point declares a field x and the field is
accessed as follows:

Point p;
.. = p.x ..
.. p.x = 100 ..

If remote references to Point objects are implemented by the rename ap-
proach, the code above is translated into the code below:

PointProxy p;
.. = PointProxy.read_x(p) ..
.. PointProxy.write_x(p, 100) ..

The static methods read x() and write y() implement the remote field
accesses. They are declared in the proxy class produced by Addistant.

The translation above must be applied to all the remote field accesses.
Therefore, Addistant cannot deal with remote field accesses embedded in
the unmodifiable bytecode, for example, the bytecode of the system classes.

Equality between Remote References.

Addistant preserves the semantics of the equality operators such as “==” and
“!=” with respect to remote references. To do that, Addistant maintains
a table of proxy objects on every host so that there exists only a single
proxy object referencing to each master object. Addistant gives a unique
identifier to every master object and sends this identifier when a reference to
the master object is passed as a parameter across the network to a remote
method. Then it looks up the corresponding proxy object in the table and
passes a reference to that proxy object to the destination method. If the
proxy object is not found in the table, Addistant creates and registers it in
the table.
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Self Deadlock Avoidance.

In Addistant, any host can invoke a method on a remote object and receive
a method invocation from a remote object. Therefore, a remote method call
from a host A to a host D may cause another method call back from D to
A. In this case, the latter method call must be handled by the same thread
that requested the former method call on the host A. Otherwise, a deadlock
may occur if the methods are synchronized ones.

Suppose that a Button object and a Listener object exist on different hosts
D (display host) and A (application host), respectively. The declarations of
class Button and Listener are as follows:

class Button {
Listener listener;
synchronized void push() {

listener.pushed(this);
}
synchronized ButtonState getState() { ... }

}

class Listener {
void handlePush(Button button) {

.. button.getState() ..
}

}

If push() is invoked on the Button object, it calls handlePush() on the re-
mote Listener object. Then getState() is called back on the Button object.
If push() and getState() are executed by different threads, a deadlock
occurs since the two threads try to lock the Button object at the same time.
The deadlock never occurs if the two objects exist on the same host because
all the methods are executed by the same thread.

In order to ensure the same thread executes all the methods called
back, Addistant establishes a one-to-one communication channel between
the thread executing push() on D (T i

D) and the one executing handle-
Push() on A (T i

A). This communication channel is stored in a thread local
variable implemented with java.lang.ThreadLocal. A thread always uses the
same channel for every remote method invocation and it waits for not only
the result of the invocation but also another request of invocation from a
remote thread sharing the same channel. When handlePush() calls get-
State(), the thread T i

A sends a request of getState() to the remote thread
T i

D connected through the communication channel, which is the thread ex-
ecuting push() on D and blocking to wait for the result of handlePush().
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The thread T i
D invokes the requested getState() to send the result of get-

State() through the channel, and then it continues to wait for the result
of the original handlePush(). Thereby, both push() and getState() are
executed by the same thread T i

D. A deadlock is avoided.

Distributed Garbage Collection.

Addistant maintains a table of objects exported to a remote host. While
there exists a proxy object on a remote host, the master object is recorded
in that table so that it is not garbage collected. If all the proxy objects
are garbage collected, then the master object is removed from the table. If
there are no other references to the master object, then the master object
is garbage collected.

The table of proxy objects for checking the equality between remote
references is implemented with the weak reference mechanism of Java[2].
An element of the table is a weak reference to a proxy object. Thus, the
proxy object is garbage collected when the garbage collector determines that
nothing except that table refers to the proxy object.

Currently, Addistant cannot collect all objects if remote references make
cycles. Although several algorithms are known for dealing with distributed
cycles, efficiently implementing those algorithms is not straightforward with-
out modifying the JVM. For example, if using a distributed mark-sweep
algorithm, we would need a mechanism for tracing object references. How-
ever, Java’s reflection API does not provide such a mechanism. We expect
that weak references and object finalizers might help to solve this problem
but implementation details are still open.

5.2.2 Bytecode Modification

Bytecode Translation Toolkit.

One of the research aims of the development of Addistant was to examine
the expressive power of Javassist[17, 20], which is our toolkit for implement-
ing a bytecode translator for Java. Unlike other similar toolkits, Javassist
provides a source-level view of bytecode for the developers, who can manip-
ulate bytecode without detailed knowledge of the bytecode specifications.
Javassist is easier to use than other naive toolkits as a source-level debug-
ger is easier to use than an assembly-level debugger. On the other hand,
Javassist restricts the ability to modify bytecode. It does not allow bytecode
modification that is difficult to express with a source-level view.

