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Abstract

As server software is getting bigger and more complex, two major problems
that server software involves in terms of safety come to the surface. One is an
attack against server software and the other is its instability. Most of these
problems are caused by software flaws. Since finding all software flaws is dif-
ficult, unknown flaws are left in a lot of server software. Therefore, there are
serious demands on the facility that minimizes damages in case that server soft-
ware becomes insane. We call this facility safety net. Since server software must
handle requests from various users simultaneously and performance is impor-
tant as well as safety, it needs to dynamically change the range of a safety net
depending on the situations. However, it is not easy to achieve such a safety
net in terms of security and performance.

This dissertation studies a dynamic safety net that enables server software
to securely change the range of the safety net and achieves good performance.
We have developed a system to provide such a dynamic safety net. The system
consists of two mechanisms: an access control mechanism for user-level servers
and a fail-safe mechanism for operating system modules. (1) Our access control
mechanism allows a server process to impose appropriate access restrictions on
it depending on the clients. To avoid risks involved in changing the access re-
strictions, this mechanism uses a new technique called process cleaning. Process
cleaning recovers even a compromised server to be sane before changing access
restrictions. (2) Our fail-safe mechanism, which we call multi-level protection,
allows running each operating system module separate from the kernel so that
misbehavior of particular modules due to software flaws does not affect the whole
system. For performance improvement, the multi-level protection enables the
users to lower the protection level of the modules without any modifications.

We have implemented these access control mechanism and fail-safe mecha-
nism on Linux and NetBSD, respectively, and thereby showed that our ideas can
be implemented with reasonable performance. For process cleaning, we experi-
mented on the Apache web server and confirmed that the overhead is less than
35%. For the multi-level protection, we experimented on file system modules
and network modules and confirmed that the overhead of this mechanism is less
than 12% at the minimum protection level.
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Chapter 1

Introduction

The remarkable growth of software technology is making software bigger and
more complex. In this trend, software involves two major problems in terms of
safety. One problem is attacks against software. Software that interacts with the
Internet is always exposed to danger of attacks from crackers. Even if software
does not interact with the Internet, it can be attacked from local malicious
users. A recent typical attack is the buffer overflow attack [103], which hijacks
software, that is, takes the full control of it. Another type of attack is to exploit
the careless design of software, for example, as seen in a phf script in a web
server [7]. Once a cracker succeeds in attacks, he can abuse the privileges of the
compromised software and thereby access private information.

Various techniques have been proposed to prevent such attacks. Most of
these techniques detect known attack patterns and stop attack attempts be-
fore crackers succeed in attacks. For example, many techniques such as Stack-
Guard [27] can prevent the stack smashing attack [28, 10, 77, 32]. Misuse-based
or rule-based Intrusion Detection Systems (IDSs) [78, 60] can detect intruders
with familiar intrusion patterns. However, these techniques have limitations
that they cannot prevent new attacks or unknown attacks with different attack
patterns. The reason is that the proposed techniques do not assume such un-
known attacks at that time when it has been developed. In fact, an old version
of StackGuard could not detect some type of stack smashing attack, which the
current version can detect.

The other problem of software safety is that there exists unstable software
such as software released as a beta-test version and some of irresponsible free
software. Unstable software has triggers of internal errors within it and the
triggers are pulled if some conditions are satisfied. Examples of the internal
errors are memory leaks, lack of error handling, and so on. If unstable software
triggers its internal errors, anyone does not know what happens within the
privileges of the software. The software may corrupt important data or may
freeze. Language or compiler supports such as using type-safe languages [71, 38]
and Proof-Carrying Code (PCC) [69] mitigate the occurrence of such internal
errors but it is difficult to eliminate all the errors.

1



CHAPTER 1. INTRODUCTION 2

A large part of the causes of attacks and most of the causes of instability
are derived from software flaws. Attacks exploit hidden software flaws, which
do not emerge if the legitimate users use. Conversely, instability emerges in
certain conditions that trigger errors due to software flaws even if the legitimate
users use. Software flaws include implementation errors and design errors. Since
implementation errors are relatively easy to detect, many detection techniques
have been proposed as described above. Nevertheless, yet unknown errors lie
in a lot of software. Also, the programmers often make design errors and such
errors are difficult to automatically detect.

Therefore, there are serious demands on the facility that minimizes damages
in case that software becomes insane due to its flaws. We call this facility
safety net. A safety net prevents such damages due to software flaws from
spreading outside it. Even if crackers compromise software, they cannot access
the protected resources beyond the range of the safety net. Likewise, unstable
software does not make the other software outside the safety net unstable. In
fact, various safety nets have been developed [33, 9, 36, 38, 1, 104, 13, 69]. Most
of them are provided by the operating system or the equivalent because a safety
net that software with some flaws constructs by itself is often not useful when
the software becomes insane. For example, a sandbox provided by the Java
virtual machine, which is equivalent to an operating system, is a safety net to
protect the system from malicious and misbehavioral applets or mobile code.

1.1 Motivating Problem

This dissertation focuses on a safety net particularly for server software. The
reason is that attacks against server software and instability of server software
are more serious than those of the other software such as client software and
standalone software. If user-level servers such as a web server are compromised
by attacks, secret information is disclosed or system integrity is destroyed since
servers have higher privileges generally. Furthermore, crackers may attempt to
attack the other servers via the compromised server as if they were resident in
the compromised server. For operating system modules such as a server-specific
file system, unstable modules make an impact on the whole system because they
are closely related to the operating system. If one module crashes, the whole
operating system may crash.

To construct a safety net for server software, there are two obstacles. (1)
Server software must always run and simultaneously handle requests from var-
ious users. Unlike the other software, server software does not generally serve
only the user that executes it. Since a different safety net is needed for each
user, one fixed safety net is not sufficient for server software . (2) Server soft-
ware must achieve good performance together with safety. While it must handle
enormous requests from the clients, it must protect itself from attacks by mali-
cious clients and instability involved in it. However, it is difficult to satisfy both
requirements.

To overcome these two obstacles, a dynamic safety net is needed for server



CHAPTER 1. INTRODUCTION 3

software. A dynamic safety net enables server software to dynamically change
the range of its safety net. For user-level servers, they should change the range
of the safety net depending on the client that uses the server and the contents of
requests from the client. For example, when a web server handles requests from
Internet users, it should narrow the range of the safety net and allow accessing
only public data. On the other hand, when it handles requests from Intranet
users, it should broaden the range and also allow accessing private data of each
user.

However, changing the range of a safety net involves security risks since
attackers can abuse this ability. If a server is hijacked, the attackers can sub-
stantially invalidate the safety net by maximizing the applicable range of the
safety net. If Trojan horse code is injected into a server and is activated after
the server legally changes the range of the safety net, the malicious code can
be executed within an inappropriate safety net. If the operating system could
allow only a sane server to change the range of the safety net, these risks could
be avoided. Unfortunately, it is not easy to determine whether a server has been
compromised or not. Even if a server seems to be sane, a part of the internal
state might have been already compromised.

For operating system modules, on the other hand, it is desirable to change
the range of a safety net depending on the stability of the modules. Unlike user-
level servers, operating system modules are not likely to be compromised by
remote clients since such modules are usually not accessed directly from remote
clients. Therefore the main issue is misbehavior of such modules. For unstable
modules, the range of the safety net should be narrowed so that misbehavior
due to its flaws does not cause serious damages to the whole system even if
the performance is sacrificed. For stable modules, the range of the safety net
should be broadened for good performance because stable modules are unlikely
to behave abnormally. As such, a safety net with one fixed range for all modules
is not suitable.

A challenging issue in a safety net for operating system modules is to dy-
namically change precedence between fail-safety and performance depending on
the stability of modules. Most of previous systems are not designed so that the
users can make such a trade-off. In a system that allows the user to make a
suitable trade-off between the two, one requirement is that changing that prece-
dence is transparent to the users. Any modifications to the modules should not
be needed when the users adjust the trade-off. The other requirement is that the
mechanism itself for transparently changing that precedence should not degrade
the performance of modules. If the modules run within the broadest range of
a safety net, the performance should be almost the same as the modules which
do not use any safety nets from the beginning.

1.2 Approach

We have developed a system to provide such a dynamic safety net. The system
consists of two mechanisms: an access control mechanism for user-level server
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and a fail-safe mechanism for operating system modules.

Access Control Mechanism for User-Level Servers

Our access control mechanism achieves a dynamic safety net by appropriate
access restrictions depending on the clients and the contents of requests from
the clients. This mechanism enables a server process to impose appropriate
access restrictions on it while the process is handling requests from a client.
The activities of attackers are limited by the access restrictions even if the
server process is hijacked.

A unique feature of this mechanism is to allow a server process to dynam-
ically change its access restrictions so that they fit each client. To avoid risks
involved in changing access restrictions to weaker ones, that is, removing some of
them from the process, our access control mechanism cleans a server process up
before removing access restrictions and then eliminates malicious code injected
for compromising the server. We call this cleaning-up procedure process clean-
ing [53, 54]. Process cleaning recovers even a compromised server to be sane.
To use this process cleaning facility, our access control mechanism first saves
the whole state of a server process when it is guaranteed that the server is still
sane. Thereafter, when removing access restrictions, this mechanism restores
‘that saved state so that the state illegally modified by attackers is recovered.
The restored state is all state of a process: a thread of control, a memory image,
and so on.

Process cleaning can prevent attackers from gaining non-permitted access
privileges. If a hijacked server process attempts to remove access restrictions
from it to gain higher privileges, process cleaning restores the thread of control
of the process and takes the full control back from it. Thus, while the attackers
take the thread of control, they cannot remove access restrictions from the
hijacked process. Also, process cleaning can prevent a server process injected
Trojan horse code from activating that code after the process legally removes its
access restrictions. When the process removes its access restrictions, the Trojan
horse code resident in the memory is eliminated by restoring the whole memory
image.

Since process cleaning is used for a server process, the performance is also
important. Performance overheads due to process cleaning mainly come from
saving and restoring a memory image. To reduce the overheads, process cleaning
uses the copy-on-write technique so that only modified pages are restored. Also,
process cleaning allows the users to choose a strategy for restoring the memory
image. The remap strategy is used by default while the copy strategy is suitable
for a server whose memory access pattern is almost the same for every request
handling. In addition, to optimize the data layout of server programs for process
cleaning, we have developed a tool that changes the layout based on profiling
information.

We have implemented this access control mechanism on Linux and measured
the overheads of our process cleaning. We experimented on the Apache web
server and confirmed that the overheads of process cleaning are less than 35%.
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Also, we compared our web server using process cleaning with one using the fork-
join method, which is the alternative method that enables to securely remove
access restrictions. The result was that our server using process cleaning is 45%
faster than one using the fork-join method on average.

Fail-Safe Mechanism for Operating System Modules

By default, our fail-safe mechanism runs each operating system module within
the narrowest safety net. This safety net strictly restricts the interface between
the module and the operating system kernel. Each module is separate from
the kernel, the other modules, and all user-level processes so that abnormal
behavior of the module does not affect the rest of the system. For example, a
module is run as a user-level process and only kernel functions indispensable to
the module are allowed to call via a kernel trap.

To achieve a dynamic safety net, our fail-safe mechanism enables the users to
change the protection level of modules depending on the stability. We call this
facility multi-level protection [56, 55]. The multi-level protection facility provides
multiple levels of protection for modules, each of which is different in the type
of detectable and recoverable errors. For example, in some protection levels,
the module runs within a separate address space to detect its memory access
violations. In other protection levels, deadlocks between threads of modules are
detected. Note that at the minimal protection level, the module is embedded
into the kernel and runs without any protection.

The protection level is changed by exchanging protection managers provided
per module. The protection manager plays a role of a gateway between a module
and the kernel and protects the kernel from corruption by an erroneous module.
As a gateway, the protection manager forwards upcalls from the kernel to the
module and kernel function calls from the module to the kernel. Thus, all
protection managers, each of which provides a different protection level, provide
a common Application Programming Interface (API) for the modules. If a
module conforms to this API, the users can exchange one protection manager
for another one without any modifications to the module and then change the
protection level of the module.

To change the abilities to detect and recover from errors for each protection
manager, the multi-level protection uses various protection techniques. Switch-
ing address spaces enables to locate a module in a separate address space and
prevent it from corrupting the other modules and the kernel. Replicating the
kernel data can make a module access replicas of the kernel data and protect
the kernel data from erroneous modification by the module. A wait-for-graph
can be created when modules lock or wait for resources and be used to find a
loop that means a deadlock.

We have implemented this fail-safe mechanism on NetBSD and measured the
runtime overhead of the multi-level protection. We experimented on some file
system modules and network modules. Then we confirmed that the overhead
at the maximal protection level is 75% at maximum if these modules are used
by practical applications. On the other hand, the extra overhead left at the
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minimal protection level due to multi-level protection was less than 12% even
in micro benchmarks.

1.3 Contributions

This dissertation has two major contributions. One is to allow server processes
to dynamically change the access restrictions. In particular, the ability of dy-
namically removing access restrictions is not supported in previous work since it
can be a security hole. Our novel technique called process cleaning successfully
makes the operation of removing access restrictions secure by eliminating the
impact of attacks from server processes. Due to process cleaning, the servers
can use a dynamic safety net and minimize damages by attacks.

The second contribution is to allow the users to make a trade-off between
performance and fail-safety for operating system modules. In most of previous
systems, the relationship of the two is fixed. Some systems allow the users to
take either performance or fail-safety, but the runtime overhead for achieving
that flexibility is relatively large. Our new fail-safe mechanism called multi-
level protection enables the users to take only necessary fail-safety and makes
the runtime overhead negligible when they take no fail-safety.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 mentions soft-
ware flaws and a safety net. Then we describe further details of the needs for
a dynamic safety net and related work for safety nets. Chapter 3 proposes pro-
cess cleaning, which allows servers to securely remove access restrictions, and
explains the implementation of our access control mechanism including process
cleaning. Chapter 4 proposes the multi-level protection, which allows the users
to change the protection level of operating system modules, and explains the
implementation. Chapter 5 measures the overheads of a dynamic safety net,
that is, those of process cleaning and the multi-level protection and shows the
results. Finally, Chapter 6 concludes this dissertation.



Chapter 2

Needs of a Dynamic Safety
Net for Server Software

2.1 Software Flaws

Most of software flaws are exploited by attackers as well as making server soft-
ware unstable. These two aspects are heads and tails of a coin. For example, a
buffer overflow is a flaw that the size of an input is larger than the size of a buffer
and the memory area following the buffer is illegally overwritten by the input.
By a buffer overflow of an input buffer of server software, attackers can overwrite
some pointers such as a return address from a function pushed in a stack frame
and inject malicious code as a part of the input. If the thread of the server
software jumps using the modified pointers, for example, by returning from a
function, the injected malicious code can be executed and the server software
can be hijacked. Until the modified pointers are exploited, the injected mali-
cious code is regarded as Trojan horse code. Once server software is hijacked,
it is used for performing malicious operations. For example, the attackers can
disclose or alter all files that the server software can access. Also, they can
impersonate a server’s owner and then attack another server by exploiting trust
relationship of each other.

If the buffer overflow attack fails, the server software may get unstable.
The buffer overflow attack succeeds if and only if the overwritten pointers are
used for properly jumping to the injected malicious code. If the pointers do
not point to that code properly, the thread of control of the server software
may go out of range and that jump may cause memory access violation. Even
if an overflowable buffer is not exploited by the attackers, an overflow of the
buffer causes misbehavior of the server software. If a buffer allocated in a stack
memory overflows, the stack frame may be corrupted and the server software
may not be able to continue the execution.

Also, a race condition is exploited for attacks. A race condition is an error
caused by timing when events occur. For example, when server software creates

7
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Figure 2.1: A model of the server system. Any components except the kernel
core can be affected by attacks from crackers or instability of software.

a temporary file in /tmp, attackers can create a symbolic link to an arbitrary
file that is writable to the server software and corrupt the file if the name of the
temporary file is guessable. Even if a race condition is not exploited for attacks,
some kind of race condition causes a deadlock. When two servers lock different
files, a deadlock occurs if each server attempts to lock a file that the other server
has locked unfortunately. The deadlock may freeze even the whole system.

In this dissertation, we focus on security flaws for user-level servers such as
a web server although some types of instability can be also addressed by the
solution to security flaws. Since user-level servers are frequently compromised
by attacks from remote hosts, attacks are the most critical problem for user-
level servers. In contrast, even if one server gets unstable, only the server
or some related servers are affected. For operating system modules, on the
other hand, we focus on software flaws that cause instability. Since operating
system modules are tied up with the operating system, it is possible that their
flaws affect the whole system. In contrast, such modules are unlikely to be
compromised because most of them serve user-level servers but are not used
from remote hosts directly.

In addition, we assume that the kernel core excluding operating system mod-
ules from the operating system kernel is the Trusted Computing Base (TCB).
In other words, it does not have any software flaws and therefore all the mech-
anisms it provides are tamper proof and non-bypassable. Figure 2.1 shows a
model of the server system we assume.

2.2 Safety Net

A safety net is defined as a defense line that can detect anomalous behavior of
server software. The regular activities of sane server software are called normal
behavior while irregular activities are called anomalous behavior. A safety net
regards anomalous behavior as attacks from malicious users or misbehavior due
to software flaws and then confines damages from insane server software within
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the safety net. In other words, a safety net detects violations of security poli-
cies or safety guidelines by insane server software and then prohibits accesses
beyond the privileges of that server software. The examples of safety nets are
access control mechanisms, Intrusion Detection Systems (IDSs), Software Fault
Isolation (SFI) [104], and so on. A safety net is not dependent on patterns of
attacks and can confine the impact by unknown flaws.

However, a safety net does not limit the activities within the safety net of
insane server software. If a broad safety net is constructed, it cannot prevent
some of anomalous behavior of server software. This is a problem called false
negative in IDSs. In such a case, attackers can exercise higher privileges of
the server and disclose or alter some resources such as privileged files. One
solution is to use detection techniques specific for each software flaw together as
well as both anomaly-based and misuse-based detections are used together in
many IDSs. As such, a safety net detects the activities that the server software
never performs while the detection techniques detect known attacks, which may
include normal behavior.

The other promising solution to false negative is to specify the range of a
safety net so that the range becomes as narrow as possible. In other words,
normal behavior of server software should be specified so that the server has
only least privilege. The principle of least privilege [92] gives a minimum set
of privileges for performing necessary operations to server software. Based on
this principle, server software is allowed to use only necessary resources such
as system files and indispensable kernel interfaces such as system calls. How-
ever, the least privilege of server software tends to be broad because it is used
under various situations. For example, the privileges that servers need change
depending on the clients.

2.3 Needs of a Dynamic Safety Net

To achieve the principle of least privilege in any cases, the range of a safety net
must be changed dynamically, depending on the situations. A dynamic safety
net enables the operating system to keep the range of the safety net for server
software as narrow as possible. However, it is not easy from the viewpoint of
security and performance.

2.3.1 Client-Dependent Safety Net

The range of a safety net of a user-level server should be changed depending
on the clients that use the server and the contents of requests from the clients.
This is because least privilege necessary for a server is different for each request
handling. Only one set of least privilege is not sufficient to construct a safety net
that severely limits activities of a compromised server. Since a server is always
running unlike a client, it is necessary that the applicable range of a safety net
for the server be dynamically changed. For user-level servers, access restrictions
to the server construct a safety net.
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Figure 2.2: Various safety nets for a user-level web server.

Suppose that a web server is serving both the Internet and Intranet users.
The administrator would like to impose as strong access restrictions as possible
on the server while it is serving the untrusted Internet users so that the range of
safety net gets minimum. For example, the server should be able to read only
public files that anonymous users can read (Fig. 2.2 (a)). On the other hand, the
administrator would like to impose weaker access restrictions on the server while
the server is serving the trusted Intranet users. For example, while the server
is handling a request from Intranet users, it should be able to read a private
file that only the Intranet users can read so that they can see the contents of
that file through the web browser (Fig. 2.2 (b)). If the server could not change
its access restrictions dynamically and therefore the safety net were fixed, the
administrators would need to impose the most weaker access restrictions of
possible ones on the server so that the server can handle any requests from any
users. In this case, remote attackers can read the private files if they compromise
the server since the access control mechanism of the operating system does not
prevent the compromised server from reading such private files.

Another example is a server that maintains personal schedules such as Lotus
Notes [45] and Yahoo! Calendar [105]. While the server handles a request from
user Alice, the server should be able to access only the data representing Alice’s
schedule. If the server next receives a request from another user Bob, then the
system must change the access restrictions of the server before handling Bob’s
request so that the server can access the data representing Bob’s schedule. If
changing the access restrictions is not allowed, the server must be always able to
access both Alice’s and Bob’s schedules. However, this involves a security prob-
lem since Alice can illegally access Bob’s private schedule if Alice compromises
the server.

In spite of these demands of a dynamic safety net, the facility of changing
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access restrictions involves security risks. If a server is hijacked, the attackers
can remove the access restrictions from the server since the system allows even
attackers to change access restrictions. As an example in UNIX, it is reported
that the seteuid system call can be a security hole [73]. This system call is
used to temporarily drop the privileges of a process, which means imposing
stronger access restrictions, while the process is in danger of attacks. Since
seteuid allows to recover the original privileges, which means removing access
restrictions, whether the process is compromised or not, even a compromised
server can gain higher privileges.

It is not easy to allow a server to change the access restrictions only if the
server is not compromised. A server that seems to be normally running may
contain malicious code injected by attackers for hijacking the server later. If
this server is allowed to change its access restrictions, then that malicious code
may be activated after the access restrictions are changed. Also, the execution
environment of the server may be compromised. For example, if the variable
argv[0] in a process is modified, attackers can send a HUP signal to the pro-
cess and thereby execute an arbitrary command indicated by that variable for
vulnerable software [19]. Detecting the existence of hidden malicious code and
compromised execution environment is extremely difficult without serious per-
formance penalties.

2.3.2 Stability-Dependent Safety Net

For operating system modules, it is desirable that the range of a safety net is
changed depending on the stability of the module. For unstable modules, the
range should be narrowed so that the modules are protected from crashes due
to their software flaws (Fig. 2.3 (a)). On the other hand, for stable modules, the
range of a safety net should be broadened so that the modules can execute as
efficiently as possible (Fig. 2.3 (b)). For example, the operating system should
allow the module to perform efficient but dangerous operations such as memory
access without protection. Since the stability of modules changes over time [24]
and both fail-safety and performance are significant for modules, many of which
are developed for server efficiency, the fixed range of a safety net is not suitable.
For operating system modules, error detection of modules constructs a safety
net.

Suppose operating system modules provided by third-party vendors. Such
modules such as device drivers are often unstable as seen in the Windows world
and therefore often crash due to their software flaws. Even in such a case, the
users may use the modules under sufficient protection if they want the functions
of the modules. With sufficient protection such as memory protection, even
if a module crashes, the impact is confined to only the module although the
performance is sacrificed. On the other hand, many old modules are stable even
if they are made by third-party vendors. In such a case, the users can take
precedence of performance since fail-safety is no longer necessary.

As another example, suppose that vendors develop new operating system
modules. If the developers implement a module directly in the kernel, the
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Figure 2.3: Various safety nets for a NFS server module. (a) The NFS server
module can access a UFS module only through a safe but slow interface. (b)
The NFS server module can access the UFS module, disk, and kernel data.

debugging is very hard. They must sacrifice fail-safety during debugging to gain
good performance at product release. On the other hand, if they implement a
module as a user-level daemon program to make debugging easy, they must re-
implement it in the kernel after the debugging of the user-level daemon finishes
since the programming interfaces between the user level and the kernel level
are largely different. They need hard work to change the precedence between
performance and fail-safety depending on the development phase.

Since performance and fail-safety make a trade-off as such, expanding the
range of the safety net of a module for performance improvement degrades the
security level, and vice versa. It is a challenging issue to dynamically make a
suitable trade-off between performance and security, depending on the stability
of a module. First, a system that allows dynamically making a suitable trade-
off should be designed to do that in a transparent manner to the users. For
example, since an interface at the kernel level is different from one at the user
level, the operating system must hide the differences from the modules. Also,
any modifications to a module should not be needed when the users change
the precedence between performance and fail-safety. Second, the mechanism for
transparently making the trade-off should not degrade the performance of the
modules. If a module runs without any protection, the performance should be
almost the same as an embedded version of the module, which does not use this
mechanism.
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2.4 Prior Work in Safety Nets for User-Level

Servers

2.4.1 Access Control Mechanisms

Mandatory Access Control

Janus [36] restricts for untrusted programs to issue system calls, using a sys-
tem call tracing facility of the operating system such as Solaris. The tracing
facility enables a process to monitor the child processes and mediate all system
calls issued by them. If untrusted programs violate security policy set by the
administrators, the monitoring process rejects that access to the operating sys-
tem. Janus requires neither the modification of the operating system nor the
modification of user programs. The weak point is that this mechanism is for
helper applications of a web browser, not for servers. This mechanism assumes
that monitored processes are running under fixed access restrictions and does
not allow dynamically changing the access restrictions.

Domain and Type Enforcement (DTE) [9, 8] extends type enforcement [16],
which is a table oriented access control mechanism. In DTE, a subject such as
a process is associated with a domain while an object such as a file is associated
with a type. The Domain Definition Table (DDT) determines which domains
have access to which types. The Domain Interaction Table (DIT) determines
which domains have access to which domains. Using DTE, for example, the
administrators can confine each server to a different domain and restrict the
interaction between the domains. Since all subjects and objects are associated
with domains and types, respectively, the attackers cannot bypass a DTE mech-
anism, which controls access rights of servers by looking up DDT and DIT. For
security, the association of domains and types and the representation of DDT
and DIT are configured only by the administrators as well as in Janus. Therefore
DDT and DIT cannot be dynamically changed.

As another way to confine each server to a different domain, the chroot
system call can be used. This system call changes the root directory of a process
and then makes the process and the child processes run in the confined name
space of the file system. For example, the root directory of an anonymous ftp
server is changed to /var/ftp in the regular name space. The server cannot
access /etc/passwd in the regular name space or name spaces for other confined
processes. Only processes with root privileges can remove this access restrictions
or the confinement to the name space. However, since attackers can also perform
the same operation for servers running as root, it is not secure.

The SubDomain system [26] allows changing access restrictions in a safe
manner based on probability. It provides least privilege confinement to program
components such as a web server module for interpreting Perl scripts. The
unique feature of SubDomain is to be able to confine not only processes but
components that are a portion of a process. SubDomain allows a process to
change the set of files that the process can access, using the change hat system
call. This system call is issued by a main program before it calls its component so
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that the process can impose access restrictions while it executes the component.
The system call is also issued to remove access restrictions from the process
when the component returns the control to the main program. To prevent the
malicious component from removing access restrictions by issuing change hat,
change hat takes as a parameter a cookie value, that is, a random number that
the component cannot easily guess. As far as the component cannot read the
secret cookie value, this mechanism is secure.

However, when the process is hijacked by the buffer overflow attack, the at-
tacker can read the value from memory. To protect the memory area containing
the secret cookie, the authors propose to use language-based protection such
as proof-carrying code [69], strong type checking [38], and Software Fault Isola-
tion [104], but language-based protection is not useful for some types of attacks
such as the buffer overflow attack. For example, since the buffer overflow attack
takes the full control of a process, language-based protection that the user-level
program achieves does not work. Also, the authors consider this mechanism
safe if a component is written in a scripting language and is executed by an
interpreter, but user-supplied data to a script can exploit the vulnerabilities of
the script or the interpreter itself.