To show that the expressive power of Javassist is powerful enough to
implement a real application, we have developed Addistant within the con-
fines of the Javassist API (Application Programming Interface). No undoc-
umented low-level API was used. All the bytecode modification that Ad-
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distant needs could be easily implemented with a source-level abstraction
provided by Javassist.

Bootstrap Classes.

If we use a command-line option provided by Sun’s JVM, we can modify the
bytecode of system classes and have the JVM load the modified bytecode at
bootstrap time. Hence using this option extends the range of the classes that
the approaches provided by Addistant for implementing the proxy-master
model are applicable to. However, we did not modify the bytecode of the
system classes because Sun’s license terms prohibit the modification. Even if
we could modify, consistently modifying the system classes is difficult since
runtime systems such as a system class loader depends on the definition of
the system classes.

5.3 Distributed Swing Applications

This section presents that Addistant can adapt legacy software using the
Swing class library so that GUI objects are allocated on a remote host and
the users can interact with the software through the GUI shown on a remote
display. The Swing class library is a GUI library included in the standard
Java runtime environment. Although the same effects can be achieved with
the X Window system[70], Addistant can achieve better performance since
drawing operations are directly performed on the host with a display. This
is typical benefit of functional distribution. The X Window system needs
network communication for every primitive drawing operation and hence
communication overheads tend to be a performance bottleneck.

In this section, we first present a policy file for adapting legacy software
using the Swing class library to distributed execution. Then we show the
results of our performance measurement.

5.3.1 Policy File

The following is a typical policy file for adapting software using the Swing
class library:

<policy>

<import proxy="rename" from="display">

subclass@java.awt.-

subclass@javax.swing.-

subclass@javax.accessibility.*

subclass@java.util.EventObject </import>

<import proxy="rename" from="application">

exactsubclass@java.io.[InputStream|OutputStream|Reader|Writer]

exactsubclass@javax.swing.filechooser.* </import>

<import proxy="subclass">

subclass@java.util.[Dictionary|AbstractCollection|AbstractMap]
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subclass@java.util.BitSet </import>

<import proxy="writeBackCopy">

array@- </import>

<import proxy="replace" from="application">

user@- </import>

<import proxy="copy">

- </import>

</policy>

Here, the variable display indicates the host where the GUI objects are
allocated. The variable application indicates the other host where the
rest of the objects are allocated. An import declaration listed above has a
higher priority.

This policy file specifies that GUI objects are allocated on the display
host and remote references to those objects are implemented with the re-
name approach. Any array type (array@-) is processed with the write-back
copy approach. The instances of classes except the system classes (user@-)
are allocated on the application host and remote references to them are
implemented with the replace approach. The rest of the classes are processed
with the copy approach.

5.3.2 Performance Measurement

For performance measurement, we used two host computers. One is a ma-
chine with a 500MHz PentiumIII and Linux 2.2. It is a display server for
executing GUI objects. The other is a machine with a 440MHz UltraSparcII
and Solaris 2.7. It is an application server for executing the other objects.
We used the HotSpot JVM (JDK 1.3) for both machines. For connecting
the two machines, we used two kinds of network: 100Base-TX full-duplex
and 10Base-T half-duplex.

Remote Method Invocation.

Before measuring the performance of a GUI, we compared the execution time
of remote invocations of empty methods among Addistant (AD) and other
Java-based object request brokers (ORB), which are HORB[39] version 2.0.1,
Java RMI (JRMI) included in JDK 1.3, and Java Class Broker[37] (JCB)
version 1.2. We changed the number and types of parameters and measured
the elapsed time of each remote method invocation. We also changed the
network connecting the two hosts.

Table 5.3 lists the results. The results showed that Addistant achieved a
comparable performance to other ORB except the case that a byte array was
passed. This is because the parameter encoder/decoder of Addistant had
not been tuned and because Addistant used the write-back copy approach
for passing an array as a parameter although the other ORB did not write
the updated contents of the array back after executing a method. In the
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Table 5.3: Elapsed Time (milliseconds) for a remote method invocation. AD
indicates Addistant.

(100Base-TX full-duplex) (10Base-T half-duplex)
(ms) HORB JRMI JCB AD HORB JRMI JCB AD

void f() 0.33 0.52 0.71 0.28 0.48 0.69 0.86 0.40
void f(int) 0.33 0.53 0.78 0.48 0.48 0.69 0.93 0.61
int f(int) 0.34 0.54 1.20 0.54 0.49 0.71 1.42 0.68

void f(int,int,int) 0.34 0.54 0.75 0.76 0.49 0.71 0.91 0.91
int f(int,int,int) 0.34 0.55 1.17 0.83 0.50 0.72 1.40 0.99
void f(String) 0.34 0.58 0.83 0.36 0.50 0.75 1.00 0.48
String f(String) 0.35 0.63 0.94 0.37 0.52 0.81 1.11 0.50
void f(String[]) 0.58 0.87 1.26 0.66 0.77 1.08 1.46 0.85

String[] f(String[]) 0.84 1.22 1.66 0.79 1.10 1.50 1.94 0.99
void f(byte[]) 0.69 0.94 1.26 2.76 1.51 1.73 2.08 2.93

measurement, all String type parameters included 10 ASCII characters. The
size of String array was three. The size of byte array was 1024.

Window Drawing.

To measure the performance of a GUI, we prepared three Java programs.
The first one displays a single window (a java.awt.Frame object) contain-
ing no components. The second displays a single empty internal window
(a javax.swing.JInternalFrame object) in a window (a javax.swing.JFrame ob-
ject). The third displays a single internal window containing twenty buttons
(a javax.swing.JButton object) in a window. The size of the window is 600
by 600 while the size of the internal window is 500 by 500.

We compared the X Window system[70], Rawt[41], and Addistant by
measuring the elapsed time that each program took for creating and drawing
a window (and internal windows) on a remote display. The X Window
system showed a window on a remote display by connecting a remote X
server. Rawt is a GUI library that is compatible to the Swing class library
but enables to show a window on a remote display. Addistant showed a
window on a remote display by allocating GUI objects on the remote host
with that display.

Table 5.4 listed the results. As a drawing image becomes more complex,
Addistant showed better performance against Rawt because Rawt allocates
only part of instances of the Swing classes on the remote host with a dis-
play and thus it needs a larger number of remote method invocations for
drawing a window. On the other hand, Addistant allocates all instances of
the Swing classes on the remote host and thus the interactions among the
Swing objects are local method invocations. This is because Addistant is
a general-purpose bytecode translator and it allows the developers to easily
customize object allocation for maximizing performance. Rawt cannot do
that since the implementation of Rawt is a black box.
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Table 5.4: The elapsed time (seconds) for drawing a window.
X Window Rawt Addistant

(100base-TX full-duplex)
No components 0.005 0.041 0.044

1 internal window 0.156 1.814 0.276
20 buttons 0.873 17.599 0.955

(10base-T half-duplex)
No components 0.006 0.041 0.045

1 internal window 0.612 1.988 0.281
20 buttons 1.895 21.322 0.971

Since the X Window system asynchronously executes an X server and an
X client, the elapsed time listed in the table indicates the time needed for
sending all the requests from the client to the server. It does not indicate
the actual elapsed time of drawing a window. In fact, we observed that the
response time of the GUI implemented on top of the X Window system was
considerably slower than one on top of Addistant.

To confirm our observation above, we conducted another experiment.
We wrote a Java program that displays a button in a window and, if that
button is clicked, then a graphic image (1148 by 778) is shown in the window.
Table 5.5 listed the results of our experiment. We measured the elapsed time
after the button was clicked by mouse until the image was shown. The time
was measured by hand. 0.0 means that the response time was too short to
measure. Since the Swing class library caches a drawn image, Rawt and
Addistant responded quicker than the X Window to a mouse click at the
second time. The X Window must transfer the drawn image every time from
the client to the server. Even at the first time, Addistant achieved the best
performance if the network is 10Base-T since the X Window system and
Rawt had to transfer a larger amount of data between the hosts. Table 5.6
listed the results of our measurement of the size of the data exchanged
through a network during the above interaction. The X Window system
needs a few megabytes whereas Addistant does less than a hundred kilobytes.
The large amount of exchanged data can be a performance bottleneck.