Capability Systems

Capability-based systems such as the Amoeba operating system [101] and the
TRON system [11] allows a client to temporarily grant a subset of its capabilities
to a server and revoke it from the server later. If capabilities are granted to a
server by a client, they extend the server’s protection domain so that the server
can handle a request from the client. After the client receives replies from the
server, the client revokes the capabilities that it granted to the server. In such
systems, the server uses the privileges of the client only while it handles a request
from the client.

Unfortunately, this mechanism is based on trustworthiness of a server. Once
a server is compromised or hijacked by malicious clients, capabilities that clients
grant to the server after that may be abused by the compromised server. Al-
though the clients can revoke the granted capabilities at any time, the com-
promised server can have enough time to abuse the client’s privileges during
request handling. Using our system with capability systems, a compromised
server cannot abuse the granted capabilities since our system cleans a server up
by process cleaning before a client grants its capabilities to the server. Thus,
clients do not grant the capabilities to a compromised server. In other words,
clients can always trust servers.

Role-Based Access Control

Role-Based Access Control (RBAC) [33] is similar to capability systems in that
RBAC assigns the users to roles, to which access permissions are assigned, like
capabilities. However, capability system is discretionary access control (DAC),
where the users can grant access permissions to other objects, while RBAC is
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non-discretionary access control. In RBAC, permissions are assigned to roles
by the administrators and therefore the users cannot pass access permissions
to other users. One advantage of RBAC is that the cost of changing access
permissions of users is low. To change access permissions, RBAC only changes
the association between users and roles while DAC like capability systems must
update access permissions of each user. Instead, RBAC does not have flexibility
that a server can change its role by itself.

Temporally Raising Privileges

The Java virtual machine allows a method of a class to raise its privileges using
the doPrivileged static method. In Java, each method belongs to either the
system domain, which has all permissions, or an application domain, which has
some permissions. The permissions of a method are not limited only by the
belonging domain but also by its caller’s domain. For example, when a method
in an application domain calls a method in the system domain, the method in
the system domain has only the permissions of the method in the application
domain. Exceptionally, the doPrivileged method can make only the specified
method ignore its caller’s permissions and raise its permissions to the belonging
domain’s.

The only problem is that vulnerabilities of such privileged methods may be
security holes. Suppose that the system library provides the openPasswordFile
method, which uses the doPrivileged method so that applications can change
user’s passwords. Malicious applications can get a file handler for a password
file using openPasswordFile and change the password entries as they want. In
this case, the system library should provide the changePassword method. The
doPrivileged method makes the designers of the system library take responsi-
bility for avoiding such vulnerabilities.

The setuid mechanism in UNIX is similar to this doPrivileged mecha-
nism. The setuid mechanism allows the users to execute a program with the
setuid bit on under the privileges of the owner of the program. As a typical
example, the passwd program is setuid-ed to root and even regular users can
access /etc/passwd, which only root can modify, using the program. The
setuid mechanism is riskier than the doPrivileged mechanism in Java. The
doPrivileged method allows only a few methods to raise their privileges while
the setuid mechanism allows a large program to do that. More vulnerabilities
tend to be included in larger code fragments.

Intrusion Detection Systems

Strictly speaking, an Intrusion Detection System (IDS) [60, 29, 41, 3, 79] is
not an access control mechanism, but it, particularly, a real-time IDS [60], can
be considered as a variety of access control mechanism in that IDS prevents
intruder’s activities. There are two types of IDSs: a misuse-based IDS and
an anomaly-based IDS. A misuse-based IDS is not a safety net since it needs
signatures representing attack patterns to detect intrusions. On the other hand,
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an anomaly-based IDS is a safety net and can detect unknown attacks using
user’s statistical profile. The user profile is a collection of metrics such as a CPU
load and the number of network connections. Our access control mechanism
enables the users to describe only simple security policies, but various efforts
of this type of IDS can be also applied to our system. The disadvantage of
IDS is that the detection overheads get larger as the user model becomes more
complex. Moreover, when the system switches target users for which it detects
anomaly, the attackers can take a chance of compromising the system.

2.4.2 Cleanup of Processes

Fork-Join Method

The security effects by process cleaning can be also achieved with the fork-join
method, which is used in inetd in UNIX. With this technique, a server issues
the fork system call to create a new child process when it receives a request
from a client. Then it imposes appropriate access restrictions on that child
process, which then handles the received request. If the child process finishes
handling the request, then it simply issues the exit system call to terminate.
The child process dose not need to remove its access restrictions. While the
child process is handling the request, the server can receive a new request from
another client. In this case, the operating system does not have to allow to
remove access restrictions and can support changing access restrictions safely.

This fork-join method and our process cleaning are equally secure because
a request from a client is handled under appropriate access restrictions and the
access restrictions are not removed insecurely even if the process handling the
request is compromised. Namely, damages by cracking are never propagated
to the next request handling. A difference between the two techniques is that
process cleaning recycles an existing process for handling a next request whereas
the fork-join method discards an old process and creates a new one. To be
recycled, a process must be carefully cleaned up; all stains put by an attacker
must be washed out before the process restarts handling a new request under a
new set of access restrictions.

A significant advantage of process cleaning is better performance than the
fork-join method. Process cleaning is more suitable for high-performance servers.
Although process cleaning involves performance overheads, the fork-join method
involves larger overheads due to process creation and destruction. Moreover,
process cleaning can be used with the process pool technique since it enables
to recycle the process. The process pool technique creates several processes in
advance and lets them handle requests in parallel. A server with process pool
is more efficient than one that spawns a new process for each request.

Checkpointing

Process cleaning can be regarded as a variation of the technique known as check-
pointing and recovery. Saving the state of a process is checkpointing while
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restoring the saved state is recovery. Several researchers have proposed to use
the copy-on-write technique [15, 86] for efficiently implementing checkpoint-
ing and recovery [57, 21] like our implementation explained in Section 3.3. Our
contribution is to apply that technique to the security domain instead of tra-
ditional domains such as database transactions, process migration, and fault
tolerance. In fact, the design of process cleaning is highly customized for access
control mechanisms. For example, only updated memory pages are saved since
preserving all the memory pages is not necessary. The saved memory pages are
written in the kernel space, not on a disk drive, since process cleaning is not for
fault tolerance.

Well-formed and partially-formed transactions [85], which are based on the
Clark-Wilson integrity model [25], are also applications of checkpointing and
recovery to the security domain. This mechanism optimistically allows the users
to perform questionable actions, for example, that a non-root user changes her
office’s printer configuration. To prevent malicious users from corrupting the
system integrity using this optimistic facility, this system logs system calls issued
by all users so that any actions that the users perform can be rolled back. For
example, even if a printer configuration is changed mistakenly, this mechanism
recovers it from a copy made before it is changed. Since this mechanism can
recover modifications only to the file system, it can complement our process
cleaning, which recovers only the state of a process, each other. However, logging
system calls and recovering the file system are heavy tasks from aspects of
both disk space and time and therefore this mechanism is not suitable for high-
performance servers.

2.4.3 Process Trace

Process trace is a facility that our system uses for better access control. Process
trace is a similar concept to information flow. Information flow represents which
data moves from where to where. For example, Multi-Level Security (MLS)
systems restrict the flow of information based on the sensitivity level of the
information and the clearance level of the users. The labeling of the information
and the assignment of the clearance level are fixed and only the administrators
can control information flow. On the other hand, process trace does not control
the flow of information but the flow of execution. Therefore the access control
mechanism can restrict the activities of a process based on its previous activities.

Trace of Method’s Callers in Java

As described above, the security mechanism of Java grants access permissions
to a method only when the permissions are granted to all the callers. To enforce
this principle of least privilege, when a method is called, the security mechanism
tracks all the callers one by one using the stack introspection. Our process
trace mechanism is similar to this mechanism in that it traces dependencies
between processes in operating systems instead of methods in Java for access
control. However, tracing communication dependencies between processes is
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more difficult than tracking the callers of a method. The callers of a method
are recorded in a local stack frame and therefore tracking them in a reverse
order of calling is easy. On the other hand, to trace communication dependencies
between processes, the trace mechanism has to check processes through network.
When the mechanism checks that dependencies, network connections may be
lost and some processes may be terminated. In this point, it is not easy to
achieve the security mechanism of Java in real distributed systems. This security
mechanism is a start point of our process trace.

Trace with Mobile Agents

The Intrusion Detection Agent (IDA) system [6] traces the path of an intrusion
and identifies the origin of the intrusion using mobile agents. If IDA detects a
mark left by a suspected intruder from audit logs, a tracing agent traces the
intrusion until it reaches the origin of the intrusion. Based on the gathering
information, IDA decides whether an intrusion occurs or not. Since IDA traces
the path of an intrusion on demand and therefore takes much time to identify
the origin of the intrusion, it is not suitable for real-time intrusion detection.
In addition, every host must maintain large audit logs on all network commu-
nication. On the other hand, our taint mechanism for achieving process trace,
described in Section 3.5.3, gathers information on suspected intrusions eagerly
and compresses logging information for reasonable access control. For example,
our taint mechanism records only a host with the lowest confidence of hosts that
a process interacts with, instead of recording all of these hosts. Thereby, out
taint mechanism takes less time to detect intrusions and maintains only a little
amount of data.

Tainting Systems

In the tainting file system [61], files are assigned a level of trustworthiness,
based on the conditions under which they are created or modified. For example,
the level of trustworthiness of a file downloaded from an untrustworthy site is
low. In addition to files, this system also assigns a level of trustworthiness to
executing processes. The trustworthiness of a process is affected by the resources
from which the process reads, such as files, network connections, and inter-
process communications. The level of trustworthiness is never raised. Thus the
execution of a process is restricted based on the trustworthiness of the process
and files. The tainting file system is similar to our taint mechanism. Our
taint mechanism differs from the tainting file system in that it can make taint
information propagate via network in the distributed system. In the tainting
file system, propagation of information on trustworthiness is limited within the
local operating system. Since it simply assigns trustworthiness to remote hosts,
it cannot trace trustworthiness of a further remote host of a remote host. This
means that the tainting file system cannot detect attacks from an external host
via vulnerable internal hosts.

LOMAC [35], which is based on the Low Water-Mark model [14], assigns a
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level of integrity to objects such as a file and subjects such as a process, instead
of a level of trustworthiness. Like the tainting file system, the integrity level
of files downloaded from Internet is low while that of system files is high. If
a subject reads from an object that has a lower integrity level, the integrity
level of the subject is reduced to the integrity level of the object. The integrity
level is never raised once it is reduced. The difference between LOMAC and the
tainting file system is that the integrity of objects is never changed in LOMAC.
It is not allowed that a subject attempts to access an object or a subject that
has higher integrity level.

2.4.4 Network-Level Authentication

Network-level authentication is also used for better access control by the op-
erating systems. IPsec [52] is the most familiar network-level authentication
protocol. To prepare IPsec communication, two hosts first authenticate each
other using the Internet Key Exchange (IKE) protocol. After authentication,
the two hosts communicate using the Encapsulated Security Payload (ESP) [51]
protocol or a Authentication Header (AH) [50] protocol. In either protocol, au-
thentication data is carried with each IP packet. Since IPsec authenticates the
users by the unit of host, it is not suitable for authentication between a client
and a server. Once the authentication between a client and a server succeeds,
all client software in the client host can communicate with all server software
in the server host as if they were authenticated each other. Our network-level
authentication supports end-to-end, namely, process-to-process authentication
and then one client software in the client host is authenticated only by one
server software in the server host.

2.5 Prior Work in Safety Nets for Operating
System Modules

Some operating systems take approaches to download the operating system
modules into the kernel. Several UNIX systems like NetBSD and Linux allow
the users to link a loadable kernel module (LKM) with the kernel dynamically.
A LKM is implemented as a part of the kernel and runs very efficiently after
linked with the kernel. However, vulnerabilities of the module can make the
whole operating system crash because fail-safety is not considered at all.

2.5.1 User-Level Protection

Microkernel

In the microkernel operating systems like Mach [1], the users can implement
the operating system modules as user-level servers. The user-level servers are
separate from the kernel and execute the functions by communicating with the
kernel and the other modules. Errors in one module are confined to only the
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module and the rest of the system is not affected. However, at the early stage
of the research, all subsystems such as file systems and network subsystems are
included in the single UNIX server [37]. Therefore, if one subsystem crashes due
to the errors, the whole UNIX server crashes although the microkernel itself is
not affected. In this system, the operating system can provide sufficient fail-
safety only among multiple operating system personalities such as the UNIX
server and the MacOS server and the microkernel. This type of fail-safety is too
coarse-grained.

To improve this insufficient fail-safety between subsystems, a Mach that
supports a multi-server model is proposed [39]. For example, user-level proto-
col servers [87] allow a new network protocol to be implemented and thereby
errors of each protocol server do not affect the rest of the operating system.
An erroneous server is simply terminated by the kernel. The multi-server sys-
tem achieves sufficient fail-safety in a fine-grained manner but the performance
is sacrificed because the overheads of inter-process communication (IPC) and
context switches between subsystems are large [12, 20].

The performance of this cross-domain communication has been improved in
the second generation microkernels [34, 58, 17]. For example, the L4 microker-
nel [58] uses recursive address spaces, which is a mechanism that a user-level
server can grant a portion of its address space to other servers to make IPC
fast. The performance overhead of the Linux server on top of L4 is from 5% to
10% in typical applications such as compiling the Linux server [40]. However,
the overhead of Remote Procedure Call (RPC) on UDP is 50% and applications
that frequently use user-level modules are not optimized sufficiently. This mech-
anism can be used together with our multi-level protection to make a module
that takes precedence of fail-safety more efficient.

The Chorus operating system [90, 89] allows the users to download the oper-
ating system modules created as user-level servers into the kernel. At this time,
recompiling them is not needed. Chorus achieves sufficient fail-safety when the
modules are running at the user level. On the other hand, Chorus achieves good
performance when the modules are downloaded into the kernel level. This ap-
proach is similar to our multi-level protection. The difference is a basic concept.
Our multi-level protection starts from the monolithic kernel design and runs the
modules at the user level to make them safe. The communication between the
modules and the kernel is optimized so that the performance is maximum when
the modules are running at the kernel level. In contrast, Chorus starts from
the microkernel design and downloads the modules running at the user level to
make them efficient. The communication between the modules and the kernel
is done by IPC even if the modules are running at the kernel level. Therefore
the downloaded modules are not enough efficient. For instance, in the read
operation, the downloaded file system is 80% slower than the same file system
hand-crafted in the kernel [5].
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Operating Systems as User-Level Library

The Exokernel operating system [31, 49] and some operating systems using a
protocol library [62, 102] link functions of the operating system implemented
as a library with application programs. In Exokernel, in particular, almost all
functions of the operating system are exported to the library to reduce the
number of cross-domain switches between the applications and the kernel. The
kernel provides only the facilities to bind resources securely and multiplex phys-
ical devices. The operating system modules are implemented as a portion of
the library. In such systems, the fail-safety of the modules is sufficient since
only the application that is linked with a library including an unstable mod-
ule is affected. However, developing new modules in Exokernel is difficult due
to the low abstraction Exokernel provides. Since Exokernel provides a big li-
brary including most functions of the operating system in the same abstraction
with the monolithic kernel, they need the same efforts with ones for modifying
the monolithic kernel. The difficulties of the module development cause more
software flaws.

2.5.2 Kernel-Level Protection

Some operating systems take an approach that they download the operating
system modules into the kernel and protect the modules from the rest of the
kernel.

Fault Isolation

The VINO operating system [96, 97] uses software fault isolation (SFI) [104, 98]
to protect the kernel from illegal memory accesses due to the downloaded exten-
sion modules. SFI is a technique that a compiler inserts check code of address
for read, write, and jump into a module. If the module attempts to access out
of allowable memory range, the inserted check code detects its violation. VINO
also limits the maximum amount of resources that the modules can use at any
given time and automatically releases the resources if a certain timeout expires.
To recover from errors, VINO provides a kernel transaction system. Thus VINO
provides a relatively lightweight and sufficient fail-safety. However, VINO en-
tails certain fixed overheads even if the modules are enough stable. For instance,
the overhead of SFI is always from 5% to 200%, depending on applications.

Language/Compiler Support

As another approach to download the modules into the kernel safely, several
operating systems use language supports. The packet filter [66] is downloaded
into the kernel and multiplexes network packets to appropriate applications.
The language for the packet filter is specific to the domain of packet multiplexing
and does not allow to describe malicious filters. However, such domain-specific
mechanisms are not suit for general modules since the power of expression is
low. Moreover, the safe execution of packet filter gets rather overheads. In
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the early stage, packet filters were interpreted in the kernel. To reduce the
overheads, more efficient packet filters have been proposed. The BSD packet
filter [63] redesigns the original stack-based packet filter and is up to 20 times
faster. The dynamic packet filter (DPF) [30] uses dynamic code generation and
is 10% to 50% faster than the other fastest packet filters.

The SPIN operating system [13] allows the users to download the operating
system modules written in the Modula-3 language [71] into the kernel. Modula-
3 is a type-safe language and the modules written in Modula-3 do not cause
memory access violations at runtime. To detect memory violations that the
compiler cannot statically check, SPIN needs runtime checks such as the range
check of array boundaries. The overhead is small for practical modules. One
disadvantage of Modula-3 is that it does not allow to cast data structures to
and from the array of bytes in a safe manner. The cast is needed to handle
protocol headers in the array of bytes from a network device driver without
extra copies. To allow safe cast, SPIN added the VIEW operator to Modula-3
[44]. VIEW translates the given array of bytes to the specified data structure, and
vice versa. The translation is safe since the translated data structure must be
within the range of the array. This safe cast does not cause any memory violation
but may cause data corruption due to casting the array to an unexpected data
structure. In other words, the VIEW operator breaks strict type-safety.

The other disadvantage is that Modula-3 has not been used for system pro-
gramming for a historical reason. So far, the system programmers mainly use
the C language, which has unsafe pointers and enables to write as efficient pro-
grams as the assembly language. The developers of SPIN say that it is easy that
the programmers shift their programming language from C to Modula-3. How-
ever, many system programmers have a lot of know-how for developing system
programs with C and hence the shift is not very easy. This is also the reason
why system programmers continue to use C (or C++) for a long time.

Proof-Carrying Code (PCC) [69] can be used to guarantee safe behavior of
operating system modules. First, the PCC compiler generates a proof that a
source program adheres to a given safety rules and forms the PCC binary from
the compiled program and the proof. When the binary is downloaded into the
kernel, the operating system validates the proof, which is a part of the PCC
binary. If the validation is passed, the program binary is executed without
additional runtime checks. PCC is applied to the network packet filter, the
IP checksum, the type-safe assembly language [68], and so on. However, pure
PCC cannot perfectly prove all programs written in C although the CCured
type system [70] can prove most pointers of many C programs to be type safe.
Moreover, the overhead of runtime checks for type-unsafe pointers in CCured
reaches 150% at maximum.

2.6 Summary

This chapter first described software flaws that cause attacks and make server
software unstable. A buffer overflow is exploited for hijacking server software
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while it often crashes server software after the buffer overflow attack fails or
even if the attack does not happen. A race condition is also exploited for
modifying files at the server’s privileges while it may freeze the whole system by
deadlocks. These two aspects of software flaws are heads and tails of a coin. In
this dissertation, we deal with attacks for user-level servers and instability for
operating system modules since attacks are always threats for user-level servers
and unstable operating system modules are threats to the whole system.

Next, this chapter mentioned a safety net for server software. A safety net is
a defense line for detecting anomalous behavior of server software. Anomalous
behavior is regarded as attacks from malicious users and misbehavior due to
software flaws and is detected by the operating system. A safety net has a
disadvantage that the false negative rate can be large depending on the security
policy. To address this disadvantage, server software should change the range
of its safety net depending on the clients so that server software always follows
the principle of least privilege. This type of safety net is called dynamic safety
net.

Enabling a dynamic safety net is not easy from the viewpoint of security
and performance. For user-level servers, the range of the safety net should
be changed depending on the clients or the requests. However, the facility of
changing access restrictions can be a security hole since attackers may hijack the
servers or inject Trojan horse code into the server for executing it later. For op-
erating system modules, on the other hand, it is desirable that the range of the
safety net is changed depending on the stability of the modules. However, it is
not easy to make a trade-off between performance and fail-safety so that chang-
ing precedence between them is transparent to the users and the performance
of the modules that take precedence of performance is enough good.

Finally, this chapter described prior work related to safety nets. For access
control mechanisms of user-level servers, the advantages and disadvantages of
previous work are shown in Table 2.1. Mandatory access control (MAC) and
Role-Based Access Control (RBAC) do not allow a process to change the access
restrictions. SubDomain, which is also MAC, allows a process to change the
access restrictions but that mechanism is not secure for some type of attacks.
Capability systems are also insecure when the server is compromised. The fork-
join method, which is the most comparable to our process cleaning, enables a
process to change access restrictions in a secure manner but the performance is
not good.

For fail-safe mechanisms of operating system modules, the advantages and
disadvantages of previous work are shown in Table 2.2. A loadable kernel module
(LKM) is insecure. Mach, which runs a module as a user process, is secure
but achieves poor performance. L4, which IPC has been improved, achieves
relatively good performance for some applications but the overheads are still
large for some applications. Chorus achieves both sufficient fail-safety and good
performance by running the modules either at the user level or at the kernel
level. However, the overhead of modules running in the kernel is slightly large
and the trade-off is the alternative of the user level or the kernel level. Exokernel
provides only too low abstraction for the module programmers to develop the
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Table 2.1: Comparison of access control mechanisms.
√

means to satisfy the
condition sufficiently.

Dynamicity Security Performance
MAC

√ √
SubDomain

√ √
Capability systems

√
RBAC

√ √
Fork-join with MAC

√ √

Table 2.2: Comparison of fail-safe mechanisms.
√

means to satisfy the condition
sufficiently while � means to satisfy it in some degree.

Safety
Perfor- Abstrac- Expression Feasi- Trade-
mance tion power bility off

LKM
√ √ √

Mach
√ √ √ √

L4
√ � √ √ √

Chorus
√ � √ √ √ �

Exokernel
√ √ √ √

VINO
√ � √ √ √

DPF
√ √ √ √

SPIN
√ √ √ √

CCured
√ � –

√ √

modules. VINO, which uses a compiler support, achieves sufficient fail-safety
and relatively good performance but the overheads is dependent on the modules.
Dynamic Packet Filter (DPF) is secure and fast but the expression power is low
because of a domain-specific language. The approach of SPIN is the best in the
listed approaches but SPIN has a problem of the feasibility because of using
Modula-3, not C. CCured achieves sufficient fail-safety but the performance is
dependent of the applications. Since CCured is not a framework for operating
system modules, the abstraction cannot be estimated.

If there is an approach that satisfies safety, performance, abstraction, power,
and feasibility, the ability of making a trade-off between performance and fail-
safety is not necessary, but any approaches do not satisfy all abilities. Our
approach is also considered as the improvement of Chorus in that it reduces
the overheads of the modules running at the kernel level and enables to make a
more flexible trade-off between performance and fail-safety.



Chapter 3

Access Control Mechanism
for User-level Servers

We have developed the Compacto operating system, which provides a novel
access control mechanism for user-level servers. In this chapter, we present our
access control mechanism, in particular, a unique feature called process cleaning
and the implementation.

3.1 Safety Net by Access Restrictions

Compacto constructs a safety net by imposing access restrictions to a server
process. To flexibly change the range of the safety net, Compacto uses various
information on the server process and the clients. For example, the owner’s
user ID of the server process and the network address of each client are used
as well as in UNIX. Furthermore, the information on the previous activities of
each client and the authentication information by the operating system are also
used.

3.1.1 Imposing Access Restrictions

The Compacto operating system allows to dynamically impose access restric-
tions on a process at the system call level to limit accesses to the operating
system. Compacto can prohibit issuing some types of system calls with some
kinds of parameters. This access control complements the existing UNIX access
control. Even for the super user, who is almighty in UNIX, Compacto can limit
the privileges so that the super user can perform only necessary operations. For
example, if a non-privileged server program needs a privileged network port,
Compacto gives only the privilege for using a certain privileged port, not the
full privileges, to the server. Such access restrictions are enforced for a pro-
cess by the operating system kernel to ensure security and are inherited from a
parent process to the child processes.

25
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Table 3.1: System calls that Compacto can limit.
Category System calls
File management open, unlink, etc.
Network management connect, accept, etc.
Process management exec, setuid, etc.
Memory management mmap, mprotect, etc.
System administration reboot, mount, etc.

The system calls that Compacto can limit are categorized as Table 3.1.
The list of limitable system calls is shown in Appendix A. For each process,
Compacto can either allow or deny each of these system calls. Since the access
control of Compacto is complement to that in UNIX, only access restrictions in
UNIX are applied to a process by default. In other words, system calls that are
not denied explicitly are allowed. Suppose that a ssh server has an IP address
of 131.112.40.1 and waits for a ssh client in TCP port number 22. When the
ssh server receives a request from a client whose IP address is 131.112.40.65 and
TCP port number is 1023, an example of policy rules applied to the server are
as follows:

allow recv 131.112.40.1:22 from 131.112.40.65:1023
deny recv * from *
allow send 131.112.40.1:22 to 131.112.40.65:1023
deny send * to *

These rules enforce the server to communicate only with the client that sent a
request.

Imposing such strict access restrictions prevents the rest of the system from
being damaged in case that one server is compromised. Suppose that an attacker
compromises a server, for example, by the buffer overflow attack. If the server
is running under the access restrictions specified by the policy rules above, the
attacker cannot use that server for compromising other servers because that
server cannot communicate with other servers.

Compacto can limit issuing system calls not only by the type and the param-
eters passed such as a file name but by attributes of a process. The attributes
are a program name, an owner’s user ID, and so on. For further limitations,
Compacto uses the attributes of not only the current process but the ancestor
processes. The program name for an ancestor process is helpful when Compacto
imposes access restrictions depending on the login style of the user. If there ex-
ists sshd in the ancestor processes, Compacto can determine that the user logs
in from a remote host and impose stronger restrictions. The sample policy rules
for this access control are as follows:

allow write "/etc/passwd" via-prog "login"
deny write "/etc/passwd" via-prog "sshd"
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Also, the owner’s user ID of an ancestor process is helpful for limiting the
privileges of programs setuid-ed to root. Compacto can limit the process of the
root-setuid program and the descendant processes by the original user, who exe-
cuted the root-setuid program. The use of the attributes of ancestor processes is
deeply related to process trace described in Section 3.1.2. As other conditions, a
taint level described in Section 3.5.3 and user authentication information using
certificates described in Section 3.1.3 are also used. These details are described
in each section. All conditions are listed in Appendix A.

Policy rules that the users can describe in our access control mechanism are
quite simple. Describing a security policy with such a fine-grained specification
is cumbersome. To mitigate this problem, we have to provide higher-level policy
rules and tools to help describing rules. However, our aim of this research is to
enable to securely change access restrictions. For ease of describing policy rules,
several access control mechanisms have been proposed [2, 9].

3.1.2 Process Trace

Since Compacto controls the access restrictions of a server process based on a
direct client process, the servers cannot prevent attacks from trusted hosts that
attackers have compromised. If an attacker first compromises a vulnerable server
and then accesses a victim server from the compromised server, the victim server
may regard its access as one from a trusted client. The delegation of restrictors
is useful for propagating client’s access restrictions. In the above case, the victim
server can get the restrictors of attacker’s original process and can prevent the
attack. However, that delegation is limited within one administrative domain.

To obtain detailed information on attackers, Compacto traces the activities
of the attackers. Suppose that an attacker that resides in client Z attempts to
compromise server B. Server B can prevent direct attacks from client Z using the
safety net. However, if client Z can compromise server A, which is trusted from
server B, the attacker can also compromise server B via server A. (Figure 3.1).
With the process trace facility, when the attacker in server A attempts to com-
promise server B, server B can recognize that the access is from client Z via
client A. Using this additional information, server B can restrict the activities
of server A based on the information on client Z. Namely, server B can prevent
the attempt of the indirect attack by client Z.

For this process trace, Compacto uses dependencies between processes. Com-
pacto traces an impact that a process makes on the other processes based on
those dependencies. For example, information of which process is executed in
which order from a server process shows whether the server process is used in a
proper manner or not. If a web server directly executes a shell program, Com-
pacto can regard that activity as an intrusion exploiting security flaws and can
make that execution fail. If a server is connected from a trusted host that has
a trail of intrusion, Compacto can deny logging in from that host.
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client Zserver B

server A

safety net

local area network

Figure 3.1: An indirect attack to server A via server B.

3.1.3 Network-Level Authentication

Compacto decides access permission of a remote user based on the IP address
of a host where she resides. As a typical example, Compacto allows remote
login for the internal users resident in the hosts within the same local network
while Compacto denies that for the external users resident in the other hosts.
Although Compacto can allow remote login even for users resident in specific
external hosts such as hosts of a partner corporation, it cannot be guaranteed
that remote login is really from hosts with permissions. The IP address of
external hosts cannot be trusted because of potential IP spoofing.

However, it is inconvenient that a trusted remote user resident in an exter-
nal host is not allowed to access services provided by internal servers. If even
an internal user goes to the other site, she may not be able to log in her own
host since the host decides that she is one of untrusted users. In traditional
systems, user-level servers authenticate the users that attempt to use their ser-
vices. Authentication at the user level is bypassable and is therefore vulnerable
to attacks before the authentication process completes. Also, some servers such
as in.rlogind do not authenticate remote users in a secure manner.

Compacto authenticates the remote users at the network level. In other
words, the operating system automatically authenticates a remote user when the
user connects to an internal server. This authentication is not bypassable for the
remote user. Also, since this authentication uses public key infrastructure, it is
difficult that an untrusted remote user impersonates a trusted user. The other
reason why the operating system supports server authentication is to secure all
servers even if some of them are not concern about network security. In fact,
this network-level authentication is transparent to user-level servers.
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Figure 3.2: The basic concept of process cleaning. The system restores the
saved state and cleans up the process compromised by the attacker.

3.2 Dynamic Change of Access Restrictions

To dynamically change access restrictions of a server process, the process first
has to remove some of them and then impose new access restrictions. From
the viewpoint of security, it is not a threat that a compromised process imposes
more strict access restrictions on itself although the attacker can attempt the
Denial of Service (DoS) attack by that. However, removing access restrictions
is a threat.

3.2.1 Process Cleaning

Providing the ability to remove access restrictions is not a naive task. At least, a
compromised server must not be able to remove access restrictions for obtaining
full access privilege. Only sane servers must be able to do that. However, it is
difficult to detect whether a server is compromised or not.

To solve this problem, Compacto cleans a process up before removing access
restrictions and eliminates injected malicious code for compromising the server
as illustrated in Figure 3.2. This means that even a compromised server is
recovered to be sane. We call this cleaning-up procedure process cleaning [53,
54]. The idea of process cleaning is simple. First, programmers save the whole
state of a server process when they can guarantee that the server is still sane.
Then, Compacto restores that saved state when access restrictions are removed
so that the state illegally modified by an attacker is recovered and thereby the
server becomes sane. The restored state includes the followings:

• the thread of control;

• the memory image, including stack, heap, and environment variables;

• signal handlers;

• status of open files and sockets;
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save state(); (1)
fd = accept(); (2)

authenticate a client (3)

rid = create restrictor(policy rules); (4)
bind subject(rid, getpid());
bind object(rid, fd);

handle a request (5)

restore state(); (6)

Figure 3.3: An example code of a server using process cleaning.

• the user and group ID; and

• all other state.

Note that the thread of control (that is, the instruction pointer) is restored.
Hence, even if malicious code injected by an attacker is running, the execution
of that code is terminated.

Compacto provides two system calls for removing access restrictions with
process cleaning: save state and restore state. The save state system call
saves the state of a process listed above. It also records all the access restrictions
imposed at that time. The restore state system call first restores the process
state saved by save state and then removes all the access restrictions imposed
on the process since save state was last issued.

3.2.2 Example

Fig. 3.3 is a simplified example code of how the save state and restore state
system calls are used by a server. (1) After finishing initialization, the server
issues save state system call. (2) Then it waits until a client connects to it. (3)
If a client connects, the server first authenticates the client user or obtains the IP
address of the client host. (4) It creates a restrictor from policy rules depending
on the client and binds the restrictor to the server process and the socket for
request handling. (5) Then the server handles the request from that client under
applied access restrictions. (6) After that, the server issues the restore state
system call. This system call restores the state of the server process; it removes
the access restrictions imposed at (4). Since it also recovers the instruction
pointer, the thread of control is moved back to the next statement of (1). The
server can repeatedly handle another request from a client.

Compacto disables an attacker from obtaining unlimited access privileges
if the attacker compromises a server on top of Compacto. Since the compro-
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mised server is under appropriate access restrictions, it cannot illegally access
protected resources. If it attempts to remove the access restrictions, the con-
trol is recovered back from the attacker. In contrast, the compromised server
can continue to run without removing the access restrictions. In this case, the
server is not allowed to access protected resources and thus is secure for the
rest of the operating system although it is compromised. As a last resort, the
attacker can execute an infinite loop for the purpose of disabling the service (the
denial-of-service attack). If Compacto can detect that the service is disabled, for
example, using statistical information, Compacto can interrupt the execution of
the server and force to issue restore state.

In the example above, the server program was sequential. To make it parallel,
we must use the process pool technique, with which several processes are created
in advance and they handle a request in parallel. In the case of the above
example, all processes execute the program in Fig. 3.3 in parallel.

3.2.3 Effectiveness

Process cleaning can prevent the following kind of attacks derived from removing
access restrictions:

• Hijacking a server process, removing the access restrictions, and then gain-
ing non-permitted access rights, such as the privileges of administrator or
other users. Restoring the thread of control of the process can take the
full control back from the hijacked process.

• Injecting Trojan horse code to a server process, for example, by the buffer
overflow attack, and activating it for hijacking the process after the process
removes the access restrictions and regains higher privileges. The Trojan
horse code can be activated by modified pointer variables or signal han-
dlers. Restoring a memory image of the process can eliminate the Trojan
horse code from the memory. It also clear pointer variables modified so
as to jump to such code. Moreover, restoring signal handlers can avoid
jumping to such code by sending signals.

• Modifying the execution environment of a server process so that the server
process performs malicious operations after access restrictions are removed
legally. For example, if the PATH environment variable is modified, un-
expected external programs may be executed. Restoring a memory image
can undo such modifications.

Additionally, process cleaning can prevent a kind of denial-of-service attacks
using malicious code injected by an attacker:

• Randomly modifying part of the memory of the process.

• Closing files or sockets in use. Or, raising the limits of maximum resource
consumption.
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These attacks makes a server process unstable or, worse, terminate. If Compacto
can detect the unexpected termination, it can execute process cleaning on that
server so that the server can recover.

Compacto is responsible for protecting a server on top of that from attacks
described above. The server developers are released from troublesome tasks for
protecting the server from those attacks. They do not need to be frightened of
unknown attacks since Compacto detects them.

3.2.4 Limitations

Process cleaning can protect a server from attacks described in the previous
section. However, process cleaning unfortunately does not protect a server from
all types of attacks. The server developers still have responsibility for carefully
implementing their servers so that the security of the servers cannot be broken
by other attacks, for example,

• The server may be compromised before access restrictions are imposed.
If so, the compromised server can obtain full access privileges. A typi-
cal server is not affected by this type of attacks since it imposes access
restrictions just after connected by a client.

• The compromised server may exploit another running process or an exter-
nal resource such as file and network, which are not included in the state
restored by process cleaning, for obtaining unauthorized access privileges.
Strict restrictions to inter-process communication and accessing external
resources can mitigate damages by this type of attacks.

• The compromised server may execute a local program that has vulnera-
bilities and compromise it. In this case, the attacker can obtain the full
control of the local program even after the restore state system call.
Restricting local programs that the server can execute is useful for this
type of attacks.

Also, Process cleaning involves limitations on the applicability to servers. It
cannot be used for stateful servers because all side effects caused since the last
process cleaning are cleared whenever the restore state system call is issued.
All requests must be processed independently of each other; even recording
log data on memory or caching the contents of frequently accessed files are
not allowed. To avoid this limitation, a server state must be stored in shared
memory or files, which are not restored by the restore state system call.
However, this fact may be used for injecting Trojan horse code in a server.
Since process cleaning does not protect servers from security attacks using this
fact, server developers must be responsible for that the method of maintaining
a server state does not involve any vulnerability.

Another limitation is that a server must be single-threaded. Compacto can-
not impose or remove access restrictions on a per thread basis since a thread
is not securely protected from the other threads in the same process and thus
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access control per thread is useless. It is relatively easy that a thread hijacks
the execution of another thread. Besides, process cleaning cannot selectively re-
store part of the process state used by a particular thread. One remedy for this
limitation is to introduce securely protected threads [47, 100, 23] and extend
the functionality of Compacto to be a per thread basis.

3.2.5 Comparison with the Fork-Join Method

Process cleaning can achieve the same level of security with the fork-join method,
which is the alternative technique for securely changing access restrictions and
is described in Section 2.4.2. The fork-join method can prevent the attacks that
process cleaning can prevent, which we describe in Section 3.2.3. In the fork-
join method, a server process can continue to maintain the thread of control
even if the child process spawned for handling a request is hijacked. Thus, the
server process can make the hijacked child process terminate and then recover
the thread of control of the child process from the attacker. Also, Trojan horse
code injected into the memory of the child process is eliminated by terminating
the child process. In addition, the modified execution environment of the child
process does not affect the server process and the other child processes since the
execution environment of the child process is isolated from the others.

In terms of security, limitations of the fork-join method are also the same
with those of process cleaning, which is described in Section 3.2.4. If a server
process itself is compromised before spawning a child process, an attacker can
abuse the server process. Even after a child process is spawned successfully, it
can be compromised before imposing appropriate access restrictions. Moreover,
the fork-join method can eliminate only an impact made on a child process. An
impact that a hijacked child process makes on the other processes or the external
resources such as files is left in the system. The fork-join method cannot also
prevent local programs from being compromised by a hijacked child process.

In terms of applicability, limitations of the fork-join method are also almost
the same with process cleaning. In the fork-join method, a routine for request
handling in a child process must be stateless. If the child process changes the
state of the parent process or the other child processes, the impact is not elimi-
nated when the child process is terminated. Also, the server process cannot let
a thread handle a request without using a child process since it spawns a child
process for each request. However, process cleaning limits the functionalities of
a server process, comparing with the fork-join method. The fork-join method
allows a process to use threads only within the server process and the child
process while process cleaning does not allow using threads. Also, the fork-join
method allows a child process to issue the exec system call whereas process
cleaning does now allow it. To execute a new program in a server with process
cleaning, the server process must first spawn a new process by the fork sys-
tem call and then issue the exec system call. Fortunately, these limitations of
functionalities do not degrade server security and make a server more efficient.

For the comparison of the performance between the fork-join method and
process cleaning, we show the details in Section 5 based on our experiments.
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3.3 Implementation of Process Cleaning

3.3.1 Restored Process State

For process cleaning, the restore state system call restores the state of a
process as follows.

Thread of Control

The restore state system call restores the values of all registers. It is anal-
ogous to longjmp included in the standard C library. Those registers include
the instruction pointer and the stack pointer. If the restore state system call
is issued, the program counter is reset so that it points to the instruction next
to issuing the save state system call. Also, the stack pointer is reset so that
it points to the stack frame when this system call was issued. If save state
is recursively issued, then the previously saved process state is overwritten.
Successive issues of restore state restore the state saved by the last issue of
save state.

Memory Image

The restore state system call restores the contents and protection mode of
all memory pages. What it restores is the stack frame, the heap, the area of
environment variables and arguments of a process, static data, and so on. It
also restores the memory mapping between physical and virtual address and the
data segment size changed by the brk system call.

Since it is difficult to distinguish between the pages modified by an attacker
and the pages properly modified by the process, the whole memory image is
restored. Pages that did not exist when issuing the save state system call are
unmapped and discarded. For a page that was unmapped after save state,
Compacto allocates a new page and restores the contents. To do that, Compacto
maintains pages unmapped after save state. Exceptionally, pages for the stack
frame expanded after save state and pages for the BSS segment paged in after
save state are zero-cleared because the contents are indefinite.

The implementation details for optimization are described in the next sec-
tion.

Signal Handler

The restore state system call restores signal handlers, which may be over-
written by an attacker. Before that, the restore state system call delivers
pending signals to a process so that all the signals are handled by old handlers.
This is needed to prevent a signal from being processed by a handler modified
by an attacker. Pending signals are not saved by save state and therefore are
not restored by restore state.
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Open File and Socket

The restore state system call closes all the files and sockets that have been
opened after the save state system call so that illegal network connections can
be shut down. It re-opens all the files and sockets that have been closed after
save state. To re-open them correctly, Compacto keeps all objects for files
and sockets even if they are closed by attackers. The restore state system
call also restores the file descriptors for them.

Other State

The restore state system call also restores the state of the following resources:
the user ID and the group ID set to a process by setuid and setgid, the current
working directory changed by chdir, the root directory confined by chroot,
resource usage limits set to a process by setrlimit, the file creation mask by
umask, the Linux capability set, and the priority set by nice. In addition, the
taint of a process is restored. The details of the taint are described in the
Section 3.5.3.

Note that profiling information including the CPU usage is not restored.

3.3.2 Efficient Memory Save/Restoration

Performance penalties of process cleaning are mainly due to copying memory
for saving and restoring the state of a process. A naive implementation, which
saves and restores the whole memory image, is slower than the fork-join method.
To reduce the amount of saved memory, Compacto uses a technique known as
copy-on-write [15, 86]. Furthermore, Compacto provides two implementation
strategies for restoring a memory image. As shown in Fig. 3.3, a typical server
running on Compacto saves its state only once and repeatedly restores the saved
state whenever it finishes handling a request. The user can select an implemen-
tation strategy so that process cleaning works efficiently in that case.

Delayed Save

The save state system call does not immediately duplicate the whole memory
image when it is issued. It first changes the state of every writable memory
page into the write-protected mode. The memory page is duplicated only if
the process attempts to write in the page and hence a page fault occurs. The
page table is modified so that the original page frame is moved into the kernel
address space (Fig. 3.4 (1)) and a new page frame allocated for the duplication
is mapped at the original virtual address (Fig. 3.4 (2)). It is the original page
frame that must be kept in the kernel address space because it may be shared
with parent and/or child processes for copying on write. The original page
frame in the kernel space is untouchable for the server process. We call the
newly allocated page frame a shadow page. Since the shadow page is writable,
no page fault occurs after the first one.
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Figure 3.4: Delayed memory save with copy-on-write.

Also, Compacto clears the dirty bit of the saved page so that Compacto
can detect modified pages in the restore state system call. At this time,
Compacto saves the dirty bit of the saved page. The dirty bit is important for
paging algorithm since it is used to determine frequently used pages. Moreover,
a page with a dirty bit is written in the swap area when it is swapped out.

Restoration Strategies

The restore state system call restores only the memory pages that have been
duplicated since the last save state system call was issued. For restoring them,
Compacto can choose one of two strategies. The first strategy is to unmap
a shadow page, discard it, and move the original page frame back from the
kernel address space (Fig. 3.5 (a)). We call this the remap strategy. The second
strategy is to copy the contents of the original page frame into the shadow page.
The original page frame remains in the kernel address space (Fig. 3.5 (b)). We
call this the copy strategy.

Since the remap strategy does not need to copy memory for the restoration,
Compacto normally selects this strategy. It is suitable for a request performed
only once like login authentication. However, a typical server running on Com-
pacto repeatedly restores the same state saved by the save state system call
at the beginning. In this case, the remap strategy may be less efficient than the
copy strategy. If Compacto uses the remap strategy, the restore state system
call must change the state of the restored memory page into the write-protected
mode so that it is duplicated again if the process attempts to write in that page
until the next issue of the restore state system call. If a page fault occurs,
the page fault handler must again allocate a shadow page and copy the contents
of the page into it.
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Figure 3.5: Two strategies for restoring memory.

On the other hand, with the copy strategy, the restored memory page is
still a shadow page; the original page frame is left in the kernel address space.
Compacto does not have to change the state of the restored page into the write-
protected mode or to catch a page fault. Since the copy strategy reuses a
shadow page, it causes a smaller number of page faults than the remap strat-
egy. The amount of memory copying depends on the pattern of memory write
access until the next issue of the restore state system call. If the process
writes in the same set of memory pages, that is, only the shadow pages, the
copy strategy needs only the same amount of memory copying as the remap
strategy (Fig. 3.6 (a)(b1)). Since no page fault occurs in this case, the copy
strategy is faster than the remap strategy. On the other hand, if the process
writes in a totally different set of memory pages, maintaining shadow pages
is meaningless and hence the copy strategy needs a larger amount of memory
copying. Compacto must copy the saved images to all the shadow pages in the
restore state system call (Fig. 3.6 (a)) and duplicate other pages when page
faults occur (Fig. 3.6 (b2)).

If the copy strategy is selected, the restore state system call restores only
the memory pages whose dirty bit is set. The dirty bit is set by the hardware if
a process writes in the memory page associated with that dirty bit. After the
restoration, all the dirty bits are reset so that Compacto can determine whether
the page is written in between this and the next restoration. The restore state
system call does not copy memory pages whose dirty bit is clear.

Since the copy strategy always has to maintain both the original page frames
and the shadow pages, it always needs more memory pages than the remap
strategy. To reduce memory consumption, Compacto can discard the shadow
page that has not been written in for a long time. Compacto examines how long
a page has not been used by a change history of the dirty bit of each page. The
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Figure 3.6: The performance of the copy strategy depending on a pattern of
memory write access. After the restore state system call is issued (a), if the
access pattern shows good locality (b1), the copy strategy is faster. Otherwise
(b2), it is slower.

restore state system call unmaps and discards an unused shadow page and
moves the original page frame back from the kernel address space. The original
page frame is made write-protected to detect the next write.

3.3.3 Optimizing Server Program Layout

The overheads due to process cleaning can be reduced if a server program is
statically linked with all necessary libraries such as the standard C library. If
the libraries are dynamically linked, the static data used by them are allocated
in distinct segments. As a result, the number of memory pages modified be-
tween save state and restore state increases and then the cost of restoring a
memory image increases. On the other hand, if the libraries are statically linked,
all the static data are allocated in the same segment as the static data segment
of the server program. This reduces the number of memory pages allocated for
the static data and hence it reduces the number of memory pages that must
be restored when the restore state system call is issued. Statically-linked
binaries are simply created by the -static option of gcc.

Furthermore, the developer of a server program can use a tool that we devel-
oped to further reduce the number of memory pages restored by the restore-
state system call. This tool relocates the layout of a static data segment by

using a runtime profile so that the locality of the memory write access is in-
creased (Fig. 3.7). Using this layout optimization, the number of memory pages
restored by the restore state system call is minimized. This relocation might
also improve the cache hit ratio to the static data.
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Figure 3.7: Memory layout before/after relocation of a static data segment.

This tool first embeds the code for recording memory writes in a server
program. This tool can accept i386 assembly code emitted by gcc as an input
and inserts a logging function as follows before instructions performing memory
writes such as mov and push.

pusha # save all registers
pushf # save CPU flags
pushl $6 # written memory size (2nd argument)
leal 42(%esp),%eax # written memory address (1st argument)
pushl %eax
call wprof_rec_write # logging function
addl $8,%esp
popf # restore CPU flags
popa # restore all registers

In addition, this tool inserts such a logging function after system calls that write
data in buffer passed from a user process, such as accept and read. Then, this
tool links a module for a logging function with the server program and runs the
modified server program to record a profile.

Based on the profile, this tool relocates the layout of the static data segment
of the server program. Regularly, initialized static data is located in the .data
segment and uninitialized static data is located in the .bss segment. This tool
creates a new segment .data0 and relocates both initialized and uninitialized
static data modified during profiling in the new segment. Since each segment
is located in a contiguous memory area, modified static data is collected in less
memory pages.
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3.4 Implementation of Access Restriction

3.4.1 Security Policy Rules

To enable to describe robust policy rules on top of the operating system based
on UNIX, there are several problems. One problem for describing policy rules is
that a path name is not unique in UNIX. For one file, there exists multiple names
using symbolic links, hard links, and relative path names with “.” and “..”. To
prevent an attacker from bypassing security policies by changing path names
using such aliases, Compacto uses canonical path names to examine security
policies. To get a canonical path name, Compacto normalizes all path names
emerging both in the policy rules and the parameters of system calls. Compacto
tracks symbolic links and transforms a relative path name to an absolute path
name by complementing the current directory. For hard links, Compacto treats
them as it is since tracking them is difficult and time consuming.

Expanded Process Tree

Compacto allows the users to write policy rules using the via- conditions such
as via-prog. The via- condition makes Compacto apply a policy rule only if
either the process or one of the ancestor processes satisfies the condition. To
make the via- conditions work correctly, a process tree that reflects a parent-
child relationship between all processes is needed. However, the process tree in
UNIX does not maintain sufficient information. In UNIX, when a parent process
terminates, the child processes become orphan processes. In other words, that
child processes become direct children of the init process, which is the root
of the process tree. In this process tree, information on ancestor processes is
not available if a user executes some processes in background and then logs
out. For example, as illustrated in Figure 3.8, when an attacker logs in using
ssh, executes httpd in background, and then logs out, the fact that httpd is
executed by the attacker is not left in the process tree in UNIX. In addition,
when a process issues the exec system call, a program running in the process is
replaced by another program and then information on the process before exec
is lost. Except the case that a process duplicates itself using the fork system
call before exec, information on the original process is not available.

To correctly maintain a relationship between a parent process and the child
processes, Compacto expands the process tree that traditional UNIX maintains.
The expanded process tree leaves information on a process as far as its child
processes are running even if the parent process terminates. This makes infor-
mation on all ancestor processes always available. Moreover, information on
any ancestor processes is not lost even if some processes are replaced using the
exec system call. To suppress the memory consumption for the expanded pro-
cess tree, only the necessary information on a terminated process, such as the
program name and the taint information, is left.
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Figure 3.8: The process tree in UNIX and the expanded process tree. In the
process tree in UNIX, the parent of httpd is init and the other information is
not left. On the other hand, the expanded process tree shows that httpd was
executed by a user that logged in using ssh from a remote host.

Program Identification

Using a program name to identify a program executable may allow malicious
users to bypass security policies. If a malicious user copies a program executable
and renames it, he can execute the program without any access restrictions. If
an attacker replaces an executable with a Trojan horse version, he can make
legitimate users execute the malicious program. To uniquely identify a program,
Compacto allows using the SHA-1 [74] value of a program executable, which is
a message digest value like MD5 [88], instead of a variable program name. This
value is almost unique to a program executable.

At system boot time, the administrator registers a tuple of a program name
and the calculated SHA-1 value to database in Compacto. When a program is
executed, Compacto retrieves the corresponding SHA-1 value from the database
and compare it with a SHA-1 value of a program executable specified by a pro-
gram name. If these two values do not match, Compacto can make a decision
that the program name is renamed to bypass security policies or the program
executable is replaced to a Trojan horse version. A SHA-1 value is powerful
for identifying a program, but its calculating cost is high. Therefore, the ad-
ministrators can use this powerful program identification mechanism to only
important programs.
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3.4.2 Security Policy Checker

When a process issues a system call, Compacto calls a routine for checking
security policies, which is referred to as security policy checker, before calling
a routine for the specified system call. Our security policy checker makes the
system call terminate with an error code EPERM if its execution is denied. The
security policy checker examines both the security policy registered for the pro-
cess and ones inherited from ancestor processes. If any security policies applied
do not deny the execution of the specified system call, the execution is allowed;
even if only one security policy denies it, its execution is denied. The security
policy checker performs minimum validity checks of the parameters of a system
call that is needed to check security policies. Extra validity checks of the param-
eters are performed in the body of the system call. For example, the security
policy checker examines whether a file descriptor specified in the write system
call is for a file or a socket but does not examine whether the specified file or
socket is locked or not.

The security policy checker also examines security policies in the middle of
the execution of some system calls. In the accept system call, it examines the
source IP address and port number after a new connection is established and a
new socket is created. In the recvfrom and recvmsg system calls, it examines
the source IP address and port number when data is read. Also, the security
policy checker records a canonical path name for files and directories in the open
system call. It is used to examine security policies for system calls that take a
file descriptor as a parameter.

For efficient policy checks, when a new security policy is registered to a
process, Compacto compiles the security policy with already registered policies
including the inherited policies. Using compiled policies minimize the overheads
due to performing the security policy checker for every system call. In policy
compilation, Compacto merges all security policies using the relation of inclusion
among policy rules so that the number of policy rules to be checked is reduced.
Compacto calculates the intersection of all allow rules and the union of all deny
rules. For example, suppose that there are four rules as follows:

allow read "/usr/local/apache/*"
deny read "/usr/local/*"
allow read "/usr/local/apache/htdocs/*"
deny read "/usr/local/apache/*"

These rules are merged to two rules as the below:

allow read "/usr/local/apache/htdocs/*"
deny read "/usr/local/*"

3.4.3 Restrictor

Compacto provides system calls with which a process can impose access re-
strictions on itself at runtime. To make it easier to dynamically impose access



CHAPTER 3. ACCESS CONTROL MECHANISM FOR SERVERS 43

restrictions, we introduce a restrictor as a policy unit. A restrictor is a kernel
object and holds a set of access restrictions. A process can create a restrictor
from policy rules and bind it to the process itself. Compacto does not provide a
method of unbinding or destroying a restrictor for a security reason. Hence, the
access restrictions by a restrictor can be removed only when process cleaning,
proposed in Section 3.2.1, is performed. Since process cleaning restores the state
of the process to that before the restrictor is bound, as a result, the restrictor
is unbound and destroyed. A restrictor is somewhat similar to a capability but
is different in that a restrictor consists of a set of access restrictions while a
capability consists of a set of access permissions. A capability must be a subset
of capabilities that the process has. On the other hand, a restrictor is freely
created as far as it does not conflict the security policy that has been already
applied to the process.

The create restrictor system call creates a restrictor from the specified
policy rules. This system call returns a restrictor ID, which is a unique random
number, and the user has to pass this ID to other system calls related to restric-
tors. The bind subject system call binds a restrictor to a subject. The subject
is specified by a process or a process group in the current implementation. The
access restrictions that the restrictor holds are applied to the subject. The
bind object system call binds a restrictor to an object. The object is specified
by a resource or a resource group such as a descriptor for a file or a socket. The
access restrictions that the restrictor holds are applied only to the object.

Delegation of Restrictors

Compacto supports delegation of restrictors in distributed systems. When a
server communicates a client, the server process can request the restrictors of
the client process so that the server can limit its activities depending on the
clients. With the delegated client’s restrictors, the server can handle requests
from the client without any preliminary knowledge, for example, security policies
for the client. This is somewhat similar to delegation of capabilities, but the
clients do not need to worry about granting their capabilities like capability
systems. The restrictors that the clients pass to the server do not contain any
access permissions and are used only for client security. Even if the server
misbehaves due to previous attacks, the client’s restrictors bound to the server
can minimize the damages of such attacks and can prevent the compromised
server from accessing all of the client’s data.