Table 5.5: The response time (seconds) to a mouse click.
(100Base-TX full-duplex) (10Base-T half-duplex)

(sec.) X Window Rawt Addistant X Window Rawt Addistant
1st 1.6 2.6 2.0 5.6 3.2 2.0
2nd 1.4 0.0 0.0 5.6 0.0 0.0
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Table 5.6: The size of the data (Kbyte) exchanged through a network.
X Window Rawt Addistant

1st 3493.57 116.20 81.88
2nd 3438.96 10.95 0.06

5.4 Related Work

Transparent Distribution

To run a Java program on a distributed environment, several extended
Java virtual machines have been developed. These virtual machines such as
cJVM[1], Java/DSM[87], and JESSICA[58] provide a single-machine image
on several network-connected computers, that is, a workstation/PC cluster.
Thus, multiple threads are executed in parallel as if they were running on
a multi-processor machine with shared memory. These virtual machines do
not need to modify a program at all to run it. A difference between Addis-
tant and these virtual machines is that Addistant uses the standard JVM
and hence it is mainly for functional distribution, where objects run on the
most suitable host for the computation by the objects.

JavaParty[67] extended the Java language for parallel distributed com-
puting. They introduced only the extended modifier “remote” for class
declarations. Although the users of Addistant do not have to modify a pro-
gram, the users of JavaParty have to append an extended modifier “remote”
to a class declaration if an instance of that class is accessed through a remote
reference.

There are a number of object request brokers for Java. Most of them, in-
cluding the Java RMI[76], require that a remote object be accessed through
an interface type. Thus, developers may have to largely modify programs if
they adapt legacy software to distributed execution. Java Class Broker[37]
avoids this problem by a technique similar to our subclass approach. How-
ever, it requires developers to modify a program to follow another program-
ming convention. For example, the following regular Java program:

Frame f = new Frame("The Great Encyclopedia");
Button b = new Button();
f.add(b);

must be translated into a program using a runtime distribution manager
object objectBroker:

Object[] params = {"The Great Encyclopedia"};
Frame f = (Frame) objectBroker.create("Frame", params);
Button b = (Button) objectBroker.getProxy("Button", new Button());
f.add(b);
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Remote Display

The X Window System[70] enables a Java program to show a graphical
output on the display of a remote host. Like Addistant, the X Window
System does not require developers to modify their programs to use a remote
display. However, as shown in Section 5.3, the X Window System is often
less efficient than Addistant.

Rawt[41] is a GUI library that is compatible to the standard Java GUI
library. If substituting Rawt for the standard library, developers can extend
their programs without any other modifications to use a remote display for
output. Underlying network communication is encapsulated by that library.
Addistant can be regarded as a tool for semi-automatically producing a li-
brary like Rawt from the standard Java GUI library. Since the production by
Addistant is based on both the library and user code, however, the resulting
software can often achieve better performance than Rawt.

Aspect-Oriented Programming

With Addistant, developers describe a policy file for adapting software to
distributed execution. This policy file can be considered as a separate de-
scription of a distribution aspect in the context of aspect-oriented program-
ming (AOP). In this context, Addistant is a tool for weaving a Java program
written for a single JVM and a description separately written about a dis-
tribution aspect.

Proposing a distribution aspect is not new. For example, D[57] provides
an aspect language for distribution. However, it allows programmers to
separately describe how a parameter is passed to a remote procedure whereas
Addistant allows to describe where objects are allocated and how proxy
objects are implemented. Furthermore, it seems that the design goal of
D is to support the development of distributed software from scratch. The
goal of Addistant is to add a new aspect on existing software for adaptation.
Thus, the description in a policy file is not a part of program text but rather
meta-level instructions to modify an existing program.

5.5 Summary

This chapter presented Addistant, which is a programming tool for adapt-
ing legacy Java software to distributed execution. Addistant performs this
adaptation by bytecode translation at load time. No source code is needed
for the adaptation. The users of Addistant have only to write a policy file
for specifying where the instances of each class are allocated and how re-
mote references to those instances are implemented. The users can select an
implementation approach from the four provided by Addistant.
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Although the four implementation approaches are not new, a contribu-
tion of this chapter is that it reveals that letting developers select an im-
plementation approach for each class is necessary for adapting legacy Java
software in the real world to distributed execution. This chapter presented
several practical issues that we must consider for the adaptation. However,
the ability of Addistant still has a few limitations. Although the developers
using Addistant do not need to read or modify source code, they must have
some knowledge of source code, for example, which class of objects should be
allocated on a remote host. Moreover, Addistant provides only class-based
distribution: all the instances of a class must be allocated on the same host.
These limitations are acceptable in our GUI examples although it is an open
question in other contexts.