To delegate restrictors, the operating system of a client sends a restrictor
group ID, which is an ID for a set of restrictors, to a server using an IP option
field of a packet for a request. If the server process needs client’s restrictors,
the operating system of the server process requests the instance of client’s re-
strictors of the client using Remote Procedure Call (RPC). That instance is
indicated by the restrictor group ID sent from the client. The operating sys-
tem of the client replies all the policy rules included in the specified restrictor
group. The operating system of the server creates a restrictor from that policy
rules replied and binds it to the server process. Figure 3.9 shows this algorithm.
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Figure 3.9: The delegation of client’s restrictors.

After that, requests from the client are handled under both the server’s original
access restrictions and newly bound client’s access restrictions. When the server
process finishes to handle requests from the client, it removes the client’s access
restrictions by process cleaning.

However, this delegation mechanism has a limitation. Client’s restrictors
are not effective in the other administrative domains since they hold security
policies in the client host. For example, if a client does not have knowledge about
a server system such as the operating system and the directory construction, it
cannot define policy rules for the server. To propagate the access restrictions of
a client beyond the administrative domain, Compacto needs the process trace
facility as described in Section 3.1.2.

3.5 Implementation of Process Trace

3.5.1 Dependencies between Processes

The dependency between processes is a relationship that arises when a process
affects or is affected by another process. The dependencies between processes
consist of communication dependency between processes and parent-child de-
pendency between a process and the child processes. Communication depen-
dency arises when two processes communicates with each other. Communica-
tion between processes is data exchange via operating system resources such
as socket, pipe, and file. Since a sender process affects a receiver process by
sending data, dependency from the receiver to the sender arises. On the other
hand, parent-child dependency arises when a parent process creates a child pro-
cess. We define creating a child process as not only duplicating a process by the
fork system call but executing a new program by the exec system call. Since
a parent process dominates creating a child process, dependency from the child
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Figure 3.10: An example of dependencies between processes.

to the parent arises. Figure 3.10 shows an example of dependencies between
processes over some hosts.

To trace an impact that a process makes on other processes, both com-
munication dependency and parent-child dependency are indispensable. While
network communication and inter-process communication are traced, commu-
nication via a regular file should be also considered. Suppose that an attacker
modifies a configuration file of a server. If the server reads the file, the server
may misbehave. This means that the impact made on a file by the attacker can
reach to the server. On the other hand, parent-child dependency is needed to
trace the execution flow of processes while it is also needed to trace an impact
together with communication dependency. For example, even if a web server
executes a CGI program as a child process and the CGI program communicates
with another server, the impact from the web server to another server is traced
correctly.

3.5.2 Problems in Dependency Graph

Dependencies between processes form a directed graph, whose node stands for a
process and whose edge stands for dependency between two processes. An access
control mechanism can trace the directed edges from a node corresponding to a
target process and thereby find all the processes that affect the target process.

However, dealing with a dependency graph for access control involves some
problems. First, an access control mechanism must maintain and manage a large
amount of dependency data. The dependency graph includes even nodes related
to terminated processes and edges related to communication in the past so that
the mechanism can correctly trace the impact. Therefore, in large distributed
systems, the dependency graph may grow largely. In addition, whenever new
dependency arises from communication between two hosts, one host must send
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to the other host information on all dependencies that are traceable from the
new dependency. If the dependency graph gets more complex, the amount of
data exchanged gets more.

Second, examining the dependency graph at runtime can involve great per-
formance penalty. When an access control mechanism attempts to restrict the
access permissions of a process, it must trace the dependency graph and then
examine all the processes that affect the target process. After that, it can allow
or deny the access.

Third, all of the information included in the dependency graph do not need
for access control. The dependency graph shows a detailed route of how an at-
tacker has intruded to the system. However, from the viewpoint of defense from
attacks, it is sufficient for access control to find a host with the lowest confidence
from hosts that the attacker has intruded. That host is often an attacker’s base
host. For example, when an external client attacks an internal server via some
internal hosts, the server can prevent the attack if it can recognize that the
client resides in an external host.

3.5.3 Taint Mechanism

To compress a dependency graph as it is suitable for access control, we introduce
a new concept called taint to a process and each resource. Taint consists of
information on accumulated impacts made on a process by the other processes.
An impact is accumulated when a process receives data from the other processes
and when a process is created by the parent process. Taint is an index for risks
of how extent a process is attacked from the other processes to. The extent of
taint is determined depending on the confidence of hosts in which processes that
affect the target process are running. If a process running in a host with lower
confidence directly or indirectly affects a target process, the extent of taint of
the target process gets severer. We say “a process is tainted” when a process is
affected by another process with severer taint.

A taint level indicates the extent of taint and a higher value means be tainted
more severely. The minimal taint level means that a process or a resource is
not tainted at all. On the other hand, the maximal taint level means that a
process or a resource is tainted most severely. In other words, this means that
the process or the resource has been affected by a process with the maximal
taint level, for example, from an untrusted host outside the local network. The
middle taint levels are assigned corresponding to the confidence of hosts that
affect a process or a resource. Since the confidence of hosts is often hierarchical
in a distributed system, my host is considered as the most trustable host and
hosts that belong to larger groups are considered as more untrustable hosts. For
example, you can assign higher confidence to hosts within a department that
your host belongs to and lower confidence to hosts outside the department as
shown in Figure 3.11. As such, the user can assign different confidence to even
hosts within the same local network and then prevent attacks by insiders.

Taint information is recorded in the corresponding kernel entities when a
process, a pipe, a file, and a socket are tainted. Exceptionally, the taint infor-
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Figure 3.11: A mapping of a taint level to hosts from my host’s point of view,
according to the hierarchy of the organization.

mation for a file and a directory is also written in disk storage. Compacto stores
the taint information in an unused area of a disk inode in the Linux ext2 file
system when an inode is written back to disk. Additionally, the owner of a file
can set to the file the allowable maximal taint level where a process is allowed to
access the file. For example, if an allowable maximal taint level is set to 0, only
processes with a taint level 0 can access it. This allowable maximal taint level is
also stored in disk storage. Using this enforcement by the file system, Compacto
can restrict file accesses by processes without any explicit policy rules.

3.5.4 Taint Propagation

To trace an impact that a process makes on surrounding processes, Compacto
makes the taint information propagate to an affecting process. Taint information
is propagated based on dependencies between processes, which are communica-
tion dependency and parent-child dependency. In communication between two
processes, taint information is propagated via operating system resources such
as a socket, a pipe, and a file. If a process reads data from a resource, the
process is tainted to the taint level that the resource has. On the other hand,
a process writes data to a resource, the resource is tainted to the taint level
that the process has. Note that a higher one of either the current taint level
or the propagated taint level is dominant and the taint level of a process and a
resource never drops.

To propagate taint between different hosts, one host must notify taint infor-
mation of the other host via network. To minimize this extra communication
overhead, Compacto piggybacks taint information on a packet used for data
transfer using its IP option field. The increase of a packet size is 4 bytes, which
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Figure 3.12: Prevention of an indirect attack using taint information. The
lower right number of each host stands for the taint level corresponding to the
confidence of a host from the viewpoint of server B.

consist of an option type of 1 byte, an option size of 1 byte, and taint information
of 2 bytes. The taint level of a packet is relative to a process that handles the
packet since it depends on the confidence of a sender host from the viewpoint
of a receiver host. The taint level of a packet is a higher one of either the taint
level piggybacked by the packet or the taint level determined by the confidence
of a sender host. Taint information is propagated only within a local network
since Compacto does not trust an IP option field of packets from external hosts.
For packets from external hosts, Compacto always regards the taint level as
maximum. In addition, Compacto prohibits using raw socket for processes with
a higher taint level and thereby prevents tainted processes from forging a taint
level in an IP option field.

Using taint information, Compacto can prevent attacks via insecure hosts
within the local network. Consider the example of Figure 3.1 described in
Section 3.1.2 again. We show it in Figure 3.12 again. Server A and server
B belong to the same network and trusts each other. Client Z is outside the
network and is not trusted by server A and server B. If a process in server A
is compromised by an attacker in client Z, the taint level of the A’s process
changes the maximal value, for example, 15. Then, if the A’s process attacks a
process of server B, the taint level of the A’s process is propagated to server B.
Based on the propagated taint level, the server B can restrict accesses from the
attacker in client Z via server A.

To use a taint level for access control, Compacto provides the at-tlevel
and of-tlevel conditions. Policy rules are applied only if the taint level of
a process or a resource satisfies these conditions. The at-tlevel condition is
satisfied only when the taint level of a process is within the specified range. This
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is useful for preventing a compromised process from accessing sensitive data.
The of-tlevel condition is satisfied only when the taint level of a resource is
within the specified range. This is useful for denying network connections from
a process with a higher taint level.

3.5.5 Cleaning Taint Up

In practical servers, using taint information for access control may make the
access restrictions of a server too strict. Since Compacto does not allow a
process to lower the taint level, the server may not be able to continue to
provide their service due to the too strict access restrictions. For example, a
web server that has been accessed from an external user is tainted to the maximal
taint level and thereafter may deny access requests to private information from
Intranet users. To prevent such situation, Compacto cleans up the taint of a
process using process cleaning, described in Section 3.2.1. Process cleaning also
recovers the taint of a process as well as the other state of the process. Even if
a server process is tainted, its taint level is recovered to the value saved before
when the server finishes handling requests from a client and then issues the
restore state system call.

3.6 Implementation of Network-Level Authen-

tication

To authenticate remote users at the network level, Compacto supports Secure
Socket Layer (SSL) [42] at the kernel level. With SSL, Compacto can authen-
ticate a remote user using a user’s X.509 certificate [43], which includes user’s
public key and is signed by a certificate authority (CA). This kernel-level SSL
is implemented using the OpenSSL library [76], which is the most popular user-
level SSL library. We modified OpenSSL so that it can treat the socket interface
in the kernel. The kernel-level SSL can prevent attackers from bypassing of au-
thentication. Figure 3.13 shows such safe communications. To prevent attackers
from impersonating a legitimate user in a client host and succeeding in authen-
tication with a server, the operating system of the client prohibits using this
authentication if the taint level is high. In the current implementation, Com-
pacto supports TCP/IP communication due to the limitation of the OpenSSL
implementation.

The kernel-level support of SSL also enables the operating system to reuse
SSL sessions between two hosts for each user. Applications using a user-level
SSL library can reuse SSL sessions between two hosts only for each applica-
tion. For example, even when a user in one host uses a web server, a telnet
server, a mail server, and so on, in the other host, she must perform complete
negotiation including the verification of her certificate for each server. With the
kernel-level SSL, Compacto needs the complete negotiation only when a user
establishes the first connection between two hosts. After that, she can perform
simplified negotiation using secrets exchanged in the first negotiation. The cost



CHAPTER 3. ACCESS CONTROL MECHANISM FOR SERVERS 50

server OS client OS

safety net

web server

sendmail

browser mailer

trusted path with SSL

Figure 3.13: Safe communications with an untrusted client using SSL. The web
browser and the mailer can communicate with the web server and sendmail
through the trusted path established by SSL, respectively.

of the simplified negotiation is much lower than that of the complete negotia-
tion. To avoid degradation of system security, Compacto performs the complete
negotiation again if a certain time is expired.

The algorithm with which Compacto authenticates client users is as follows.
When a client establishes a TCP/IP connection with a server, the operating
system of the client starts a SSL negotiation in the connect system call. If the
client receives the server certificate, it checks the certificate to prevent server
impersonation and then sends the client’s certificate to the server. The operating
system of the server checks if the received user certificate is properly signed
by a CA for the server and if the user is registered to the system. If this
authentication succeeds, the client is allowed to access the server; otherwise,
the connection between the server and the client is shut down.

After the authentication, the server can use the authentication information
for its access restrictions. The user certificate is mapped to the corresponding
user name when it is registered to the system. By the by-auth-user condition,
the server can describe policy rules that are applied to only specific remote
users. Also, this authentication is used to suppress that the server is tainted
by the untrusted remote host. Even if the remote client resides a host with low
confidence, the server is not tainted if it succeeds in the user authentication.
The client user is treated as if she were within the local network as far as the
client and the server are connected with the trusted path with SSL.

User Interfaces

Compacto provides two methods so that the applications can specify to use our
kernel-level SSL for their communication. One method is to specify commu-
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nications that uses the kernel-level SSL indirectly by the proc file system in
Linux. The proc file system has a directory for each process and the owner of
the process can read and modify some state of a process through the file system
interface. We added a virtual file ssllist to the directory. This file consists of
the IP addresses of hosts with which the corresponding process communicates
using the kernel-level SSL. When the process attempts to communicate with one
of these hosts, Compacto automatically uses the kernel-level SSL. Programs do
not need to be modified to use the kernel-level SSL. In addition, the contents of
this virtual file are inherited to the child processes. The other method is to set
a special socket option in programs although the programs need to be modified
a bit. Compacto provides the SO USE SSL socket option and allows sockets to
which this option is set to use the kernel-level SSL.

Compacto also provides a new system call certctl for dealing with user
certificates. This system call registers a user certificate, a user’s private key, the
host certificate, the host’s private key, a server certificate, a server’s private key,
and the CA’s certificate to the operating system. A user certificate and a user’s
private key registered in advance are used when the corresponding user starts
SSL. Once a user registers this user-specific information, they are available for
all processes that the user owns. The host certificate and the host’s private key
are used as a certificate and a private key for all servers in the host by default.
If some servers would like to use other certificates and private keys, they can
register their own certificates and private keys to sockets they use. In this
case, server programs needs to be modified so that they register server-specific
certificates and private keys by using certctl. Also, the CA’s certificate is used
for verifying user certificates.

3.7 Summary

This chapter presented process cleaning, which allows a server process to se-
curely remove the access restrictions in case that the process has been com-
promised. To use process cleaning, Compacto saves the state of the process
in advance and restores the saved state before removing the access restrictions
from the process. With this cleaning-up procedure, the thread of control is re-
covered and the malicious code is eliminated from the memory even if attackers
have hijacked the process or injected Trojan horse code into the process. To
prevent attacks using the other resources a process has, Compacto saves and
restores the signal handlers, the status of open files and sockets, and so on, as
well as the thread of control and the memory image.

Since the performance bottleneck of process cleaning is to save and restore
the memory image of a process, Compacto uses various techniques, some of
which have been already proposed in other research fields. To reduce the amount
of memory to be saved, Compacto uses copy-on-write, which copies only modi-
fied memory pages. Also, Compacto allows the users to select a memory restora-
tion strategy depending on the memory access pattern of a server process. In
addition to optimization of process cleaning itself, Compacto provides a tool for
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optimizing the data layout of server programs in order to reduce the number of
modified memory pages.

This chapter also presented novel features of access control. Compacto can
use information on the activities of a client process. The activities are specified
by communication dependency between processes and parent-child dependency
between a parent process and child processes. Since information on these de-
pendencies can enlarge over time, Compacto compresses the dependencies to a
taint level using our taint mechanism so that information on the most dangerous
host with which the client process interacts directly or indirectly is left.

Also, Compacto authenticates remote users at the network level so that
trusted external users can access internal servers under suitable access restric-
tions. This authentication is performed in a manner where applications on top
of Compacto are not aware. For this authentication, Compacto uses the SSL
implemented in the kernel. A remote user is authenticated with a user certifi-
cate, which is digitally signed by a certificate authority for a server that the
remote user attempts to access. Compacto can impose access restrictions on
the server depending on the authentication information instead of the owner’s
user ID of the server.



Chapter 4

Fail-Safe Mechanism for
Operating System Modules

We have developed the CAPELA operating system, which provides a new fail-
safe mechanism for operating system modules. In this chapter, we present our
fail-safe mechanism called multi-level protection and the implementation. We
refer to a module to extend the operating system for performance and function-
ality as an extension module.

4.1 Multi-Level Protection

We propose a new fail-safe mechanism called multi-level protection [56, 55],
which enables the users to change the protection level of extension modules
without modifying the binary code. Using the multi-level protection, the users
can consider the trade-off between fail-safety and performance. The maximum
protection level achieves sufficient fail-safety, but the minimal protection level
does good performance. Figure 4.1 shows this concept roughly. For example, if
an extension module is unstable, the users can use a complete fail-safe mecha-
nism, sacrificing the performance. On the other hand, if an extension module is
stable, the users can use a simplified fail-safe mechanism and then improve the
performance.

To change the protection level of extension modules, the multi-level protec-
tion changes the ability to detect errors and the ability to recover from errors.
Some errors may not be detected to decrease the ability of detection. Also, some
errors may neither be prepared for recovery nor be recovered from to decrease
the ability of recovery. For instance, the multi-level protection can allow illegal
memory reads to reduce the overheads of the detection. It can also record no
logs for recovery in order to reduce the overheads of the records. Needless to
say, the protection level is not always linear. The protection level of user-level
modules is obviously higher than that of kernel-level modules. But we cannot
say which is higher of the protection level where illegal memory accesses are

53
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Figure 4.1: Making a trade-off between fail-safety and performance of extension
modules by the multi-level protection.

detectable and the protection level where deadlocks are detectable.
To change the protection level without modifying the binary code of the

extension modules, the multi-level protection provides an API to which the ex-
tension modules should conform. This API hides the differences between the
implementation of fail-safe mechanisms, which are derived from the differences
between the abilities of error detection and recovery. If the programmers do
not conform to this API, for example, directly using privileged instructions or
system calls for normal user processes, this good facility of modifying no binary
code at changing the protection level is lost. It is responsible for the program-
mers whether they conform to this API. Also, the API exports the kernel data
structure of high abstraction to the extension modules, and therefore the pro-
grammers are easy to extend the operating system although the extensibility is
not very high.

Extension Modules by Third-Party Vendors

The multi-level protection can make the users easy to use extension modules
provided by third-party vendors. Such modules may be unstable and crash ev-
ery few days since the third-party vendors may misunderstand the specification
of the modules and may not test the modules sufficiently. They include device
drivers of minor devices like a CD-ROM changer and some third-party file sys-
tems like NT file system (NTFS) for PC UNIX, which the operating system
vendors officially do not support. Although these unstable modules may fre-
quently crash, the crash is acceptable if users seriously want to use them at any
cost. However, the rest of the operating system should be kept stable even at
that time.

The multi-level protection makes it possible to safely run these unstable
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modules. The fail-safe mechanism protects the modules sufficiently, and safely
detaches the modules from the operating system if the modules crash. Therefore
the rest of the operating system is not affected by erroneous extension modules.
On the other hand, many modules supplied by the third-party vendors are stable
and do not need the fail-safe mechanism. The system should run stable modules
without any protection and eliminate the performance penalties. If there is still
a possibility that the modules involve errors, the system should run the modules
at a lower protection level and more efficiently.

Easy Development

The multi-level protection also makes the users easy to develop extension mod-
ules. So far, in many operating systems, the extension modules like file systems
have been implemented directly in the kernel, or have been re-implemented in
the kernel after they were developed as user-level libraries that emulates system
calls, and so on, for debugging. In the former method, the developers are hard
to debug the extension modules while the finished modules are very efficient. On
the other hand, in the latter method, the developers must write the extension
modules twice both for the emulation libraries and for the kernel modules while
debugging at the user level is easy.

This means that only a single protection level is not enough to make the
extension modules easier to develop. The protection level of the extension mod-
ules should be changed during the development since the kinds and frequencies
of errors depend on the stability of the extension modules. For instance, the
extension modules include many errors at the beginning of the debug phase, but
they are getting stable.

The multi-level protection provides appropriate fail-safety in each develop-
ment phase below. In the debug phase, the fail-safe mechanism keeps the full
capability of the protection even though this involves the maximum performance
penalties. The errors are detected immediately and the accurate information of
the errors is reported to programmers. These features considerably help pro-
grammers identify the reason of the errors and fix them. Moreover, the fail-safe
mechanism can safely terminate the erroneous modules after they crash. Due to
sufficient fail-safety, programmers can make rapid prototyping of the extension
modules.

In the beta-test phase, the fail-safe mechanism does not must keep the full
capability of the protection. Rather it should run the extension modules as fast
as possible so that the test users are satisfied with the performance to some
degree. If the extension modules achieve better performance, more test users
would use them and find more errors. Since the extension modules are expected
to be fairly stable in this phase, only relaxed protection is needed. For example,
it has only to detect and recover from a few kinds of errors depending on timing
such as deadlocks. Illegal memory accesses like an access of null pointer are
expected not to frequently occur.

Finally, the extension modules released as a product need the fail-safe mech-
anism no longer. Unnecessary protection is removed and they can run as almost
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efficiently as one directly implemented in the kernel by hand.

4.2 Overview of the CAPELA Operating Sys-
tem

We have implemented the CAPELA operating system on the basis of NetBSD [72]
1.3.2. CAPELA is an extensible operating system with the multi-level protec-
tion. CAPELA is running at Intel and SPARC platforms. But since the platform
dependent part is a few, CAPELA can be easily ported to the other platforms
that NetBSD 1.3.2 supports.

In the CAPELA operating system, the programmers can create the exten-
sion modules as programs independent from the kernel in order to extend the
functions of the operating system. The extension modules are driven by events
hooked in the operating system kernel and achieve the functions of new subsys-
tems by communicating with the kernel. The communication is done through
a protection manager provided by CAPELA. A protection manager is provided
per extension module and plays a role of a gateway between the extension mod-
ule and the kernel. The protection manager cooperates the kernel and thereby
provides a fail-safe mechanism so that the extension module can manipulate
the kernel data safely. CAPELA provides multiple protection managers, each
of which provides a different protection level to the extension module. Using
these protection managers, CAPELA achieves the multi-level protection.

Figure 4.2 depicts the overview of the CAPELA operating system. The
implementation of the protection managers for the extension modules located at
the user level is largely different from that for the extension modules located at
the kernel level. If an extension module is located at the user level, its protection
manager uses shared memory for communication with the kernel. The kernel
uses an upcall mechanism to invoke the entry points of the extension module
when hooked events occur. On the other hand, if an extension module is located
at the kernel level, the communication between its protection manager and the
kernel is done through the kernel memory. The invocation from the kernel to
the extension module is a direct function call.

Changing a Protection Level

CAPELA allows the users to change the protection level of an extension module
by exchanging its protection managers. Each protection manager that CAPELA
provides can detect and recover from a different kind of error. Depending on the
stability of the extension module, the users can select the protection manager
that provides an appropriate protection level at that time from all protection
managers.

The protection managers are implemented as user-level libraries or kernel li-
braries. The user-level libraries are used when extension modules are running in
the user address space whereas kernel libraries are used when extension modules
are running in the kernel address space. When the users change the protection
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Figure 4.2: The relationship among extension modules, protection managers,
and the kernel.

level of an extension module, they need to unlink an old protection manager
from the extension module and relink a new protection manager with it. When
the users change the protection level so that the extension module continues to
run in the same address space, they can simply restart it after relinking. On the
other hand, when the users change the protection level so that the extension
module moves between the user space and the kernel space, they need extra
tasks. If the extension module moves from the user space to the kernel space,
the users stop the running extension module and dynamically link it with the
kernel using the Loadable Kernel Module (LKM) mechanism. If the extension
module moves from the kernel space and the user space, the users unlink the ex-
tension module from the kernel and start it as a user-level process. In any case,
it is unnecessary to recompile the extension module. However, if recompiling
the extension module is allowable, it can make the performance of the extension
module better, in particular, when the protection level gets the lowest.

4.3 Implementation of the Protection Manager

The protection manager has three kinds of responsibilities to an extension mod-
ule. First of all, the protection manager plays a role of a gateway between the
kernel and the extension module. If the protection manager receives upcalls from
the kernel, it invokes callback functions of the extension module corresponding
to the upcalls. Conversely, when the extension module needs to access the kernel
functions or the kernel data, the protection manager does that instead. To play
this role, the protection manager provides an API to the extension modules.
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Second, the protection manager protects the kernel from errors of the extension
module. Depending on the protection level it provides, the protection manager
protects the memory for the kernel data or replicates the kernel data. Third,
the protection manager registers and unregisters the extension module to the
kernel. In particular, it safely detaches the extension module from the kernel
even if the module terminates abnormally.

4.3.1 API

The protection manager provides an API to which all the extension modules
must conform so that the extension modules can interact with the kernel. Since
all the protection managers provide the same API, the protection levels of the
extension modules can be changed without modifying the extension modules.
This API consists of callback functions and manipulation functions for the kernel
data. Although forcing all the modules to conform to this API may restrict the
programming of the extension modules, that is, extensibility, the advantages
of changing the protection level without modification of the extension modules
will outweigh the disadvantages of this restriction. The details of this API are
described in Appendix C.

Callback Functions

The protection manager provides an API for callback functions invoked by up-
calls from the kernel. When an event hooked by an extension module occurs in
the kernel, the kernel first notifies the protection manager of the event using an
upcall. Second, the protection manager that received the upcall translates the
parameters from data structure of low abstraction used in the kernel to one of
high abstraction used in the extension modules. Finally, the protection manager
invokes a callback function of the extension module.

To define callback functions specific to an extension module, the program-
mers can override methods of classes for callback. Since CAPELA provides
C++ classes for callback, the programmers can inherit them to create their own
classes for callback. For example, FileSystem class is a class for callback on file
systems. To develop a new file system, the programmers can inherit the class
and override some methods such as mount() and read() if necessary.

Manipulation functions for the Kernel Data

The protection manager provides an API to manipulate the kernel data because
the extension modules cannot directly access the kernel data in CAPELA for
two reasons. The one reason is that the protection manager prevents the kernel
data from being illegally accessed. The kernel data is very complex since the
execution efficiency is the most important and since pointers are used very
frequently. For example, mbuf, which is a container to deal with variable data
from network, has very complicated structure for both the generality and the
execution efficiency. Also, shared memory on which the kernel data is put is
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often protected by the protection manager. In this case, the kernel data is
accessed only after the protection manager removes the protection of the shared
memory.

The other reason is that CAPELA makes the extension modules deal with
data structure of high abstraction. The protection manager translates the kernel
data structure of low abstraction to one of high abstraction in order to hide
the complexity of the kernel data structure. For instance, the programmers of
the extension modules can manipulate a chain of mbufs using MbufChain class
instead of manipulating multiple mbufs with pointers. They can manipulate an
instance of MbufChain class as if they were dealing with one data container.
Also the API allows programmers only to increment and decrement a reference
count one by one.

The protection manager also provides an API equivalent to one provided by
the kernel since the extension modules running at the user level cannot directly
use an API provided by the kernel. For example, an NFS [93] server needs to
access a local file system like UFS. This means that an API to access a local file
system in the kernel is needed if the the NFS server module is running at the
user level. To enable a UDP [80] module and a TCP [82, 18] module at the user
level to access an IP [81, 84] layer, an API for the operations to the IP layer is
needed. The protection manager issues system calls or emulates these facilities
to achieve them.

4.3.2 Protection Techniques

CAPELA uses some protection techniques to detect illegal memory accesses
and deadlocks. Various combinations of these techniques enable the protection
manager to provide various protection levels.

Switching Address Spaces

CAPELA uses the memory protection provided by switching address spaces to
detect illegal memory accesses. The extension modules are located either in a
user address space or in the kernel address space. If an extension module is
located in a user address space, its illegal memory accesses to the kernel mem-
ory and the other processes’ memory are trapped by hardware of the Memory
Management Unit (MMU) as illustrated in Figure 4.3. When MMU detects
such illegal memory accesses, CAPELA catches hardware traps from MMU and
then can terminate the extension module. Additionally, if an extension module
is running in a user space, CAPELA can prevent the module from exhaust-
ing resources like CPU and memory by the resource limitation mechanism for
user processes such as the setrlimit system call. Moreover, CAPELA can use
even the access control mechanism that we proposed in Chapter 3 to user-level
extension modules.

However, the overheads for enabling this protection are rather large due
to increasing the number of context switches and the amount of data copies
between address spaces. For instance, two context switches and two copies of the
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Figure 4.3: The memory protection provided by switching address spaces. If
the extension module in the user address space 1 attempts to access either the
extension module in the kernel or the user process in the user address space 2,
a trap occurs.

data are needed at least to pass data between an extension module running in a
user space and another user process. To decrease these overheads, CAPELA also
allows the users to locate the extension module in the kernel address space. To
embed an extension module into the kernel, the extension module is linked with
the kernel dynamically using the Loadable Kernel Module (LKM) mechanism.
In this case, only a context switch and a copy are needed at most between an
extension module running in the kernel space and a user process.

When an extension module are located in a user address space, the module
and the kernel use shared memory to communicate with each other. Since the
important kernel data is also put on this shared memory so that the protection
manager directly accesses it, corrupting the shared memory causes CAPELA
to crash or to get unstable. To prevent the extension modules from illegally
accessing the kernel data, CAPELA protects the shared memory using the vir-
tual memory subsystem. While the code fragments of the extension modules
are executed, the shared memory is protected by the kernel. On the other hand,
while the code fragments of the protection manager are executed, the protec-
tion is removed so that the protection manager can access the kernel data on
the shared memory. Needless to say, the kernel can always access the shared
memory. In other words, the protection of the shared memory is removed when
an extension module calls the functions of the protection manager and then the
shared memory is protected again when the functions are exited. In contrast,
the shared memory is protected when the protection manager calls a callback
function of the extension module and then the protection is removed when the
callback function is exited. Figure 4.4 depicts in which code fragments shared
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Snfs::write(Vnode* vp,...)
{
    ...
    uio->bulkWrite(vp,...);
    ...
}

Snfs::strategy(Buf* bp)
{
    ...
}

Uio::bulkWrite(Vnode* vp,...)
{
    ...
    fs->strategy(bp);
    ..
}

module code library code

shared memory is protected shared memory is unprotected

Figure 4.4: An example of changing the protection of shared memory according
to the function calls. When the Snfs::write method of an extension module
is invoked by the kernel, the shared memory is protected. Then if the method
calls Uio::bulkWrite provided by the protection manager, the protection of the
shared memory is removed. While Uio::bulkWrite invokes Snfs::strategy
of the extension module, the shared memory is protected again.

memory is protected.
In addition, while code fragments of the extension modules are running,

CAPELA allows the protection manager to select how the shared memory is
protected. The strongest protection is that the protection manager unmaps the
shared memory. This prevents the kernel data on the shared memory from being
accidentally corrupted or read. Trapping illegal reads to the kernel data helps
errors to be detected earlier before that reads that do not directly affect the sys-
tem cause more serious errors. Weaker protection is that the protection manager
changes the protection of the shared memory to read-only. This prevents the
kernel data only from being accidentally modified. In the SPARC architecture,
since changing the protection to read-only is faster than unmapping the mem-
ory, this level of protection is useful because it sacrifices the ability of detection
but gets better performance instead. In the Intel architecture, however, the
overheads of these two protection are almost the same, this protection is not
useful. The weakest protection is that the protection manager does not protect
the shared memory. This leads good performance but sacrifices the protection
completely. Figure 4.5 illustrates three kinds of protections of shared memory.
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Figure 4.5: Three kinds of protections of shared memory. (a) The extension
module cannot directly read and write the shared memory since the shared
memory is unmapped. (b) The extension module can only read the shared
memory since the shared memory is mapped in a read-only mode. (c) The
extension module can freely read and write the shared memory since the shared
memory is mapped in a read-write mode.

Replicating the Kernel Data

The protection manager replicates the kernel data on shared memory and makes
the extension module access the replicas on the user address space instead of
the kernel data on the shared memory. Then the protection manager checks the
contents of replicas when it writes them back to the shared memory as illustrated
in Figure 4.6 so that it can prevent the extension module from accidentally
corrupting the kernel data on the shared memory. For example, if some data
fields of an object are corrupted by an buffer overflow of an array in the object,
the protection manager can detect that destruction since it checks all data fields
of the replica object when it writes them back. If the shared memory is protected
by the memory protection provided by address spaces, the extension module
cannot corrupt the kernel data on the shared memory directly.

However, even when the shared memory is protected, the kernel data on the
shared memory may be corrupted during executing an API that the protection
manager provides. For example, if the programmers pass a pointer of a Mount
object to an API function when they should pass a pointer of a Vnode object,
the Mount object may be treated as the Vnode object and the data fields may
be corrupted. In the C++ language, which is used for writing the extension
modules, using a cast makes that destruction possible since type checking is
loose. If the shared memory is protected, replicas are also used for a performance
reason. Replicas enable an extension module to directly access the methods of
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Figure 4.6: The replication and write-back of the kernel data. The protection
manager directly accesses the kernel data while the extension module indirectly
accesses the kernel data using its replica.

kernel objects. If replicas are not used, the extension module must remove the
protection of the shared memory whenever it calls the methods of kernel objects
on the shared memory.

To check the replicas, the protection manager uses various knowledges on
the kernel data structure that it supports. For example, the knowledges are:
that the reference counts are 0 or positive, that the size of each buffer is often
limited by the minimum and the maximum, and that some data is put on the
shared memory necessarily.

CAPELA allows the protection manager to select what types of kernel data
is checked and how the kernel data is checked. For example, if users give up
checking for any loops by pointers, the protection manager does not need to
traverse pointers and then the overheads of the traverse are reduced although
it is possible that the errors are detected lately or cannot be detected.

Wait-for-graph

CAPELA creates a wait-for-graph to detect deadlocks among extension mod-
ules and the kernel. When the extension modules lock and unlock a resource,
they should issue lock and wait system call with the argument of LW LOCK and
LW UNLOCK, respectively. Likewise, when they wait for a locked resource, they
should issue lock and wait system call with the argument of LW WAIT. Using
these information, the kernel of CAPELA detects whether deadlocks occur or
not. Since deadlocks are caused by the interaction not only among multiple
threads in one extension module but among multiple extension modules and
the kernel, the kernel, which manages all extension modules, deals with the de-
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tection and recovery. The detection and recovery in the kernel are mentioned
in Section 4.4.5.

4.3.3 Implementation Details

This section describes implementation details of how the protection manager
enables the extension modules to run at the user level.

Emulation of a CPU Interrupt Level

The protection manager emulates disabling of hardware interrupts so that an
upcall to an extension module is not interrupted by another upcall to the same
module. In the kernel, the invocation of routines of subsystems is done not
only from system calls but also from interrupt handlers. If an interrupt handler
invokes a routine of a subsystem when a system call has invoked the same
routine, the integrity of the kernel states may be lost. To prevent this, the
kernel disables interrupts by changing a CPU interrupt level. However, since
the extension modules running at the user level cannot change a CPU interrupt
level appropriately, the protection manager uses an upcall enabling flag allocated
in the kernel to emulate a CPU interrupt level. If the protection manager needs
to disable interrupts, it sets the upcall enabling flag to 1 and then the kernel does
not issue any upcalls while the flag is set to 1. This is not complete emulation
of a CPU interrupt level but it is sufficient to run subsystems at the user level.

Thread

The protection manager uses threads so that it can simultaneously handle mul-
tiple upcalls which depend on each other. The threads that CAPELA provides
for the extension modules are different from normal threads in two points. First
of all, the contexts of our threads are not switched periodically. Since each
upcall should be handled exclusively like the case where the functions of sub-
systems are executed in the kernel, context switches between threads are done
only when a thread yields a CPU to sleep. Likewise, when a thread are woken up
by the kernel or the other thread, the thread is first inserted into the runnable
queue and then switched after the current running thread terminates or sleeps.
Second, our threads change an upcall enabling flag to emulate CPU interrupts,
if necessary, when the context is switched.

4.4 Implementation of the Kernel

The kernel of the CAPELA operating system provides several facilities for en-
abling to create the extension modules at the user level and to achieve the
fail-safe mechanism.



CHAPTER 4. FAIL-SAFE MECHANISM FOR OS MODULES 65

4.4.1 Installation and Uninstallation of Extension Mod-
ules

CAPELA provides the facility to install and uninstall the extension modules.
When installing an extension module for running at the user level, the protection
manager issues the modregist system call. In this system call, the kernel first
creates an object that holds information for the extension module. The object
consists of an upcall handler, a process ID for the user-level module, a module
name, an upcall enabling flag, information on shared memory, and so on. The
upcall handler is used when hooked events occur in the kernel and then the
extension module is called from the kernel. The process ID and the module name
is used for identifying the module. If the upcall enabling flag is set to 0, upcalls to
the extension module is disabled as described in Section 4.3.3. The information
of shared memory includes the address of the shared memory for communication
between the kernel and the extension module, the size, and so on. Finally, the
modregist system call invokes an initialization routine depending on a type of
the extension module, for example, a file system module, a network subsystem
module, and so on.

When an extension module running at the user level terminates normally
or abnormally, the protection manager issues the modunregist system call. If
the protection manager cannot issue this system call due to unexpected signals,
the kernel executes this system call instead. This system call first cleans up the
kernel to get rid of the impact made by the extension module. This clean-up
routine is the same with a recovery routine described in Section 4.4.4.

On the other hand, installation and uninstallation of an extension module
running at the kernel level are done by the Loadable Kernel Module (LKM)
mechanism. When uninstalling the extension module, the protection manager
executes the clean-up routine as well as the uninstallation of extension modules
running at the user level.

4.4.2 Shared Memory

CAPELA provides memory shared between the kernel and each extension mod-
ule running at the user level. System V shared memory architecture is provided
in NetBSD 1.3.2, which is the base of CAPELA, but it is for general use. This
general shared memory architecture allows the users to limit the access right to
the memory only in the style of the UNIX access control. In short, the users
can set readable, writable, and executable to only three types of owner, group,
and others. To make matters worse, checking the access right to the shared
memory is done only once when it is mapped, so that anyone can access the
memory with the specified access mode such as read-only or read-write. Such
an access model is not suitable for keeping shared memory safe from malicious
user processes.
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New Shared Memory Architecture

To solve this problem, we have implemented a new shared memory architec-
ture with fine-grain access control. Our shared memory architecture has two
different points from the generic shared memory architecture. One is that the
shared memory is mapped only between an extension module and the kernel so
that the shared memory is not accessed illegally by the other user processes.
The shared memory is automatically mapped only when the protection man-
ager calls the modregist system call. The other different point is that only
the protection manager that owns the shared memory is allowed to issue the
shmprotect system call for changing the protection of the shared memory. The
other user processes cannot illegally remove the protection.

For each page table entry of the shared memory that an extension module
owns, CAPELA sets a user-accessible bit of a page table entry so that the ex-
tension module can access its own shared memory. For the other user processes,
on the other hand, CAPELA does not set the bit so that these processes cannot
access it. Using this hardware bit, CAPELA allows only an extension module
to access its own shared memory. However, the kernel may need to access the
shared memory even if the CPU context is not of the extension module in order
to refer to the kernel data on the shared memory. Therefore CAPELA makes
every shared memory of the extension modules accessible for the kernel. In
addition, each shared memory is allocated in a different virtual address so that
the kernel deals with every shared memory simultaneously. This access control
is illustrated in Figure 4.7.

Our shared memory has the limitation that CAPELA cannot access the
shared memory in interrupt handlers. During interrupts, a page table is unde-
fined since any interrupt handlers are executed without binding to any processes.
Since our shared memory is swappable virtual memory unlike the kernel mem-
ory, which permanently resides on physical memory, the whole system crashes
if a page fault occurs for the shared memory.

Shared Memory vs. IPC

Why does CAPELA use shared memory for communication between the kernel
and each extension module running at the user level? Many systems like Mach
use IPC instead. The reason why we use shared memory is that shared memory
has two advantages over IPC. First of all, communication using shared mem-
ory gets more efficient than that using IPC. IPC needs to copy data from the
kernel address space to an address space of an extension module (the reverse is
not always necessary), whereas shared memory needs no copy. Second, shared
memory enables to communicate complicated data structure more easily and
more efficiently. For example, shared memory allows data structure with point-
ers as long as the pointers point to the data on the same shared memory. For
IPC, on the other hand, the system must serialize complicated data structure
by traversing pointers and copying the data to which they point. Otherwise, the
system must lazily copy data on demand and this suffers from large overheads.
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Figure 4.7: Shared memory with unique access control for communication be-
tween an extension module and the kernel. In the address space of extension
module 1, the module can access its shared memory 1 but cannot access shared
memory 2 for module 2. In the address space of a regular process, the process
cannot access either shared memory. In either case, the kernel can access both
shared memory.

However, shared memory has a disadvantage. Using shared memory is risky
because the shared memory can be corrupted by an extension module that owns
it if the module has errors. On the other hand, IPC is safer because the extension
module cannot corrupt the kernel data directly. We believe that the risk can
be avoided. The other user processes are not allowed to corrupt the shared
memory. The destruction of the shared memory due to errors of an extension
module is prevented if the protection manager protects the shared memory.
Until the extension module is enough stable to corrupt no shared memory, the
protection manager should protect the memory.

4.4.3 Upcall

When a hooked event occurs in the kernel, CAPELA issues an upcall to an
extension module hooking the event if the module is running at the user level.
Strictly speaking, the upcall is received by the protection manager. An upcall
mechanism is implemented using a similar mechanism to signal’s. A routine for
calling an upcall handler, which is called trampoline code, are put on a user-
level stack of every process like a signal mechanism when CAPELA initializes it.
There are two differences between upcalls and signals. First of all, upcalls enable
CAPELA to pass parameters to an extension module while signals pass only a
signal number. Second, upcalls can be issued only by the kernel while signals
can be issued by not only the kernel but also the other user processes using
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Figure 4.8: The control flow of the execution when a user process issues system
calls that are related to an extension module.

the kill system call. If a regular user process issues an upcall, the extension
module that receives it is confused.

An upcall is handled as illustrated in Figure 4.8.

1. When a process issues a system call and raises an event hooked by an ex-
tension module, CAPELA makes the process sleep and then forces switch-
ing the CPU context to that of the extension module that receives that
upcall.

2. An upcall routine in the kernel puts an upcall handler, the parameters of
the upcall and information for returning from the upcall on the user-level
stack of the extension module. The parameters are allocated on the shared
memory so that the extension module running at the user level can access
them.

3. The upcall routine jumps to the trampoline code on the user-level stack.
Since the kernel cannot call a routine of a user process directly, the upcall
routine rewrites the return address from the routine so that the address
points to the trampoline code on the user-level stack. When the routine
is exited, the thread of control moves to the trampoline code.

4. The trampoline code invokes the upcall handler of the extension module
passed as the parameter.

5. After the upcall handler is exited, the trampoline code issues the upcallreturn
system call and returns to the kernel.
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Upcalls cannot be issued during interrupts because it is impossible to switch
the CPU context from an interrupt handler to the other processes and because
CAPELA does not allow an interrupt handler to write the parameters of upcalls
to the shared memory. To avoid this problem, CAPELA delays upcalls that are
issued during interrupts and then the upcalls are processed after the interrupt
handler finishes.

4.4.4 Recovery from Illegal Memory Accesses

CAPELA has the ability to recover from an error of an extension module so that
the kernel is not affected by the abnormal termination of the erroneous module.
As the reasons why the kernel gets unstable due to the abnormal termination, it
is considered (1) that the kernel refers to the kernel data on the shared memory
owned by the erroneous module and (2) that the erroneous module has modified
the kernel state so that the kernel gets unstable.

In the former case, the kernel must modify the references to the kernel data
on the shared memory so that the kernel does not access non-existing memory
and does not occur a kernel fault after the extension module is removed. First
of all, the kernel removes all entries registered by the extension module. For
a file system module, for example, the mount object for the management of
mount information is removed from the mount list. At the same time, the
kernel changes the current working directories of all processes so that they do
not point to any vnode on the file system. In the current implementation, the
current directory on the removed file system is changed to the root directory.
For a network subsystem module, the protocol switch object is removed from
the protocol switch table.

In the latter case, the kernel must restore the kernel state modified by the
erroneous module so that the kernel is kept stable. To restore the kernel state,
the kernel prepares a log per extension module and records the operations to be
recovered with which the extension module changes the kernel state. To keep
the size of the log small, an operation recorded in the log is deleted when a new
operation can cancel out the previous operation. For instance, the increment of
the reference count of a vnode are cancelled out with the decrement of the same
vnode. Likewise, the lock of a vnode is also cancelled out with the unlock of
the same vnode. When restoring the unstable kernel states, the kernel examines
the log and executes the operations recorded in the log in a reverse order. For
example, the reverse operation of increasing the reference count is to decrease
it and the reverse operation of locking is to unlock. Figure 4.9 illustrates the
record of a lock operation in a log and the recovery based on the log.

4.4.5 Detection and Recovery of Deadlocks

CAPELA periodically checks whether the system falls into a deadlock state.
When locking, unlocking, and waiting for resources, the protection manager of
an extension module notifies CAPELA of that operation using the lock and wait
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Figure 4.9: Recording operations in a log and the recovery based on the log.
When the extension module locks the vnode 1, the operation is recorded in the
log. At recovery, the kernel unlocks the vnode 1 from the recorded operation in
the log.

system call as explained in Section 4.3.2. Then CAPELA creates a wait-for-
graph like Figure 4.10 on the basis of that information. To detect deadlocks,
CAPELA checks the wait-for-graph by examining the dependencies of resources.
The detection algorithm is as follows:

1. CAPELA marks all resources in the wait-for list of each thread of exten-
sion modules and the kernel with UNTOUCH. The wait-for list contains
resources that the thread is waiting for.

2. For each wait-for list, CAPELA pushes all resources into a stack and marks
them with INSTACK.

3. For one thread, CAPELA peeks a resource in the top of the stack. If the re-
source is marked with EXTRACT, CAPELA pops it from the stack, marks
it with DELETE, and repeats the operation of 3. Otherwise, CAPELA
marks it with EXTRACT and search the thread that locks this resource
using the lock lists of all threads. The lock list contains resources that the
thread is locking.

4. If CAPELA finds such a thread, CAPELA examines each resource of the
wait-for list of the thread found. If CAPELA finds a resource marked with
EXTRACT, there is a loop in the wait-for-graph; in short, the system is in
a deadlock state. If CAPELA finds a resource marked with UNTOUCH,
CAPELA marks it with INSTACK. If any resources in the wait-for list
are not marked with UNTOUCH, CAPELA backtracks.
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Figure 4.10: The example of a wait-for-graph in CAPELA. The thread 1 locks
the buffer B1, which the thread 2 waits for, and waits for the vnode V1, which
the thread 2 locks.

5. On the other hand, if CAPELA does not find out any threads that lock
the target resource, CAPELA backtracks and repeats the operation of 3.

6. CAPELA performs this algorithm for all threads until a deadlock is found
or all resources are marked with DELETE.

Let us apply this algorithm to the example of Figure 4.10. First, the vnode
V1 and the buffer B1 are entered in stacks for the thread 1 and the thread 2,
respectively, and are marked with INSTACK. CAPELA peeks V1 from the stack
for the thread 1 and marks it with EXTRACT. Then CAPELA search threads
that lock V1 and finds the thread 2. Since there is no resources marked with
EXTRACT in the wait-for list of the thread 2, CAPELA backtracks. Since the
thread 1 has no more resources that it waits for, the search for the thread 1 is
finished. Next, CAPELA peeks B1 from the stack for the thread 2 and marks
it with EXTRACT. Then CAPELA search threads that lock B1 and finds the
thread 1. Since V1 in the wait-for list of the thread 1 is marked with EXTRACT,
CAPELA can detect a deadlock between V1 and B1.

CAPELA allows the protection manager to change the interval between
checks for deadlocks. If the users want to detect deadlocks earlier, they can
set a shorter value to this interval although this degrades the performance of
the whole system. On the other hand, if they want to decrease the overheads,
they can set a longer value to the interval although it takes more time to detect
deadlocks.

Since the occurrence of deadlocks depends on timing, CAPELA may be able
to run the deadlocked extension modules by resolving the deadlock and retrying
its execution. To destroy a loop in the wait-for-graph, CAPELA temporarily
releases one of the locks in the loop. A thread that has a temporarily released
lock is suspended for a while so that another thread can obtain the lock.
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4.4.6 System Calls

CAPELA provides several special system calls for the protection manager to use
internally. These system calls are used to create extension modules at the user
level and to achieve a fail-safe mechanism for the modules. Although not only
the protection manager but also the extension modules written by programmers
can issue these system calls, the extension modules should not.

The modregist system call installs a process that issues this system call as an
extension module to the kernel. For the parameters, the type of the extension
module, its name, an upcall handler, and private data are passed. The type
must be MLP FS for a file system module or MLP NS for a network subsystem
module in the current implementation. The name must be able to identify the
extension module. The private data is passed to an initialization routine for
each module type. CAPELA allows only the super user to use this system call
so that malicious users cannot install any extension modules illegally.

The modunregist system call uninstalls an extension module that issues this
system call from the kernel. In this system call, a kernel state is cleaned up so
that the uninstalled module does not leave a bad influence to the kernel. Since
this system call allows only the process that has installed an extension module to
unregister itself, the other user processes cannot uninstall any extension modules
illegally.

The shmalloc system call allocates the area of shared memory and returns
the address. The maximum size is limited by the size of the shared memory.
Only the extension modules installed by the modregist system call can use this
system call.

The shmfree system call releases the area of the shared memory indicated
by the parameter. If the address to be released does not point to the shared
memory owned by the extension module, this system call returns an error. Like
the shmalloc system call, this system call does not allow to be used by regular
processes.

The shmprotect system call changes the protection of shared memory. The
argument is the combination of PROT READ for read permission and PROT WRITE
for write permission. The protection of shared memory provided by CAPELA
must be changed by this system call instead of the mprotect system call. In
CAPELA, the mprotect system call does not allow to change the protection
of the shared memory. This system call are also secure because only a process
that owns the shared memory can use it.

The upcallsuspend system call is used to wait for a signal or an upcall.
When receiving an upcall, the protection manager wakes up from this system
call and makes the extension module handle it.

The kernfunc system call executes a kernel function specified by the param-
eter. Since this system call may corrupt the kernel data due to the execution
of kernel functions, regular user processes cannot use it. Some of defined kernel
functions are listed in Appendix D.

The logctl system call controls the logging for recovery. If the parameter is
RECLOG CHECK, the kernel checks a recorded log to examine whether the kernel
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is unstable or not. If the parameter is RECLOG ROLLBACK, the kernel checks the
log and rolls back if the kernel is unstable. If the size of the log is not zero, it
is determined that the kernel state is unstable.

The lock and wait system call notifies the kernel of locking, unlocking,
waiting for, and waking up on a kernel resource such as vnode. When LW LOCK
and the pointer to a kernel resource are passed to this system call, the kernel
inserts the pointer in the lock list. The pointer inserted in the lock list is removed
when this system call is issued with the parameters of LW UNLOCK and the same
pointer. On the other hand, when LW WAIT and the pointer to a kernel resource
are passed, the kernel inserts the pointer in the wait list. The pointer inserted
in the wait list is removed when this system call is issued with the parameters
of LW WAKEUP or LW WAKEUP ALL and the same pointer.

4.4.7 Implementation Details

Validity Check for Kernel Function Parameters

To protect the kernel from erroneous modules, CAPELA checks the validity of
the parameters of the kernel functions that can be called by extension modules.
This validity check examines if the addresses to which the parameters point are
safe. If the validity check fails, the kernel function returns an error if possible.
The overhead of this check is almost negligible since the comparison of addresses
takes less time than the execution of the function in many cases.

Optimized Memory Allocation

The kernel provides an optimized memory allocation routine for the extension
modules running at the kernel level. Our extension modules frequently allocate
and corrupt memory since they are written in the object-oriented language
C++ and deal with many objects. Since the memory allocation routine suffers
relatively large overheads, it can become performance bottleneck. To solve
this problem, the kernel allocates memory of a fixed size before the extension
modules start and does not use the general memory allocation routine after
that. If the pre-allocated memory gets short, the kernel allocates more memory
again for the extension modules.

4.5 Examples of Extension Modules

CAPELA allows the users to extend the operating system for each subsystem.
The extension modules are therefore relatively course-grain. We believe, how-
ever, that the suppression of extensibility makes it easier to extend the operating
system. If programmers would like to change only a part of a subsystem, they
can create a new extension module that delegates the execution to the original
subsystem for the routines that they do not need to change. In the current
implementation, CAPELA supports to extend file systems and network subsys-
tems.
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4.5.1 File System Modules

The file systems are one of subsystems that are developed the most. Since the
file systems affects the system performance largely, it is meaningful to improve
the file systems and to develop new file systems. In particular, distributed file
systems such as AFS [94] and Coda [95] are researched recently. CAPELA helps
developers create such distributed file systems as well as local file systems.

In the current implementation of CAPELA, the file systems are implemented
on top of the virtual file system (VFS) [64]. A file system module serves
the applications while it is mounted on a directory. When a file system is
mounted, FileSystem::mount method is invoked by the kernel and then pre-
pares for the file system. When a file system is unmounted from the directory,
FileSystem::unmount method is invoked and then cleans up the file system.
The most primitive operations for a file system are to read and write files. When
a file is read, FileSystem::read method is invoked. This method should read
the contents of the file into a file buffer and copy it to a universal I/O buffer.
Conversely, when a file is written, FileSystem::writemethod is invoked. This
method should copy the contents of a universal I/O buffer to a file buffer and
write it to a file on a physical device. Additionally, a file system module should
support changing a directory, getting a file status, getting directory entries, and
creating a file at least.

In distributed file systems, some of file operations such as read and write
invoke local file systems such as UFS to perform requested operations. Since
such file systems may modify the state of the local file systems in the kernel,
the kernel records accesses to the local file systems in a log so that the kernel
can recover the local file systems when an unexpected accident occurs.

4.5.2 Network Subsystem Modules

The network subsystems are indispensable to recent operating systems. When
the programmers develop a new distributed file system, they may want to de-
velop a new network protocol so that the distributed file system can communi-
cate between clients and servers most efficiently. As a more close example to
us, the present IP version 4 is being changed IP version 6 in order to prepare
for the shortage of IP address in the near future.

In the current implementation of CAPELA, the network subsystems are
implemented on top of an IP layer or an Ethernet layer. A network subsystem
serves the applications while it is bound to a socket. When a network subsystem
is bound to a socket, NetworkSystem::attach method is invoked by the kernel
and then prepares for the network protocol. When a network subsystem is
detached from a socket, NetworkSystem::detach method is invoked and then
cleans up the network protocol. The most primitive operations for network
subsystems are to send and receive packets. When a packet is passed from
a socket layer above, NetworkSystem::send method is invoked. This method
should divide a packet if necessary, attach a protocol header, and call an output
routine of an IP layer or an Ethernet layer below. Conversely, when a packet is
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received on an IP layer or an Ethernet layer, NetworkSystem::inputmethod is
invoked. This method should control the sequence of packets if necessary, and
append it to a socket buffer. The data in a socket buffer is read by the recv
system call.

4.6 Automatic Distribution of Network Mod-
ules

Network modules developed as extension modules have to be distributed to the
other host with which one host is going to communicate. If CAPELA distributes
new network modules on demand, the users can use the most suitable network
protocol flexibly. This automatic distribution solves the problem that all hosts
that communicate with each other have to get necessary network modules in
advance, for example, via FTP or HTTP.