This chapter also showed that Addistant could adapt a Java program
using the Swing class library so that GUI objects could be allocated on
a remote host with a display. This functional distribution with Addistant
showed better response time of the GUI than the distribution with the X
Window System and the Rawt class library. This fact suggests that library-
level functional distribution could not give good performance since only the
library code is split and distributed to multiple hosts. On the other hand,
Addistant can split a whole program including both user and library code
and then it can distribute objects so that the maximum performance could
be obtained.



Chapter 6

Conclusion

This thesis proposed a class-object model which is a new abstract data
model for the transformation of object-oriented programs. The key concept
of the class-object model is to capture the object-orientation of programs.
Designing metaobject protocols considering the mechanism of abstract data
types in the targeting object-oriented language enables direct manipula-
tion of object-oriented constructs. Declarative language constructs, such as
classes and inheritances, and the capsulation mechanism must be considered.
This model allows a transformational system to provide a sophisticated in-
terface to metaprograms through which metaprogrammers can simply and
intuitively describe transformation of object-oriented language constructs in
programs translated.

This contribution of the proposed model suggests a new design approach
for programming support, especially for programming languages. Systems
using the proposed design model make it more commonplace to provide
transformations as reusable software artifacts. Now, powerful transforma-
tions are not only of the compiler experts but also of the object-oriented
programming experts, who can be expected to have a lot of knowledge worth
reusing in software engineering.

This thesis also contributed by giving three practical applications of the
class-object model for program transformations. We built three transforma-
tional systems using this model. The design space of three systems differs
to each other’s in the perspective of generality or the format of targeting
programs. OpenJava and Javassist supply their users with generic metaob-
ject protocols for transforming object-oriented programs, while Addistant
supplies their users a programming interface that is specific to distributed
domain. OpenJava transforms source-text programs while Javassist and its
application Addistant transform bytecode programs.

In addition to a contribution as practical applications of the class-object
model, there are contributions by each transformational system. The first
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system is OpenJava. OpenJava is an object-oriented macro system employ-
ing the class-object model for transformations of source-text program writ-
ten in Java. Instead of abstract syntax tree, it provides an abstract data
structure which represents a logical structure of object-oriented program.
This made it easier to describe typical macros for object-oriented program-
ming which was difficult to describe with ordinary macro systems. To show
the effectiveness of OpenJava, we implemented some macros in OpenJava for
supporting programming with design patterns. From the point of reflection,
OpenJava provides a mechanism for a compile-time structural reflection with
a limited syntax extensibility. With structural reflection, metaprogrammers
change the structure of a program while they change the behavior of a pro-
gram with ordinal runtime reflection, which we call behavioral reflection.

The second system is Javassist. Javassist is a Java bytecode manipu-
lating tool employing the class-object model for transformations of binary
programs of Java. Javassist provides source-level abstraction for manipulat-
ing bytecode in a safe manner while bytecode translators, such as JOIE [21]
and the BCEL [25], provide no higher-level abstraction. The users of Javas-
sist do not have to have a deep understanding of the Java bytecode or to be
careful for avoiding wrongly making an invalid class rejected by the bytecode
verifier. Like OpenJava, Javassist provides a mechanism for a structural re-
flection but its reflective computation is done at load-time at which classes
are loaded on Java virtual machines. We call this a load-time structural
reflection. It allows a program to alter a given class definition and to dy-
namically define a new class. A number of language extensions are more
easily implemented with structural reflection than with behavioral reflec-
tion.

The third system is Addistant. Addistant is a programming tool for
adapting legacy Java software to distributed execution. It is built upon
Javassist and performs this adaptation by bytecode translation at load time.
No source code is needed for the adaptation. The users of Addistant have
only to write a policy file for specifying where the instances of each class are
allocated and how remote references to those instances are implemented.
The users can select an implementation approach from the four provided
by Addistant. Although the four implementation approaches are not new,
a contribution of Addistant is that it reveals that letting developers select
an implementation approach for each class is necessary for adapting legacy
Java software in the real world to distributed execution. We presented
several practical issues that we must consider for the adaptation.

A future direction of this research is to construct frameworks for AOP
(aspect-oriented programming) support. AspectJ [48] provides a general-
purpose AOP support. With AspectJ, programmers can describe separated
code called aspects which was originally difficult to separate without the
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AOP support. However, aspects are often less reusable in AspectJ. Domain-
specific aspect languages can solve this problem and a transformational sys-
tem with the proposed model can be a generic framework for domain-specific
aspect language. In fact, Addistant can be regarded as a distributed domain-
specific aspect-oriented programming language.
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