One of the problems to be solved for automatic distribution is how the
system assigns a unique protocol number that a network module uses. For
standard protocols such as TCP, a protocol number that identifies a network
protocol is assigned globally by Internet Assigned Numbers Authority (IANA).
However, for non-standard protocol such as new protocols, assigning a fixed
protocol number is not realistic. For such non-standard protocols, the users
cannot ask IANA to assign a unique protocol number. On the other hand, if
the same protocol number were assigned for different protocols, hosts would not
be able to communicate using such protocols. Also, a centralized server that
dynamically assigns protocol numbers for non-standard protocols is not suitable
from the viewpoint of scalability.

To address this problem, CAPELA dynamically resolves a protocol number
used by a new network protocol between hosts that communicate with each
other. In this section, we first describe a meta protocol used for dynamic res-
olution of protocol numbers. Then we mention how new network modules are
distributed between two hosts.

4.6.1 AMeta Protocol for Dynamic Protocol Number Agree-
ment

We have developed a meta protocol called Dynamic Protocol Number Agree-
ment Protocol (DPNAP), which enables two hosts to communicate using a net-
work protocol whose protocol number is not assigned statically. First of all,
CAPELA assigns a protocol number that can identify a network protocol only
within the local host. In general, this assignment is different for each host. To
agree with the other hosts, CAPELA uses DPNAP and then creates a transla-
tion table for looking up a network protocol from a protocol number used within
the other hosts. This translation table is referred to when CAPELA receives a
packet from network. An input to this translation table is a tuple of a network
address and a protocol number. An output is a pointer to the packet handling
for the corresponding network protocol.
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Figure 4.11: Protocol decision by referring to a translation table. When the
receiver host receives a packet with the protocol number 100, it decides that the
used protocol is 1 from the translation table even if a protocol number for the
protocol 1 is not 100 in the receiver host.

Figure 4.11 shows how CAPELA decides a network protocol when receiving
a packet. Suppose that a sender host whose network address is A sends a packet
with a protocol number 100, which stands for a protocol 1. When receiving the
packet, a receiver host refers to its translation table and then can recognize that
the packet is sent using protocol 1. Thus the receiver host can carry out the
routine for handling packets of a protocol 1 correctly.

Algorithm of DPNAP

When a sender host is going to send the first packet to a receiver host, it sends a
NOTIFY message of DPNAP to that host before sending the first packet. The
NOTIFY message consists of a network address of the sender host, a protocol
number assigned within the sender host, a name and version of the protocol.
The name and version of the protocol must identify the only network protocol
uniquely. This global naming includes the same problem with unique assignment
of protocol numbers, but it is easier to avoid collision if a developer of a network
module gives his protocol as a long and descriptive name as possible. When the
receiver host receives a NOTIFY message, it sets a new entry to its translation
table so that it can look up a pointer to the packet handling routine for the
corresponding protocol from a tuple of the network address and the protocol
number sent. Figure 4.12 shows how the receiver host can handle a packet of a
new protocol.

This algorithm allows the two hosts to communicate without any confusion
after the sender host is rebooted. Since rebooting a host may change the as-
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Figure 4.12: A NOTIFY message sent before the first packet sending. By this
message, the sender host lets the receiver host know that the protocol number
100 from the network address A means the protocol 1.

signment of protocol numbers before rebooting, the integrity of the translation
table in the receiver host may be lost. However, before the rebooted sender
host sends the first packet to the receiver host, it sends a NOTIFY message to
the receiver host again. If the receiver host receives the message, it discards an
old entry from the translation table, if any, and adds a new entry, so that the
integrity of the translation table is preserved.

When the receiver host is rebooted, it may receive packets of a protocol
whose entry does not exist in the translation table. The reason is that protocol
information sent by the NOTIFY message before the first packet is lost. If the
receiver host receives a packet of an unknown protocol, it sends a REQUEST
message of DPNAP to the sender host. The REQUEST message consists of a
protocol number that is contained in a header of the received packet. If the
sender host receives the REQUEST message, it sends back a REPLY message
of DPNAP. The REPLY message consists of the name and version of a protocol
corresponding to the sending protocol number. When the receiver host receives
the REPLY message, it adds a new entry to the translation table in the same
way with a NOTIFY message. Figure 4.13 shows re-negotiation with REQUEST
and REPLY messages.

A host preserves packets of an unknown protocol until it receives a REPLY
message after it sends a REQUEST message. The preserved packets are handled
after a necessary entry is added in the translation table by a REPLY message.

DPNAP can be used for broadcast and multicast communication as well as
one-to-one communication. For hosts that participate in communication from
the beginning, a sender host sends a NOTIFY message to these hosts before
it sends the first packet. For hosts that participate in communication from
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Figure 4.13: Re-negotiation with REQUEST and REPLY message. The receiver
host can reconstruct the translation table so that the protocol number 1 from
the network address A corresponds to the protocol 1.

the middle, these hosts send a REQUEST message to a sender host when they
receive a packet of an unknown protocol since they have not received a NOTIFY
message. If they receive a REPLY message, they can create correct translation
tables and communicate with each other.

4.6.2 Automatic Distribution Mechanism

When a host receives a NOTIFY or REPLY message of DPNAP, it retrieves
a network module corresponding to the name and version of a protocol sent
by the message as well as adding a new entry to the translation table. If a
corresponding network module has not loaded yet, CAPELA requests a user-
level daemon called netmodd to load a necessary module. Netmodd first examines
if the specified module exists on a local disk and, if it exists, load it to the system.
In the current implementation, netmodd uses a loadable kernel modules (LKM)
mechanism of NetBSD.

If the specified network module does not exist on a local disk, netmodd re-
quests the module of a sender host of a NOTIFY or REPLY message of DPNAP.
Netmodd of the sender host sends back the requested module and then netmodd
of the receiver host loads it to the system as illustrated in Figure 4.14. At this
time, CAPELA assigns a protocol number unique within the receiver host to
the protocol implemented by the loaded module.

For completely automatic distribution of network modules, the system has
to automatically configure a network interface such as a network address when a
module is loaded to the system. In UNIX, this configuration is manually done by
ifconfig. The problem of automatic configuration is how to assign an network
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Figure 4.14: Automatic module distribution via network. If the receiver’s kernel
does not have a necessary module, it dynamically loads it. Netmodd retrieves a
module from a local disk or the sender host.

address. In the current implementation, CAPELA automatically assigns either
an Ethernet address uniquely assigned to a network interface card (NIC) or an
IP address already assigned to the NIC for the other protocol.

From the viewpoint of applications, if a necessary network module does
not exist in the system when an application issues the socket system call, the
application is suspended. When the host receives a NOTIFY or REPLY message
of DPNAP, netmodd loads a network module to the system and the application
is resumed. CAPELA preserves packets sent to the application until it finishes
binding a name to a socket and handles these pending packets after that. In
UNIX, packets that the operating system receives are discarded if a name is not
bound to the corresponding socket yet. This mechanism enables an application
to handle all packets that it should receive even if a the sender host sends packets
before loading a module is finished in the receiver host.

4.6.3 Change of Socket Interface

The traditional interface of the socket system call, which takes a protocol
number for the 3rd parameter, is not suitable for the case where a protocol
number is assigned dynamically. In our system, in the worst case, a protocol
number is assigned when a network module is loaded from a remote host after
the socket system call is issued. CAPELA provides another version of socket
system call, which takes the name and version of a protocol instead of a protocol
number for the 3rd parameter.
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4.7 Summary

This chapter presented the multi-level protection. The multi-level protection
enables the users to change the protection level of an extension module depend-
ing on its stability. Using the multi-level protection, the CAPELA operating
system can construct a dynamic safety net that can make a suitable trade-off
between fail-safety and performance. To change the protection level, CAPELA
provides various protection managers. The protection manager, which is a gate-
way between an extension module and the kernel, isolates the extension module
from the rest of the system using various protection techniques.

Each protection manager provides different abilities of error detection and
recovery. Some protection managers use a protection technique of switching
address spaces to detect illegal memory accesses. Some use a technique of repli-
cating the kernel data to detect accidental data corruption. To recover from such
protection violations, CAPELA uses a log in which the operations performed
by erroneous modules are recorded. Moreover, some protection managers use a
deadlock detection mechanism using a wait-for-graph. CAPELA also provides
recovery from deadlocks.

The users can change the protection level without any modifications to ex-
tension modules due to a common API provided by the protection manager. As
long as the programmers conform to this API, this binary-level compatibility
among different protection levels is guaranteed since the API hides the differ-
ences of how each protection manager protects the extension module. This API
consists of callback functions and manipulation functions for the kernel data.
Callback functions are used for handling upcalls from the kernel when events
hooked by the extension module occur in the kernel. Manipulation functions for
the kernel data are used for allowing the extension module to invoke necessary
kernel functions.

Additionally, CAPELA automatically distributes the network modules to
other hosts. To solve the problem that a protocol number for a new network
module cannot be fixed globally, CAPELA dynamically assigns a protocol num-
ber using a meta protocol called DPNAP. DPNAP mediates two or more hosts
that participate in one-to-one or one-to-many communication so that each host
can recognize which protocol is used for a received packet from the IP address
and the protocol number locally assigned in each host.



Chapter 5

Experiments

5.1 Process Cleaning

We have developed the Compacto operating system by modifying the Linux
2.2.16 kernel. This section reports the results of our experiments. First we
measured basic costs of saving and restoring a process state. Then, to show
bare performance numbers of Compacto, we ran the Apache web server [4]
directly on top of Compacto and measured the performance of that web server.
The machine we used for the experiments is a PC with a Pentium III 933MHz
processor1 and 256MB memory.

5.1.1 Micro Benchmark

Cost of Save/Restoration

We first measured the execution time of the save state and restore state
system calls. The majority of the execution time of the save state system call
is the cost of turning writable pages in a process into write-protected ones. This
cost is listed in Table 5.1. For example, the Apache web server uses approxi-
mately 40 writable pages. The other costs included in save state are of saving
the states of several resources: 2.12 µsec for signal handlers, 0.90 µsec for the
status of open files and sockets, 0.05 µsec for registers, and 0.33 µsec for issuing
the system call. The influences of the number of opened files and sockets were
negligible. The save cost Csave is shown as follows:

Csave = 0.05Nmem + 4.76

where Nmem is the number of saved memory pages.
For executing the restore state system call, 0.33 µsec is taken for issuing

the system call and 0.05 µsec is for restoring registers. The rest of the execution
time of the system call depends on the number of the restored resources as

1The L1 cache is 16KB (instruction) + 16KB (data). The L2 cache is 256KB.
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Table 5.1: The cost of turning writable pages into write-protected ones.
# of pages 12 16 32 64 128 256 512 1024
µsec 1.89 2.22 2.94 4.51 7.99 14.7 25.4 52.7

Table 5.2: The cost of restoring the states of resources (µsec).
# of resources 0 1 2 4 8 16 32 48 64
memory(remap) 0.50 0.63 0.84 1.18 1.90 3.43 8.92 24.1 36.3
memory(copy) 0.50 1.59 3.13 9.15 17.9 35.2 208 990 1468
signal handlers 0.08 0.27 0.33 0.38 0.60 1.05 – – –
files/sockets 0.05 0.60 0.69 0.83 1.05 1.49 2.84 – –

listed in Table 5.2. As for memory pages, the remap strategy needed a smaller
cost than the copy strategy. However, the remap strategy may need extra
costs. If the save state system call is not issued and the restored memory
page is updated again before the next issue of the restore state system call,
Compacto must catch a page fault and allocate a shadow page. This cost is listed
in Table 5.3. Therefore, comparing with the best case of the copy strategy that
a process writes in the same set of pages every time, the remap strategy is 1.8
times slower at maximum.

When the users select the remap strategy, the whole restoration cost Cremap

is shown as follows:

Cremap =




3.48Nmem + 0.05Nsig + 0.07Nfile + 1.16 (0 ≤ Nmem ≤ 18)
4.16Nmem + 0.05Nsig + 0.07Nfile − 17.3 (18 ≤ Nmem ≤ 27)
40.6Nmem + 0.05Nsig + 0.07Nfile − 1014 (27 ≤ Nmem ≤ 64)

where Nmem is the number of modified memory pages, Nsig is the number of
modified signal handlers, and Nfile is the number of files/sockets whose status
is changed. On the other hand, when the users select the copy strategy, the
whole restoration cost Ccopy is shown as follows:

Ccopy =
{

2.17Nmem + 0.05Nsig + 0.07Nfile + 1.2 (0 ≤ Nmem ≤ 27)
39.7Nmem + 0.05Nsig + 0.07Nfile − 996 (27 ≤ Nmem ≤ 64)

Table 5.3: The cost of handling page faults.
# of pages 1 2 4 8 16 32 48 64
µsec 2.21 4.96 13.1 26.6 52.8 214 1023 1483
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Table 5.4: The comparison of the cost of the fork-join method and process
cleaning (µsec).

Breakdown Fork-join
Process
cleaning

Issue fork/save state 0.3 0.3
Duplicate/save address space 17.3 1.9
Duplicate/save signal handlers 2.6 2.1
Duplicate/save file/socket info. 1.9 0.9
Others 3.6 0.0
Call libc exit function 11.7 0.0
Issue exit/restore state 0.3 0.3
Destroy/restore address space 10.3 0.6
Destroy/restore signal handlers 0.2 0.1
Destroy/restore file/socket info. 0.7 0.1
Others 4.1 0.0
Page fault 2.2 2.2
Sum 55.2 8.5

Comparing with the Fork-Join Method

As noted in Section 2.4.2, the fork-join method is less efficient than process
cleaning. One of the reasons is that the fork and exit system calls are slower
than the save state and restore state system calls provided by Compacto.
The comparison of the cost of the fork-join method and process cleaning is shown
in Table 5.4. The fork-join method also depends on the number of writable
memory pages and modified memory pages, and the number of open files and
sockets. The numbers in this table were measured in a case where 12 pages were
writable, 1 page was modified, and no files and sockets were opened or closed.

One large overhead of the fork-join method is to duplicate the address space.
fork must create a new address space, copy the page table of the parent pro-
cess, and turn writable pages of both the parent and child processes into write-
protected ones. On the other hand, save state only turns writable pages in
the process into write-protected ones. Another large overhead is due to the exit
function in the standard C library. Process cleaning does not need to execute
that function since it does not terminate a process. The last large overhead is
due to destroying the address space. Process cleaning does not need to destroy
the address space since it does not create a different address space. These over-
heads become larger as the program size is larger and the process uses more
resources.

The difference of the costs of the fork-join method and process cleaning
seems to be too small from the viewpoint of real applications. However, the
above cost of the fork-join method does not include the cost that arises from
that a server cannot use the process pool technique. The synthetic cost of the
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two is shown in the next section.
In addition, the fork-join method makes a cache hit ratio worse (1) because

memory caches such as L1, L2, and TLB are flushed whenever context switches
between a parent process and a child process and (2) because a working set of
memory gets larger due to the complicated fork and exit routines and a cache
miss increases in number. This is also one reason why the fork-join method is
slower than process cleaning.

5.1.2 Apache Web Server

We also measured the execution performance of a web server running on Com-
pacto. As the web server, we used the Apache 1.3.12, which is implemented with
the process pool technique. As client machines, we used PCs with a Celeron
300MHz processor and 64MB memory. The operating system of the client ma-
chines is FreeBSD 3.4. To avoid network saturation, the clients and the server
are connected through the 100baseT Ethernet and the server machine has two
Ethernet ports. We used the WebStone benchmark program [65], which mea-
sures the average number of requests that a web server can accept per second
with various number of client machines. Only one client program was running
on every client machine.

For comparison, we used four different types of Apache server. The pool
server is an Apache server that does not perform process cleaning. The copy
server is an Apache server performing process cleaning with the copy strategy.
The remap server is an Apache server performing process cleaning with the
remap strategy. These three servers use 16 pooled processes. Finally, the fork
server is an Apache server modified so that it uses the fork-join method. It does
not use the process pool technique or perform process cleaning. We did not
impose access restrictions on any of the four Apache servers in this experiment.

Figure 5.1 and Figure 5.2 show the server performance (the number of ac-
ceptable requests per second) and the response time, respectively, in a case
where a 0 byte file was requested by the clients. All the servers modified 8
pages of memory, changed one signal handler, opened one file and one socket
while handling every request.

Figure 5.3 and Figure 5.4 show the server throughput and the response time,
respectively, in a case where various sizes of files were requested, All the servers
modified 8.1 pages of memory on average, changed one signal handler, opened
one file and one socket while handling every request. The maximum number of
modified memory pages was 13 although the server used 44 writable pages. The
requested data were copied from our real web server2. The requested data were
various sizes of HTML files, binary files, and data created by CGI programs.
The average size of requested data was 7.6KB (from 73 bytes to 47KB).

2http://www.hlla.is.tsukuba.ac.jp/
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Figure 5.1: The server performance (a 0 byte file was requested).
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Figure 5.2: The average response time (a 0 byte file was requested).
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Figure 5.3: The server performance (various sizes of files were requested).
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Figure 5.4: The average response time (various sizes of files were requested).
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Figure 5.5: The ratio of the performance improvement by process cleaning to
the whole improvement. The rest of the performance improvement is due to
process pool.

Performance of Process Cleaning

According to Figure 5.1 and Figure 5.3, the copy server is 60% and 30% faster
than the fork server, respectively. As described in Section 2.4.2, secure servers
with the fork-join method, which impose access restrictions depending on each
request, have had to create a new child process for every request. Process
cleaning achieves great performance improvement over those traditional secure
servers. It allows secure servers with process cleaning to handle a request with
pooled processes although its performance penalties are 35% in the worst case,
which is not negligible, if compared with the pool server.

The performance improvement of the copy server over the fork server is
due to both using process cleaning and using a process pool. To show the
performance improvement only by process cleaning, we also measured a copy
server where the number of pooled processes is 1 and a fork server where it
handles requests sequentially. Figure 5.5 shows the ratio of the performance
improvement by process cleaning to the whole improvement. From the result,
in a case where a 0 byte file was requested, the ratio of the improvement by
process cleaning and a process pool was 7:3. On the other hand, in a where that
various sizes of files were requested, the ratio was 3:7. This result means that
the performance improvement by process cleaning is relatively small, comparing
with the fork-join method, if most of the execution time of a server is spent for
disk and network I/O. Requests for large data cause more disk and network I/O
than requests for a 0 byte file.
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Figure 5.6: The improvement of server performance by optimizing a server
program layout (a 0 byte file was requested).

Effectiveness of Optimization

In our experiments, the copy server was always 5% faster than the remap
server. In a case where a 0 byte file was requested, the copy strategy achieves
the best performance since the same set of memory pages was updated whenever
a request was handled. In a case where various sizes of files were requested, the
copy strategy is also better than the remap strategy although the memory access
pattern of the servers was less advantageous to the copy strategy than in the
former case. Although the copy strategy is better than the remap strategy in
the case of the Apache web server, the remap strategy may be better in the case
of other kinds of servers.

Figure 5.1 and Figure 5.3 show the performance of the Apache servers in
a case where the server programs are optimized as described in Section 3.3.3.
Relocating the static data segment of the servers reduced the number of memory
pages modified for static data from 10 pages to 1 page. As shown in Figure 5.6
and Figure 5.7, the performance of the copy and remap servers, which perform
process cleaning, was increased by 40% on average, comparing with using non-
optimized server programs. This improvement includes the improvement of a
cache hit ratio and the reduction of the overheads due to dynamic linking. In
addition, the performance of the fork server was also increased by the same
degree since the fork-join method uses copy-on-write to copy pages for modified
static data from a parent process to a child process.
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Figure 5.7: The improvement of server performance by optimizing a server
program layout (various sizes of files were requested).

5.1.3 FastCGI

We also measured the execution performance of the FastCGI module [91], which
runs on top of the Apache web server. The FastCGI module enables the server to
use pooled processes for running CGI programs. Without the FastCGI module,
the server must spawn a child process whenever a CGI program runs. As a CGI
program, we used wwwcount [67] 2.5, which is one of the most popular access
counters. Since wwwcount uses data file for a counter of each user or each page,
accesses to the data files must be restricted depending on users or requested
pages.

Like the experiment in the previous subsection, this experiment compared
four web servers: the pool, copy, remap, and spawn servers. Only the
FastCGI module used by the copy and remap servers performs process clean-
ing. The spawn server does not use the FastCGI module. It spawns a child
process for running a CGI program. The underlying servers of the four are the
normal Apache server.

Figure 5.8 and Figure 5.9 show the results. These results are similar to
the results in the case of the Apache web server. However, the performance
overhead due to process cleaning was smaller in this experiment. The copy
server was only 8% slower than the pool server. This is because executing a
CGI program was a bottleneck and hence the overheads due to process cleaning
were relatively small.
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5.2 Access Control

5.2.1 Policy Checking

Our Compacto checks rules of security policy whenever a server process issues
a system call to restrict the privileges of the process. We applied policy rules
described in Appendix B to the Apache web server and measured the overhead
of policy checking. For this experiment, we used the remap server, which
performs process cleaning to securely change policy rules for each request. The
overhead of policy checking includes the overheads of both applying policy rules
and invalidating the rules. We used the WebStone benchmark program and
experimented under the same settings with the previous section.

Figure 5.10 and Figure 5.11 show the results. In a case where a 0 byte file was
requested, the performance of the server with policy checking was 18% slower
than that of the server without policy checking. On the other hand, in a case
where various sizes of files were requested, the slowdown was 11% on average.
We believe that these overheads are small to achieve the least privilege for the
web server.

5.2.2 Taint Propagation

To examine the overheads for propagating taint information via network, we
measured round-trip latency of TCP/IP and UDP/IP and throughput of TCP/IP
using a benchmark program called netperf [48]. The overheads are caused by
increasing a packet size due to an extra IP option, processing the IP option,
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Figure 5.11: The overhead of policy checking. (various sizes of files were re-
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and updating taint information of a socket and a process. For round-trip la-
tency, we measured request/response performance of netperf for various sizes
of packets. Request/response performance is the average time that takes from
sending a request and to receiving a response. For throughput, we measured
stream performance of netperf, where data size that a process sends at a stretch
is 64KB. For comparison, we also measured round-trip latency and throughput
in a case where Compacto does not propagate taint information.

For this experiment, we used two PCs with a Pentium II 400MHz processor,
128MB memory, and a network interface card of 3COM Fast EtherLink. The
operating system of this two machines is our Compacto based on Linux 2.2.11
kernel. Two machines are connected through the 100baseT Ethernet.

The results on round-trip latency are shown in Figure 5.12 for TCP/IP and
Figure 5.13 for UDP/IP. Taint propagation makes round-trip latency 6% longer
at maximum. Compacto suffers from this maximum latency when the sending
packet size is small, but the latency is smaller in an average packet size. For
throughput, the results are shown in Table 5.5. The degradation of throughput
is 1.2% and very small.

5.3 Multi-level Protection

We experimented to make sure of the usefulness of the multi-level protection.
We have three purposes in the experiments. The first purpose is to make sure
that the execution performance is improved when the users lower the protection
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Table 5.5: TCP/IP throughput degradation due to taint propagation.

Mbps
Taint propagation 67.2
No propagation 68.0

Table 5.6: Five characteristic combinations of protection techniques. Shared
memory full protection means that an extension module cannot read and write
the shared memory directly. Shared memory partial protection means that
an extension module can only read the shared memory directly. Kernel data
replication means that the protection manager makes an extension module to
access replicas of the kernel data. Address space switch means that an extension
module is located at the user level.

Protection technique 1st 2nd 3rd 4th 5th
Shared memory full protection

√
Shared memory partial protection

√ √
Kernel data replication

√ √ √
Address space switch

√ √ √ √

level of the extension modules. The second is to measure the overhead of the
maximum protection level. It is significant that this overhead are not too large
although this overhead is not important for debugging of extension modules.
The third purpose is to measure the overhead of the minimum protection level.
This overhead is caused by making the API of multiple protection managers
common. It is considered that the multi-level protection enables the extension
modules to be as efficient as hand-crafted modules if this overhead is enough
small.

For experiments, we used two PCs, which have a Pentium II processor run-
ning at 400MHz. Each PC was equipped with 128MB of RAM and a 10Mbps
Ethernet. All experiments with network were performed between two machines
on the same Local Area Network (LAN). All measurements were done using the
CAPELA operating system.

Since it would have been too difficult to experiment with all combinations
of the protection techniques that CAPELA provides, we selected five charac-
teristic combinations, listed in Table 5.6, and experimented with them. These
combinations can detect the errors on memory protection listed in Table 5.7.
We call the combination yielding the highest protection level the first level and
call the combination yielding the lowest level the fifth level. In our experiments,
the protection levels from 1st to 5th are considered as linear.

The first level locates an extension module in a user address space, protects
the shared memory from illegal memory reads and writes, and replicates the
kernel data. The second level is different from the first level in that it protects
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Table 5.7: Detectable errors on memory protection at each protection level.
Type of error 1st 2nd 3rd 4th 5th
Illegal reads on shared memory

√
Illegal writes on shared memory

√ √
Accidental kernel data corruption

√ √ √
Illegal accesses to the kernel

√ √ √ √

the shared memory only from illegal writes. The third level does not protect
the shared memory but illegal accesses to the kernel data can be detected by
checking for the replicas of the kernel data. The fourth level does not even
replicate the kernel data, so illegal accesses to the kernel data cannot be detected
at all. However, it still receives a benefit of the protection as a user process at
least. Finally, at the fifth level, an extension module is embedded into the kernel
without any protection. The extension module at this level is exactly the same
with ones hand-crafted in the kernel from the beginning except the overheads
for using the same API among all protection levels.

For comparison, we have also measured hand-crafted version of extension
modules in the kernel. These extension modules are implemented as a part of
the kernel of NetBSD.

5.3.1 File System Modules

We have developed two file system modules: Simple Memory File System (SMFS)
and Simple Network File System (SNFS). SMFS is a RAM disk, whose files re-
side in memory. The block size that SMFS can read and write from the memory
at a time is 512 bytes. SNFS is a simplified NFS [93], which consists of some
clients and one server and communicates between the client and the server using
Remote Procedure Call (RPC) [99]. RPC is executed using UDP and the block
size that SNFS can read and write with RPC at a time is 512 bytes. The server
reads and writes real files from a local file system UFS.

Micro Benchmark

We measured the time needed to copy a file on our file system. Since copying
a file is one of the most fundamental operations to file systems, we can obtain
the potential overheads of each of the protection techniques used in CAPELA.
A file was copied from our file system to the same file system. The size of the
copied file was 64KB and the block size for each read and write system call
was 8KB. In SNFS, the client communicated with the server through a 10Mbps
network.

Figure 5.14 and Figure 5.15 show the results of this experiment. These
two figures mean that the performance of the file systems is improved when
the protection level is lowered. The reason why the second level suffers larger
overheads than the first level is probably that changing the protection of memory
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Table 5.8: The time needed to copy a 64KB file on SMFS in the SPARC archi-
tecture (msec).

1st 2nd 3rd 4th 5th
SMFS/SPARC 504 372 155 90 38

Table 5.9: The ratio of the overheads to the fifth level in SMFS and SNFS.
1st 2nd 3rd 4th 5th

SMFS 3.11 3.26 1.94 1.62 1.00
SNFS 1.70 1.74 1.25 1.09 1.00

pages often takes more time than unmapping memory pages. From this result,
the second level is not useful in the Intel architecture at least. However, in
the SPARC architecture, the second level is also meaningful. Table 5.8 shows
the result of the same experiment in SPARCstation 5 (MicroSPARCII/85MHz).
Since this result is a little old data, which is shown in our literature [55], the
overheads of various protection techniques are larger than our latest result. But
the second level is faster than the first level.

The ratio of the overheads of each protection level to the fifth level is de-
scribed in Table 5.9. In SMFS, the first level is 211% slower than the fifth
level; and in SNFS, the first level is 70% slower. These overheads are not small
and the performance is rather degraded, but we think that it is acceptable for
debugging the file systems. The overheads of the fifth level to the hand-crafted
version are 3.7% and 1.4% in SMFS and SNFS, respectively, so they are almost
negligible.

Macro Benchmark

Next, we measured the time needed to compile a small program on our file sys-
tem. Since compiling a program is one of the most frequently used applications,
we can obtain the realistic overheads of our approach. The program consists
of five source files and two header files of the C language and had about 2,000
lines. We compiled the program using gcc 2.7.2.2 with no optimizing options.
But temporary files were put on the local file system.

Figure 5.16 and Figure 5.17 show the results of this experiment. In practical
circumstances like this experiment, the first level is 16% and 19% slower than
the fifth level in SMFS and SNFS, respectively. The performance is good enough
even for normal use. In addition, the overheads of the fifth level to the hand-
crafted version are just 3.1% and 1.4% in SMFS and SNFS, respectively, and
are enough small.
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Table 5.10: The ratio of the overheads to the fifth level of round-trip latency in
SUDP and STCP.

1st 2nd 3rd 4th 5th
SUDP 2.82 2.79 1.68 1.56 1.00
STCP 3.20 2.72 1.55 1.39 1.00

5.3.2 Network System Modules

We have developed two network subsystem modules: Simple User Datagram
Protocol (SUDP) and Simple Transmission Control Protocol (STCP). SUDP
and STCP are exactly the same with UDP [80] and TCP [82, 18], respectively,
except that control operations have not implemented.

Micro Benchmark: Round-Trip Latency

Round-trip latency reflects the overhead induced by a protocol when the pro-
tocol transfers a packet between two hosts. We sent a packet with data of 1
byte and measured the time needed from sending a packet to the other host to
receiving a packet from the other host in order to obtain round-trip latency. We
repeated sending and receiving a packet 1,000 times and divided the elapsed
time by 1,000 to obtain an average round-trip latency.

Figure 5.18 and Figure 5.19 show the results of this experiment. These two
figures mean that the performance of network subsystems is improved when the
protection level is lowered. The ratio of the overheads of each protection level
to the fifth level is described in Table 5.10. In SUDP, the first level is 182%
slower than the fifth level; and in STCP, the first level is 220% slower. These
overheads of the maximum protection are, we think, acceptable for debugging.
The overhead of the fifth level to the hand-crafted version is 12% and 2.8%. It
is considered that the overheads in SUDP are a little large because the send and
input routines of SUDP are small and the overhead for using the same API in
all protection levels relatively gets large. The improvement to this overhead is
mentioned in Section 5.3.3.

Micro Benchmark: Throughput

Throughput is the other indicator to measure the execution performance of net-
work subsystems. Throughput indicates how much data is sent using a protocol
per unit time. We did not measure throughput for SUDP because it depends on
the windowing and acknowledgment strategies. STCP uses the same strategies
with TCP, but SUDP does not provide the strategies like UDP. We calculated
throughput from the time needed from sending data of total 1MB to the other
host to receiving all the data from the other host. The buffer size of both the
send and recv system calls is 8KB.

Figure 5.20 shows the result of this experiment. Note that a large value
means good performance in throughput. Throughput in each protection level
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Figure 5.18: Round-trip latency in SUDP through a 10Mbps network and the
breakdown of the overheads.
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Figure 5.20: Throughput in STCP through a 10Mbps network.

is near the hand-crafted version. The overhead for the maximum protection
is 10% and the overhead for using the same API in every protection level is
only 1.3%. This good result is caused by the fact that the measurement of the
throughput is more practical experiment since more data is transfered through
slow network.

Macro Benchmark: SNFS with SUDP

We measured the performance of SNFS, which we have developed as a file
system module, with SUDP instead of UDP. Network file systems are one of
the most usual and important applications of the datagram protocol, so we can
obtain practical overheads of SUDP from this experiment. We measured the
time needed to copy a 64KB file on SNFS with SUDP. A file was copied from
SNFS to the same SNFS and the block size for each read and write system call
was 8KB. We experimented on SUDP of various protection levels using SNFS
of the fifth level, which is embedded into the kernel.

Figure 5.21 shows the results of this experiment. Through a 10Mbps net-
work, the first level of SUDP is 75% slower than the fifth level and the fifth
level is 2.7% slower than the hand-crafted version. These overheads are enough
small for the purpose of each protection level. This relatively worse result is
caused by the fact that SNFS is a small application and processing in SNFS is
less than that in SUDP.

We also measured for SNFS of the fourth level, which is running at the user
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Table 5.11: The time needed to copy a 64KB file on SNFS of the fourth level
with SUDP. (msec)

1st 2nd 3rd 4th 5th Hand-crafted
SNFS/4 517 526 400 351 297 290

level. The result is shown in Table 5.11. From this result, it is confirmed that
the interaction between the two user-level modules can work properly and that
the overheads do not increase dramatically.

Macro Benchmark: FTP with STCP

We measured the file transfer rate using FTP [83] with STCP instead of TCP.
FTP is one of the most frequently used applications of the data-stream protocol,
so we can obtain practical overheads of STCP from this experiment. We received
a 1MB file by a get command of FTP and measured the transfer rate.

The results are shown in Figure 5.22. Note that a large value means good
performance in the transfer rate. Like the throughput of STCP, the impact due
to the overheads for the maximum protection level and for using the same API
are small when a file is transfered through a 10Mbps network. The transfer rate
of the first level is 16% lower than that of the fifth level while the transfer rate
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Figure 5.22: The file transfer rate of FTP with STCP through a 10Mbps net-
work.

of the fifth level is only 1.3% lower than that of the hand-crafted version.

5.3.3 Improvement by Source Code Translation

At the fifth level, which is the lowest protection level, the overheads of some of
our extension modules are not enough small due to the overheads for using the
same API and for modifying no binary codes of the extension modules among
protection levels. The details of the overheads are extra memory allocation
for creating instances of classes at runtime, dispatches of virtual functions of
the C++ language, extra function calls by the fact that inline extraction is
impossible, and so on.

If the extension modules are allowed to modify their source code and re-
compile them, these overheads would be reduced. To automatically modify the
source code, translating source code is generally used. Macro is very helpful
to translate source code for programs of the C language, but it is not enough
powerful for C++ programs because C++ method invocations are difficult to be
translated by macro. OpenC++ [22] is useful to translate source codes of C++
programs. Using OpenC++, we can translate C++ classes of higher abstraction
to the kernel data structure of low abstraction. This reduces the overheads of
translating between them at runtime. For example, suppose the following code
fragment.
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int Smfs::write(Vnode* vp, Uio* uio, int ioflag, Ucred* cred)
{

uio->bulkWrite(vp, DEV_BSIZE, size, cred);
}

int Uio::bulkWrite(Vnode* vp, int blksize, int filesize,
Ucred* cred)

{
...

}

This code fragment is translated as the below.

int Smfs::write(struct vnode* vp, struct uio* uio, int ioflag,
struct ucred* cred)

{
Uio_bulkWrite(uio, vp, DEV_BSIZE, size, cred);

}

int Uio_bulkWrite(struct uio* uio, struct vnode* vp, int blksize,
int filesize, struct ucred* cred)

{
...

}

We have translated the source code of the SUDP module and the SMFS
module by hand. For the SUDP module, we measured the round-trip latency
when sending 1 byte packet through a 10Mbps network. For the SMFS module,
we measured the time needed to copy a 64KB file.

The results are shown in Figure 5.23 and Figure 5.24. The translated SUDP
module is 5.4% faster than SUDP of the fifth level and the overhead is 6.1%
comparing with the hand-crafted version. For the SMFS module, the translated
module is 10% faster than the hand-crafted version. It is considered that this
is due to CPU caches. In fact, when L1 and L2 caches of CPU are not used,
the hand-crafted SMFS module is 4% faster than the translated module. These
results indicate that source code translation makes the extension modules almost
as efficient as hand-crafted versions even if the module size is too small.

5.3.4 Automatic Module Distribution

When two communicating hosts dynamically negotiate the protocol number for
a non-standard protocol using DPNAP, extra processing is needed when a host
sends and receives packets. At sending packets, CAPELA must check if it has
already sent a NOTIFY message of DPNAP. At receiving packets, CAPELA
must refer to the translation table in order to examine which protocol is used
for the packet. We measured the round-trip latency of two kinds of Null Eth-
ernet Protocol (NEP) modules, which we have developed. One is assigned a
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Table 5.12: Round-trip latency of f-NEP whose protocol number is fixed and
d-NEP whose protocol number is dynamic. (µs)

Protocol 10Mbps 100Mbps
f-NEP 120.5 62.8
d-NEP 121.2 63.9

fixed protocol number (f-NEP) and the other is dynamically assigned a proto-
col number (d-NEP). NEP is a protocol specialized in a case where two hosts
connected in the same Ethernet segment communicate with each other. NEP
sends packets directly to an Ethernet device driver and receives packets directly
from the device driver. NEP is similar to UDP except a point that it cannot
treat packets of large size exceeding the limits of an Ethernet device driver.

Table 5.12 shows round-trip latency of two NEPs. The size of data sent in
this experiment was 1 byte. d-NEP suffers overhead of 0.6% in 10Mbps and
1.8% in 100Mbps, comparing with f-NEP. This overhead is almost negligible.

If CAPELA needs to load a network module from a remote host, packet
handling is delayed until a necessary module is loaded to the system. When
CAPELA loads a NEP module (4,683 bytes) with 10Mbps Ethernet, the delay
reached to 250ms. This delay is very large comparing with the round-trip
latency of 0.1ms of NEP. However, the time taken for sending a module via
network was only 5ms. Most of that delay is due to saving the received module
on a local disk and loading the module from the disk to the system.

5.4 Summary

This chapter mainly presented the results of our experiments on process cleaning
and the multi-level protection. From our micro benchmark of process cleaning,
it was confirmed that saving and restoring a memory image get large overheads
and the overheads increase linearly depending on the amount of memory to
be restored. Also, our remap strategy was faster than the copy strategy at
restoration time but was slower in total because of extra page faults. Comparing
the fork-join method, the overheads of the system calls used by process cleaning
were smaller than those of the fork-join method.

To obtain practical overheads of process cleaning, we measured the perfor-
mance of the Apache web server, which uses a process pool technique. A web
server using process cleaning was 35% slower than one using no process clean-
ing. However, The web server using process cleaning was 30-60% faster than
one using the fork-join method. The improvements due to process cleaning and
process pool were the same degree on average. For optimization, the copy strat-
egy was 5% faster than the remap strategy in this case. Optimizing the data
layout of the server program made the server 40% faster. We also measured the
performance of a FastCGI module of Apache and obtained the similar results.

For the multi-level protection, we measured the overheads of that mechanism
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on our file system modules and network subsystem modules. In terms of a file
copy and round-trip latency, the modules of the maximum protection level were
200% slower than those of the minimum protection level at worst. The modules
of the minimum protection level were only 4-12% slower than the hand-crafted
ones embedded in the kernel from the beginning. In terms of the throughput of
our network subsystem, on the other hand, the overhead was 10% at maximum
since this is a more practical application of network modules.

As macro benchmarks to obtain practical overheads, we measured the cost
of compiling a program and transferring data using FTP. In most cases, the
overheads of the maximum protection level were 20% at worst and thus are
enough small even for normal use. In terms of our NFS module with our network
subsystem, on the other hand, the overhead of the maximum protection level
was 75%. The reason why this overhead is relatively large is that our network
subsystem is overloaded as well as in the micro benchmarks if it is used with
the NFS module.



Chapter 6

Conclusion

This dissertation discussed a dynamic safety net for server software. To achieve
the principle of least privilege for user-level servers, it is indispensable to dy-
namically change a safety net of them so that the safety net fits the client. For
operating system modules, it is crucial to protect the whole system from the
instability of the modules. Since many modules are also performance critical, it
is important that the users can select fail-safety and performance depending on
their purpose.

Contributions

Contributions by this dissertation are as follows:

• For user-level servers, process cleaning enables a server process to securely
remove the access restrictions even if the process is compromised. Using
process cleaning, the operating system cleans up the state of a process
including an instruction pointer and a memory image and recovers a hi-
jacked process or a process into which Trojan horse code is injected.

• Process cleaning is faster than the traditional fork-join method, which can
achieve similar security effects. While a server process must create and
destroy a child process for each request in the fork-join method, a server
process is reused in process cleaning. In addition, process cleaning is used
together with the process pool technique, which makes the server handle
requests in parallel.

• For operating system modules, the multi-level protection enables the users
to make a trade-off between fail-safety and performance. The users can
change the trade-off transparently by selecting an appropriate one from
multiple protection managers, each of which provides a different protection
level. To differentiate multiple protection levels, each protection manager
has a different ability to detect and recovery from errors.
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• When the protection level of modules is minimum, the overheads due to
this fail-safe mechanism itself are enough small to use them as product
release. The modules are running in the kernel address space and the
overheads of the protection manager are reduced to the minimum as well
as modules embedded into the kernel by hand.

Future Directions

One of our future research directions is to implement middleware like CORBA [75]
using process cleaning. It may not be easy since some kinds of CORBA run-
times cannot be implemented with our access control mechanism. For example,
Orbix [46] and omniORB [59] have multi-threaded runtimes, which allocate a
new thread for every request. On the other hand, in our system, access control
and process cleaning are performed by the unit of process. It is relatively easy
to extend the unit of access control to a thread, but the current design of process
cleaning does not allow to selectively restore part of the process state used by
a particular thread. To work these CORBA runtimes with our access control
mechanism, they must be modified not to use multi-threads. The data shared
among threads must be moved to the memory shared among processes, which
an attacker may use for hijacking the whole CORBA server. Since our system
does not protect CORBA runtimes from attacks exploiting this shared memory,
the programmers of CORBA runtimes must be responsible for that there is no
vulnerability around the shared memory.

The other approach for multi-threaded middleware is to extend access re-
strictions and process cleaning to be a per thread basis. However, it is doubtful
whether this extension is achieved securely and is useful even if it is secure. A
pure thread is not protected from the other threads in the same process and thus
access control per thread is useless. It is easy that a thread hijacks the execu-
tion of another thread. Theoretically, it is possible to protect a thread from the
other threads in a lightweight manner using proposed techniques [47, 100, 23],
but most global variables must be still shared between threads and these are
not secure. Moreover, the cost of thread creation and destruction is still ex-
pected to be high since the operating system must manage the memory page
table and purge memory pages and caches at destruction. Even if a fast and
protected thread could be implemented, it is unknown whether the combination
of a thread pool and cleaning of a thread is faster than the fork-join method
using a protected thread.

To detect more sensitive errors of extension modules, it is hopeful to provide
various protection level at the kernel level as well as at the user level. In the
current implementation, the extension modules embedded into the kernel run
without any protection. Since the differences between the user level and the
kernel level are large, it is useful for debugging to enable the users to change the
protection level at the kernel level. If the extension modules run with the least
protection in the kernel, the fail-safe mechanism may be able to detect timing-
critical errors including deadlocks. To achieve this facility, we can use the efforts
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of the extensible operating systems that protect extension modules at the kernel
level such as VINO. However, the fail-safe mechanism used in such operating
systems tends to suffer large overheads in some applications. For example, the
overhead of software fault isolation used in VINO is 200% at maximum.

A more difficult direction is to indicate guidelines of time when the users
change the protection level of extension modules. If the users lower the pro-
tection level in spite of an unstable module, the module would make the whole
system crash. But if the users do not change the protection level in spite of
a stable module, the system performance would not be improved. We believe
that statistical information on a stabilization process of extension modules is
useful. In fact, we usually regard programs in which critical software flaws are
not found for a long time as stable. Statistics is a good indication for extension
modules as well although the decision of changing the protection level requires
more carefulness.
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Appendix A

Security Policy Rules

A.1 Policy Rule Format

This section shows the limitable system calls and how to describe a policy rule
for them. (The following tables are partial.)

A.1.1 File Management Rules

• chdir dir
Allow or deny to change the current directory to a directory specified by
dir.

• chmod path with mode
Allow or deny to change the access permission of a file specified by path
to mode.

• chown path with uid:gid
Allow or deny to change the owner and group of a file specified by path to
a user and group specified by uid and gid.

• chroot path
Allow or deny to change the root directory to path.

• close path
Allow or deny to close a file specified by path.

• creat path with mode
Allow or deny to create a file specified by path with file creation mask
mode.

• fcntl path with cmd
Allow or deny to perform a file control operation specified by cmd.

• flock path
Allow or deny to lock a file specified by path.
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• getdents dir
Allow or deny to get entries of a directory specified by dir.

• ioctl path with req
Allow or deny to control a device specified by path with a request req.

• link from to to
Allow or deny to link (hard link and symbolic link) from from to to.

• mknod path with mode for major:minor
Allow or deny to create a character or block special file specified by path
with access permission mode. Major and minor specify the device device.

• mkdir path with mode
Allow or deny to create a directory specified by path with access permission
mode.

• open path with flags
Allow or deny to open a file, directory, or device specified by path with
read-only, read-write, or append specified by flags.

• read path
Allow or deny to read from a file descriptor corresponding to a file specified
by path. This rule is applied only to read related to file systems, not
network.

• rename from to to
Allow or deny rename a file name from from to to.

• rmdir path
Allow or deny to delete a directory specified by path.

• truncate path
Allow or deny to truncate the length of a file specified by path.

• umask
Allow or deny to change the file creation mask.

• unlink path
Allow or deny to delete a file specified by path.

• utime path
Allow or deny to change access and modification times of a file specified
by path.

• write path
Allow or deny to write to a file descriptor corresponding to a file specified
by path. This rule is applied only to write related to file systems.
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• APPEND path
This is a macro for read-only access and is extracted to the following 3
rules:

– open path with O WRONLY|O APPEND

– write path

– close path

• READ ONLY path
This is a macro for read-only access and is extracted to the following 3
rules:

– open path with O RDONLY

– read path

– close path

• READ WRITE path
This is a macro for read-only access and is extracted to the following 4
rules:

– open path with O RDWR

– read path

– write path

– close path

• WRITE ONLY path
This is a macro for read-only access and is extracted to the following 3
rules:

– open path with O WRONLY

– write path

– close path

A.1.2 Network Management Rules

• accept addr[/mask][:port] from addr2[/mask2][:port2]
Allow or deny to accept a connection from the peer process with addr2/mask2:port2
to this process with addr/mask:port.

• accept unix path
Allow or deny to accept a connection from the peer process using a UNIX
domain socket specified by path.

• closesock addr[/mask][:port]
Allow or deny to close the socket bound to addr/mask:port.
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• closesock unix path
Allow or deny to close a UNIX domain socket specified by path.

• connect addr[/mask][:port]
Allow or deny to connect to a peer process whose network address is
included in addr with netmask mask and whose port is port.

• connect unix path
Allow or deny to connect to a peer process using a UNIX domain socket
specified by path.

• protocol proto
Allow or deny to create a socket using a protocol specified by proto. Proto
is tcp, udp, or icmp.

• recv addr[/mask][:port] from addr2[/mask2][:port2]
Allow or deny to receive data from the peer process with addr2/mask2:port2
to this process with addr/mask:port. This rule is also applied to read re-
lated to network.

• recv unix path
Allow or deny to receive data from the peer process using a UNIX domain
socket specified by path.

• send addr[/mask][:port] to addr2[/mask2][:port2]
Allow or deny to send data from this process with addr/mask:port to the
peer process with addr2/mask2:port2. This rule is also applied to write
related to network.

• send unix path
Allow or deny to send data to the peer process using a UNIX domain
socket specified by path.

• setsockopt opt
Allow or deny to set a socket option specified by opt.

• semctl
Allow or deny semaphore control operations.

• semop
Allow or deny semaphore operations.

• msgrcv
Allow or deny to receive IPC messages.

• msgsnd
Allow or deny to send IPC messages.

• msgctl
Allow or deny IPC message control operations.
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• shmat
Allow or deny to map SYSV shared memory segments.

• shmdt
Allow or deny to unmap SYSV shared memory segments.

• shmctl
Allow or deny to control SYSV shared memory.

• COMM addr[/mask][:port] with addr2[/mask2][:port2]
This is a macro for a server side process to use Internet communication
and is extracted to the following 4 rules:

– accept addr/mask:port from addr2/mask2:port2

– recv addr/mask:port from addr2/mask2:port2

– send addr/mask:port to addr2/mask2:port2

– closesock addr/mask:port

• COMM UNIX path
This is a macro for a server side process to use a UNIX domain socket and
is extracted to the following 4 rules:

– accept unix path

– recv unix path

– send unix path

– closesock unix path

A.1.3 Process Management Rules

• exec path
Allow or deny to execute a new program specified by path. The program
cannot be examined using the string but the calculated SHA-1 value.

• exit
Allow or deny to exit the process.

• ioperm
Allow or deny to set the permissions of I/O ports.

• kill sig for progname
Allow or deny to send a signal specified by sig to a process specified by
progname.

• nice
Allow or deny to change process priority to higher.

• ptrace
Allow or deny to trace system calls of the process.
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• setgid group
Allow or deny to set a group ID corresponding to group to a process. This
rule is also applied when users execute a program with a setgid bit on.

• setgroups
Allow or deny to set a list of supplementary group IDs.

• setpgid
Allow or deny to change the process group ID.

• setrlimit res
Allow or deny to change the limit of a resource specified by res.

• setsid
Allow or deny to run the process in a new session.

• setuid user
Allow or deny to set a user ID corresponding to user to a process. This
rule is also applied when users execute a program with a setuid bit on.

• sigaction sig
Allow or deny to change a signal handler corresponding to a signal sig.

A.1.4 Memory Management Rules

• mmap path with prot
Allow or deny to map a file specified by path to memory with a protection
mode specified by prot.

• mprotect path with prot
Allow or deny to change the protection of a memory-mapped file specified
by path to a new protection mode specified by prot.

• munmap path
Allow or deny to unmap a memory-mapped file specified by path.

A.1.5 System Administration Rules

• delete module name
Allow or deny to unload a module specified by name.

• init module name
Allow or deny to load a module specified by name.

• mount path to dir
Allow or deny to mount a device specified by path to a directory specified
by dir.

• quotactl cmd
Allow or deny to control disk quotas with a command cmd.
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• reboot
Allow or deny to reboot the system.

• setdomainname
Allow or deny to change the domain name.

• sethostname
Allow or deny to change the host name.

• settime
Allow or deny to set the system time.

• sysctl name
Allow or deny to write a system parameter specified by name.

• umount path
Allow or deny to unmount a file system specified by path.

A.2 Conditions

Compacto uses attributes of a process as conditions for applying policy rules.
All conditions are listed in Table A.1.

Table A.1: All conditions for policy rules.
Directive Condition
by-prog prog Apply if the program name of the process is prog
via-prog prog Apply if the program name of one of the process and

the ancestors is prog
by-user user Apply if the owner’s user name of the process is user
via-user user Apply if the owner’s user name of one of the process

and the ancestors is user
by-group group Apply if the owner’s group name of the process is

group
via-group group Apply if the owner’s group name of one of the process

and the ancestors is group
at-tlevel min–max Apply if the taint level of the process is between min

and max
of-tlevel min–max Apply if the taint level of the related resource is be-

tween min and max
by-auth-user user Apply if the user who Compacto has authenticated

in the latest is user
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Examples of Security Policy

The following policy rules are applied to the server just after the save state
system call is issued and removed when the restore state system call is issued.

B.1 Apache

This section enumerates policy rules applied to the Apache web server named
httpd. The server is installed in /usr/local. The network address of the server
is 192.168.0.248 and the port is 80.

Policy rules applied just before save state

The file name for a lock (accept.lock.1467) is determined from the process
ID of Apache.

# for files
allow READ_ONLY "/usr/local/apache/htdocs/*"
allow mmap "/usr/local/apache/htdocs/*" with PROT_READ

allow fcntl "/usr/local/apache/logs/accept.lock.1467"
with F_SETLKW

allow open "/dev/null/" with O_RDONLY
allow getdents "/usr/local/apache/htdocs/"

allow write "/usr/local/apache/logs/access_log"
allow write "/usr/local/apache/logs/error_log"

# for network
allow COMM 192.168.0.248:80 with *:*

# for CGI

127
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allow chdir "/usr/local/apache/cgi-bin/"
allow exec "/usr/local/apache/cgi-bin/Count.cgi"

allow sigaction SIGUSR1
allow sigaction SIGCHLD

deny * by-prog "httpd"

Policy rules applied just after accept

The following rules are applied when the server is connected from a client host
with network address 192.168.0.1 and port 3172. The accept system call is
prohibited and receiving and sending packets are allowed only between this
server and the client connected.

deny accept

allow recv 192.168.0.248:80 from 192.168.0.1:3172
deny recv

allow send 192.168.0.248:80 to 192.168.0.1:3172
deny send

Policy rules applied just after reading a request

The following rules are applied when the server receives a request from the
client when the contents of the request is “GET /~kourai/menu-ja.html.” For
simplicity, the user’s HTML files are located in /usr/local/apache/htdocs/
home/. Opening, memory-mapping, and closing only the requested HTML file
are allowed. Receiving any other packets is not allowed.

deny recv

allow READ_ONLY "/usr/local/apache/htdocs/home/kourai/menu-ja.html"
deny READ_ONLY "/usr/local/apache/htdocs/*"

allow mmap "/usr/local/apache/htdocs/home/kourai/menu-ja.html"
with PROT_READ

deny mmap "/usr/local/apache/htdocs/*"

B.2 wwwcount

This section enumerates policy rules applied to the wwwcount CGI program
named Count.fcgi. This program is modified so that it uses the process pool
technique using the fastcgi module of Apache. Wwwcount communicates with
Apache using a UNIX domain socket.
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Policy rules applied just before save state

The path used for a UNIX domain socket is dynamically set.

# for files
allow READ_ONLY "/usr/local/apache/etc/Counter/conf/count.cfg"

allow APPEND "/usr/local/apache/etc/Counter/logs/Count2_5.log"

allow READ_WRITE "/usr/local/apache/etc/Counter/data/*"
allow flock "/usr/local/apache/etc/Counter/data/*"

allow READ_ONLY "/usr/local/apache/etc/Counter/digit/*"

# for UNIX domain socket
allow COMM_UNIX "/tmp/fcgi/a3ebac7fe059c1e568812eace40c0e62"

deny *

Policy rules applied just after accept

The following rules are applied when wwwcount is connected from the web
server. The data file for storing the count number and the image used for the
access counter are specified in a request from the web server. In this example,
the data file is kourai.dat and the image is type K.

allow READ_WRITE "/usr/local/apache/etc/Counter/data/kourai.dat"
deny READ_WRITE "/usr/local/apache/etc/Counter/data/*"

allow flock "/usr/local/apache/etc/Counter/data/kourai.dat"
deny flock "/usr/local/apache/etc/Counter/data/*"

allow READ_ONLY "/usr/local/apache/etc/Counter/digits/K/strip.gif"
deny READ_ONLY "/usr/local/apache/etc/Counter/digits/*"
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API for Extension Modules

The following API is provided by the protection manager. If the programmers
of the extension modules conform to this API, they can change the protection
level of the extension modules without modifying the binary code.

C.1 API for Callback Functions

The API for callback functions is invoked when events that the extension mod-
ules hook in the kernel occur. All the methods are virtual functions of C++
and the programmers can override them if necessary.

C.1.1 FileSystem Class

All file system modules must inherit this class.

• void init()
This is invoked to initialize data for the file system.

• int mount(Mount* mp, const String& path, FsOption* opt,
Nameidata* ndp, Proc* p)

This is invoked to mount the file system. path indicates a directory on
which the file system is mounted. Specific data for the file system is passed
by opt. In this method, the programmers should create the root vnode
and private data of the file system.

• int start(Mount* mp, int flags, Proc* p)
This is invoked just after mount().

• int unmount(Mount* mp, int mntflags, Proc* p)
This is invoked to unmount the file system. In this method, the program-
mers should call Mount::vflush() to remove all vnodes in the vnode list
of the file system and then free the root vnode and private data of the
filesystem, if necessary.

130
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• int statfs(Mount* mp, Statfs* sbp, Proc* p)
In this method, the programmers should set statistics information of the
file system to sbp.

• int root(Mount* mp, Vnode** vpp)
In this method, the programmers should set a pointer to the root vnode
to *vpp.

• int vget(Mount* mp, int num, Vnode** vpp)
In this method, the programmers should set to *vpp a pointer to a vnode
whose has a node number of num. A reference count of the vnode must be
increased.

• int sync(Mount* mp, int waitfor, Ucred* cred, Proc* p)
In this method, the programmers should make all vnodes in the vnode list
of the file system synchronize using fsync().

• int fhtovp(Mount* mp, struct fid* fhp, MbufChain* nam,
Vnode** vpp, int* exflags, Ucred** credanon)

In this method, the programmers should translate the file handle fhp to
the vnode and set a pointer to it to *vpp.

• int vptofh(Vnode* vp, struct fid* fhp)
In this method, the programmers should translate the vnode vp to the file
handle fhp.

• int quotactl(Mount* mp, int cmds, uid t uid, caddr t arg,
Proc* p)

This is invoked by quotactl system call. The high 24-bit of cmds indicates
a quota main command and the low 8-bit indicates the type of quota.

• int access(Vnode* vp, mode t mode, Ucred* cred, Proc* p)
In this method, the programmers should check an access right of a file
specified by vp.

• int getattr(Vnode* vp, Vattr* vap, Ucred* cred, Proc* p)
In this method, the programmers should set an attribute of a file specified
by vp to vap.

• int setattr(Vnode* vp, Vattr* vap, Ucred* cred, Proc* p)
In this method, the programmers should change the attribute of vp ac-
cording to vap.

• int lock(Vnode* vp)
In this method, the programmers should set a flag for lock if necessary.

• int unlock(Vnode* vp)
In this method, the programmers should clear a flag for lock if necessary.
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• int islocked(Vnode* vp)
In this method, the programmers should check whether a flag for lock is
set if necessary.

• int advlock(Vnode* vp, caddr t id, int op, struct flock* fl,
int flags)

This is invoked to do advisory locks. Advisory locks mean that locks are
enforced for only processes that request locks.

• int lookup(Vnode* dvp, Vnode** vpp, CompName* cnp)
In this method, programmers should look up a pathname specified by cnp
and set a pointer to a vnode looked up to *vpp. dvp is the vnode of a
directory on which the file system is mounted.

• int open(Vnode* vp, int mode, Ucred* cred, Proc* p)
This is invoked to open a file specified by the vnode vp. In this method, the
programmers should do something specific to the file system if necessary.

• int close(Vnode* vp, int fflag, Ucred* cred, Proc* p)
This is invoked to close a file specified by vp. In this method, programmers
should do something specific to the file system if necessary.

• int create(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap)
This is invoked to create a file. dvp is the vnode of a directory to create a
new file. cnp holds the name of a newly created file. The attribute of the
file is passed by vap. In this method, programmers should set a pointer
to a newly created vnode to *vpp.

• int remove(Vnode* dvp, Vnode* vp, CompName* cnp)
This is invoked to remove a file by unlink system call. vp is the vnode
for a removed file and dvp is the vnode for a parent directory of the file.
cnp indicates the name of a file to be removed.

• int read(Vnode* vp, Uio* uio, int ioflag, Ucred* cred)
This is invoked by the read system call to read data from a file. In this
method, programmers should copy the buffer of the vnode vp to uio.

• int write(Vnode* vp, Uio* uio, int ioflag, Ucred* cred)
This is invoked by the write system call to write data to a file. uio holds
data to be written. If the append flag IO APPEND is set in ioflag, the
programmers should append data to the end of a file specified by vp. In
this method, programmers should copy data of uio to the buffer of vp.

• int bwrite(Buf* bp)
This is invoked to write the contents of bp to a file.

• int strategy(Buf* bp)
This is invoked to read from or write to a file. If the read flag B READ is
set, the programmers should read from a file to bp; otherwise, they should
write the contents of bp to a file.
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• int bmap(Vnode* vp, daddr t bn, Vnode** vpp, daddr t* bnp,
int* runp)

In this function, the logical block number bn should be translated to the
physical block number and a pointer to it is set to *bnp.

• int truncate(Vnode* vp, off t length, int flags, Ucred* cred,
Proc* p)

This is invoked to change the length of a file. length indicates a new
length of a file. vp is the vnode for a file whose size is changed.

• int fsync(Vnode* vp, Ucred* cred, int waitfor, Proc* p)
In this method, the programmers should make dirty buffers on vp synchro-
nize.

• int update(Vnode* vp, struct timespec* access,
struct timespec* modify, int waitfor)

In this method, the programmers should change an access time and a mod-
ified time of a file specified by vp.

• int inactive(Vnode* vp)
This is invoked to inactivate vp so that it is not used. In this method,
programmers should write dirty buffer back by Vnode::vgone() if neces-
sary.

• int reclaim(Vnode* vp)
This is invoked to reuse vp. In this method, the programmers should call
Vnode::cachePurge() and freePrivateData() for vp.

• int abortop(Vnode* dvp, CompName* cnp)
This is invoked to abort an operation of the file system due to errors. In
this method, the programmers should free memory for the pathname of
cnp if necessary.

• int mkdir(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap)
This is invoked to make a new directory. dvp is the vnode for a directory
where a new directory is made. cnp indicates the new directory name to
be created and vap holds the attribute of a new directory. In this method,
programmers should set a pointer to a vnode for a new directory to *vpp.

• int mknod(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap)
This is invoked by the mknod and mkfifo system calls in order to create
a special file as mkdir().

• int rmdir(Vnode* dvp, Vnode* vp, CompName* cnp)
This is invoked to remove a directory. dvp is the vnode for a directory
where a directory is made. vp is the vnode to be removed and cnp indicates
the directory name to be removed.
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• int readdir(Vnode* vp, Uio* uio, Ucred* cred, int* eofflag,
off t* cookies, int ncookies)

This is invoked by the getdent system call to read a block of directory
entries. In this method, the programmers should copy directory entries
from vp to uio.

• int link(Vnode* dvp, Vnode* vp, CompName* cnp)
This is invoked to make a hard link to a file. dvp is the vnode for a di-
rectory where a hard link is created. vp is the vnode for an existing file
to which a hard link is made. cnp indicates the new file name for a hard
link. In this method, the programmers should create a new file for a hard
link.

• int symlink(Vnode* dvp, Vnode** vpp, CompName* cnp, Vattr* vap,
char* target)

This is invoked to make a symbolic link as link().

• int readlink(Vnode* vp, Uio* uio, Ucred* cred)
This is invoked to read the contents of a symbolic link. vp is the vnode
for a symbolic link to be read. In this method, the programmers should
copy the contents to uio.

• int ioctl(Vnode* vp, u long command, caddr t data, int fflag,
Ucred* cred, Proc* p)

This is invoked by the ioctl and fcntl system calls.

• int pathconf(Vnode* vp, int name, register t* retval)
This is invoked by the fpathconf system call. In this method, the pro-
grammers should set the return value to retval.

C.1.2 NetworkSystem Class

All network subsystem modules must inherit this class. In the current imple-
mentation, programmers can write network protocols over IP such as UDP and
TCP.

• void init()
This is invoked to initialize the network subsystem. It is used to initialize
global data for the network subsystem.

• int attach(Socket* so, long proto, Proc* p)
This is invoked by the socket and accept system calls. In this method,
the programmers should create a new protocol control block.

• int detach(Socket* so, Proc* p)
This is invoked by the close system call. In this method, the programmers
should destroy the protocol control block.
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• int bind(Socket* so, SockAddr* nam, Proc* p)
This is invoked by the bind system call. In this method, the programmers
should call InPcb::bind().

• int listen(Socket* so, Proc* p)
This is invoked by the listen system call. In this method, the program-
mers should call InPcb::bind() if the local port has not been allocated
yet. Next, they should change the protocol state to a listen state.

• int connect(Socket* so, SockAddr* nam, Proc* p)
This is invoked by the connect system call. In this method, the program-
mers should call InPcb::bind() if the local port has not been allocated
yet. Next, they should call InPcb::connect.

• int disconnect(Socket* so, Proc* p)
This is invoked by the close system call. In this method, the pro-
grammers should close the socket so soon if the connection is not estab-
lished. Otherwise, they should make the socket a disconnecting state using
Socket::setDisconnecting(), flush the receive buffer of the socket, and
then close the socket.

• int accept(Socket* so, SockAddr* nam, Proc* p)
This is invoked for a newly created socket so by the accept system call.
In this method, the programmers should set the address of the socket with
which so has been connected to nam using InPcb::setPeerAddr().

• int shutdown(Socket* so, Proc* p)
This is invoked by the shutdown system call. In this method, the program-
mers should make the socket so a state where the socket cannot send more
packet, and close it.

• int recvd(Socket* so, long flags, Proc* p)
This is invoked when a packet is received. In this method, the program-
mers can send an acknowledgment to the received packet.

• int send(Socket* so, MbufChain* m, SockAddr* nam,
MbufChain* ctrl, Proc* p)

This is invoked by the send system calls. m is the data to be sent and nam
indicates the address to which the data is sent. In this method, the pro-
grammers should call InPcb::connect(). Next, they should attach a
protocol header to m and call Ip::output() to pass the packet to a lower
layer.

• int recvOOB(Socket* so, MbufChain* m, long flags, Proc* p)
This is invoked to read out-of-band data present on so. In this method,
the programmers should copy the data to m.

• int sendOOB(Socket* so, MbufChain* m, SockAddr* nam,
MbufChain* ctrl, Proc* p)

This is invoked to send the out-of-band data m by the send system call. In
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this method, the programmers should attach a protocol header to m and
call Ip::output().

• int sockAddr(Socket* so, SockAddr* nam, Proc* p)
This is invoked to the local address of the socket so. In this method, the
programmers should set the address to nam using InPcb::setSockAddr.

• int peerAddr(Socket* so, SockAddr* nam, Proc* p)
This is invoked to the address with which the socket so is connected.
In this method, the programmers should set the address to nam using
InPcb::setPeerAddr.

• int abort(Socket* so, Proc* p)
This is invoked to abort sending packets. In this method, the programmers
should drop pending packets.

• int control(Socket* so, u long cmd, caddr t data, Proc* p)
This is invoked to process protocol specific ioctl by the ioctl and fcntl
system calls. In this method, the programmers can call Ip::control().

• int sense(Socket* so, struct stat* ub, Proc* p)
This is invoked by the fstat system call. In this method, the programmers
should set the socket status to ub.

• int connect2(Socket* so, Socket* so2, Proc* p)
This is invoked by the socketpair system call. In this function, the pro-
grammers should connect so and so2 if necessary.

• int input(MbufChain* m, int hlen)
This is invoked when the IP layer receives a packet. m is the packet with
an IP header, IP options, and a header and options of this protocol. In
this method, the programmers should trim all headers and options and
chain it to the receive buffer of the socket.

• void* ctlinput(int cmd, SockAddr* sa, void* data)
This is invoked to process control information from lower layers.

• int ctloutput(int op, Socket* so, int level, int optname,
MbufChain*& mp)

This is invoked to process control information by the setsockopt and
getsockopt system calls. In this method, the programmers should pro-
cess control information.

• void drain()
This is invoked when memory is in short supply. In this method, the pro-
grammers should free memory as much as possible.

• void sysctl(int* name, u int namelen, void* oldp,
size t* oldlenp, void* newp, size t newlen)

This is invoked by the sysctl system call.
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• void sysFastTimeout()
This is invoked every 200 miliseconds.

• void sysSlowTimeout()
This is invoked every 500 miliseconds.

• void soUpcall(Socket* so)
This is invoked when so is woken up for read by input(). In this method,
the programmers can read packets without blocking by Socket::receive().

C.2 API for Manipulating the Kernel Data

We describe an API for manipulating the kernel data in the current implemen-
tation. Basically, we explain all methods, but the description of some methods
are omitted. Also, the below is an API necessary for developing sample modules
and is not complete.

C.2.1 Common Classes

The following classes are commonly used in every subsystem module.

System Class

This is the class for the whole system.

• struct timeval getCurrentTime()
This returns the current time in the timeval format.

• struct timespec getCurrentTimeSpec()
This returns the current time in the timespec format.

• int sleep(caddr t id, int priority, const char* msg)
This makes the current thread of the extension module sleep with priority
until it is woken up on id by wakeup().

• void wakeup(caddr t id)
This wakes up the thread of the extension module made slept by sleep()
on id.

• void timeout(void (*ftn)(void *), void* args, int msec)
This creates a new thread that executes the function ftn with args and
makes it sleep for msec miliseconds.

Interrupt Class

This is the class for handling the level of interrupts.

• void disableSoftNet()
This disables interrupts from protocol stacks.
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• void enableAll()
This enables interrupts disabled by disableSoftNet().

Proc Class

This is the class for handling a process. This class is currently used only for an
identifier and has no methods.

Miscellaneous Classes

• String
This is the class for handling strings.

• PList
This is the class for handling a pointer list. This class has an internal class
Iterator. It is used to traverse the list.

• List
This is the class for a special list. Programmers cannot directly use or
inherit this class. This class has an internal class Iterator. The methods
are the same with PList class.

• TailQueue
This is the class for a special tail queue. Programmers cannot directly use
or inherit this class. This class has the same methods with List class, but
the internal algorithm is different.

• CircleQueue
This is the class for a special circular queue. Programmers cannot directly
use or inherit this class. This class has the same methods with List class,
but the internal algorithm is different.

C.2.2 Classes for File System

The following classes are used in file system modules.

Mount Class

This is the class for handling the mount structure per file system.

• void setPrivateData(void* data)
This sets the file system specific data to data.

• VnodeList* getVnodeList()
This returns the list of vnodes that the file system has.

• void getNewFsid(const String& name)
This generates a new identifier of the file system from name and sets it to
the structure for statistics information of the file system.
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• Vnode* getNewVnode()
This creates a new vnode and return it. The vnode is inserted in the vn-
ode list. To create a new vnode, programmers cannot use the constructor
of Vnode directly.

• int vflush(Vnode* skipvp, int flags)
This removes all vnodes in the vnode list except skipvp. For skipvp, the
root vnode of the file system is often specified.

• Mount* getVfs(fsid t* fsid)
This is a static method. This returns the mount structure of the file system
identified by fsid.

• Miscellaneous
getPrivateData, freePrivateData, setFlags, getStatfs, clearFlags,
checkFlags

Statfs Class

This is the class for handling the statistics information of the file system.

• void setName(const String& name)
This sets the name of the file system to name.

• void setPath(const String& path)
This sets the directory on which the file system is mounted to path.

• void setFsName(const String& fsname)
This sets the file system specific name to fsname. For example, fsname is
a hostname from which the file system is mounted for NFS.

• long getFsid()
This returns a part of the identifier for the file system.

• long getFullFsid()
This returns the full identifier for the file system.

• Miscellaneous
getName, getPath, getFsName, setFlags getFlags, changeFlags,
setBlockSize, getBlockSize, setIOSize, getIOSize, setBlockNum,
getBlockNum, setFreeBlockNum, getFreeBlockNum, setAvailBlockNum,
getAvailBlockNum, setNodeNum, getNodeNum, setFreeNodeNum,
getFreeNodeNum

Vnode Class

This is the class for handling the file node.

• void setPrivateData(void* data)
This sets the file system specific data for this vnode to data.
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• void setType(enum vtype type)
This sets the type of this vnode. For example, VREG is for a regular file,
VDIR is for a directory, and so on.

• void setFlags(u long flag)
This sets the bits of flag in the flag. The type of the flag is VROOT for the
root vnode, and so on.

• void lock()
This sets the lock flag.

• void wait(int priority = -1, const char* msg = "")
This makes the current thread sleep until wakeup() is called for the vnode.
priority and msg are passed to System::sleep().

• void wakeup()
This wakes up the thread made sleep by wait().

• void vref()
This checks that the reference count of users is positive and then incre-
ments it.

• void vput()
This calls FileSystem::unlock() and then calls vrele().

• void vrele()
This decrements the reference count of users. If the count gets 0, it calls
FileSystem::inactive().

• void vhold()
This increments the reference count of pages and buffers.

• void holdRele()
This checks that the reference count of pages and buffers is positive and
then decrements it.

• int vget(int lockflag)
This increments the reference count of users and calls FileSystem::lock()
if lockflag is 1.

• int vinvalBuf(int flags, Ucred* cred, Proc* p)
This flushes out and invalidate all buffers associated with the vnode.

• void vclean(int flags)
This disassociates the file system from the vnode. This calls
FileSystem::inactivate() if necessary, and then calls
FileSystem::reclaim().

• void vgone()
This calls vclean.
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• void cachePurge()
This flushes the cache for the vnode.

• void vwakeup(Buf* bp)
This updates outstanding I/O count and does wakeup if requested.

• int vaccess(mode t file mode, uid t uid, gid t gid,
mode t acc mode, Ucred* cred)

This checks for the access right of the vnode.

• BufList* getCleanList()
This returns the list of clean buffers associated with the vnode.

• BufList* getDirtyList()
This returns the list of dirty buffers associated with the vnode.

• int lookup(Nameidata* ndp)
This looks up the pathname. Programmers should pass ndp whose vnode
for a starting directory and component name are set.

• Miscellaneous
getPrivateData, freePrivateData, getType, setTag, getTag, getUseCount,
getNumOutput, getWriteCount, getHoldCount, clearFlags, checkFlags,
getMount, getDevice, unlock, isLocked, isWaiting, incrUseCount,
decrUseCount, incrNumOutput, decrNumOutput, decrHoldCount, destroy

Vattr Class

This is the class for an attribute of a vnode.

• void setUid(uid t uid)
This sets the owner user ID to uid.

• void setBytes(u quad t bytes)
This sets the size of disk space held by a file to bytes.

• void setMode(u short mode)
This sets the file access mode to mode. The mode is VREAD, VWRITE, and/or
VEXEC.

• Miscellaneous
getUid, setGid, getGid, getBytes, setBlockSize, getBlockSize,
setGeneration, setFlags, changeFlags, setType, setFsid, setDevice,
getDevice, getMode, setNLink, getNLink, setFileid, getFileid, setSize,
getSize, setAccessTime, getAccessTime, setChangeTime, getChangeTime,
setModifiedTime, getModifiedTime, create, destroy
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Nameidata Class

This is the class for pathname lookup.

• void setPathLength(int len)
This sets the length of a pathname to len.

• void setStartDir(Vnode* vp)
This sets the vnode for a starting directory.

• Vnode* getVnode()
This returns the vnode of the result of pathname lookup.

• Vnode* getParentVnode()
This returns the vnode of a directory where the result vnode is.

• getCompName, getStartDir, getParentVnode, create, destroy

CompName Class

This is the class for a component name used in pathname lookup.

• const String& getName()
This returns the pathname to be looked up.

• void setNameiOp(u long op)
This sets the operation for which the pathname lookup is done. The op-
eration is LOOKUP, CREATE, DELETE, or RENAME.

• void setPathName(const String& path)
This sets the pathname to path.

• Miscellaneous
getNameLen, setFlags, checkFlags, changeFlags, setUcred, getUcred,
setProc, getProc, freePathname

Buf Class

This is the class for handling the file buffer.

• void lock()
This sets the lock flag.

• void setBusy()
This sets the busy flag.

• void wait(int priority = -1, const char* msg = "")
This makes the current thread sleep until wakeup() is called for this buffer.

• void wakeup()
This wakes up the thread made sleep by wait() for this buffer.
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• void setFlags(long flag)
This sets the bits of flag in the flag. The type of the flag is B ASYNC for
asynchronous I/O, B DELWRI for delayed I/O, B READ for reading a buffer,
and so on.

• void setResident(long resid)
This sets the size of data remaining in this buffer.

• void setDirtyOffset(int off)
This sets the offset of dirty region in this buffer.

• void setDirtyEnd(int end)
This sets the end of dirty region in this buffer.

• void bremFree()
This removes this buffer from the free list.

• void brelse()
This release this buffer on to the free list.

• void brelVp()
This disassociates this buffer from a vnode.

• void bgetVp(Vnode* vp)
This associates this buffer with the vnode vp.

• int bwrite()
This writes out the contents of this buffer.

• int bioWait()
This waits for operations on this buffer to complete. This method returns
an error if it fails the operations.

• void bioDone()
This marks I/O complete on this buffer. If the operations are not asyn-
chronous, it wakes up a thread waiting for this buffer.

• int bread(Ucred* cred, int async = 0)
This reads a disk block to this buffer.

• void clrBuf()
This clears the data area of this buffer by zero.

• void copyIn(caddr t addr, int size = -1, off t offset = 0)
This copies memory of addr to this buffer with the offset offset by size.

• void copyOut(caddr t addr, int size = -1, off t offset = 0)
This copies the data of this buffer with the offset offset to memory of
addr by size.
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• Buf* getBlock(Vnode* vp, daddr t lblkno, int size)
This is a static method. This returns a new buffer with the size of size.
If a buffer associated with the vnode vp and the logical block number
lblkno exists, this returns it.

• Miscellaneous
unlock, isLocked, clearBusy, isBusy, isWaiting, setPhysicalBlockNum,
getPhysicalBlockNum, setLogicalBlockNum, getLogicalBlockNum,
setVnode, getVnode, setReadUcred, getReadUcred, setWriteUcred,
getWriteUcred, getSize, getResident, setError, setProc, setDevice,
getDirtyOffset, getDirtyEnd, setValidOffset, getValidOffset,
setValidEnd, getValidEnd, getData

Uio Class

This is the class for handling a universal I/O buffer.

• int read(Vnode* vp, daddr t lblkno, int xfersize, off t offset,
int blksize, Ucred* cred)

This calls FileSystem::strategy and then copies the contents of the file
buffer read to this buffer. lblkno indicates the logical block number to
be read. The file is read from offset by xfersize.

• int bulkRead(Vnode* vp, int blksize, int filesize, Ucred* cred)
This reads the contents of a file to this buffer by filesize, repeating to
call read().

• int write(Vnode* vp, daddr t lblkno, int xfersize, off t offset,
int blksize, int filesize, Ucred* cred)

This fills the contents of this buffer to a file buffer and then calls
FileSystem::strategy to write out the buffer to a file.

• int bulkWrite(Vnode* vp, int blksize, int filesize, Ucred* cred)
This writes out the contents of this buffer to a file by filesize, repeating
to call write().

• void setOffset(off t off)
This sets the offset at which the operation should start.

• void setResident(int resid)
This sets the size of data remaining in this buffer.

• void setIovec(struct iovec* iov, int iovcnt = 1)
This sets the I/O vector array to this buffer. The size of array is iovcnt.

• int copyIn(caddr t cp, int size)
This fills this buffer with the contents of cp by size.

• int copyOut(caddr t cp, int size)
This copies the contents of this buffer to cp by size.
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• Miscellaneous
getOffset, getResident, setProc, getProc, getIovec, getIovCount

DirEntry Class

This is the class for a directory entry.

• DirEntry(u int32 t fileno, u int16 t reclen, u int8 t type,
const String& name)

This is a constructor of DirEntry class.

• int pack(Uio* uio)
This copies the directory entry to uio.

• Miscellaneous
length, getType, getFileNo, getNameLen, getName

Ucred Class

This is the class for credentials.

• void setGroupMembers(gid t* groups, int ngroups)
This sets the members of the group to the array groups with the size of
ngroups.

• Bool isGroupMember(gid t gid)
This returns True if gid is a member of the group.

• void crHold()
This increments the reference count.

• Miscellaneous
setUid, getUid, setGid, getGid, getGroupMembers, getGroupNum

Miscellaneous Classes

• VnodeList
This is the class for a list of vnodes. The methods are the same with List
class.

• BufList
This is the class for a list of buffers. The methods are the same with List
class.

• BufQueue
This is the class for a queue of buffers. The methods are the same with
TailQueue class.

C.2.3 Classes for Network Subsystem

The following classes are used in network subsystem modules.



APPENDIX C. API FOR EXTENSION MODULES 146

MbufChain Class

This is the class for handling a mbuf chain.

• int length()
This returns the length of this mbuf chain.

• int remain()
This returns the remaining size for dissect.

• int build(caddr t cp, int size)
This fills this mbuf chain with the data cp with the size of size.

• int build(SockBuf* sb, int off, int size)
This fills this mbuf chain with the data of the socket buffer sb. The data
is copied from the offset off by size.

• int buildAsBytes(caddr t* cp, int size)
This reserves the space for data of size in this mbuf chain and returns a
pointer to the data to *cp.

• int buildAsIovec(struct iovec** iov, int size)
This reserves the space for I/O vector array of size in this mbuf chain
and returns a pointer to the array to *iov.

• int append(MbufChain* mc)
This appends the mbuf chain mc to the end of this mbuf chain.

• int prepend(MbufChain* mc)
This appends this mbuf chain to the end of the mbuf chain mc.

• int dissect(caddr t cp, int size)
This copies the data in this mbuf chain from the dissect point by size.
The dissect point is advanced by size.

• int advance(int size)
This advances the dissect point by size.

• int trimHead(int size)
This trims the data from the head of this mbuf chain by size.

• int checkSum(int len)
This calculates checksum for the front of this mbuf chain by len.

• MbufChain* create(int type = MT DATA)
This is a static method. This creates a new mbuf chain with the type of
type. If creating a packet header, users must pass MT HEADER as type.

• Miscellaneous
resetDissect, buildAsWord, dissectAsPointer, padding, trimTail,
destroy
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InPcb Class

This is the class for a internet protocol control block.

• void setLocalAddr(struct in addr addr)
This sets the local address of the socket with this protocol control block
to addr.

• void setForeignAddr(struct in addr addr)
This sets the address of a socket connected with the socket with this pro-
tocol control block to addr.

• void setPrivatePcb(caddr t ppcb)
This sets the protocol specific protocol control block to ppcb.

• void setState(int state)
This sets the state of this protocol control block to state. The state is
INP ATTACHED, INP BOUND, or INP CONNECTED.

• void setOptions(MbufChain* m)
This sets the IP options to m.

• void setSockAddr(SockAddr* nam)
This fills nam with the address and port of the socket with this protocol
control block.

• void setPeerAddr(SockAddr* nam)
This fills nam with the address and port of a socket connected with the
socket with this protocol control block.

• RtEntry* getRtEntry()
This returns the routing table entry. If the entry does not created, it cre-
ates a new routing table entry.

• int bind(SockAddr* nam, Proc* p)
This binds nam to the socket with this protocol control block.

• int connect(SockAddr* nam)
This connects the socket with this protocol control block with a socket
specified by nam.

• void disconnect()
This disconnects the socket with this protocol control block from the con-
nected socket.

• InPcbQueue* getInPcbQueue()
This is a static method. This returns the queue of protocol contorol blocks
of the network subsystem.
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• InPcb* lookup(struct in addr faddr, u int16 t fport,
struct in addr laddr, u int16 t lport)

This is a static method. This looks up a protocol control block using a
foreign address faddr, a foreign port fport, a local address laddr, and a
local port lport.

• Miscellaneous
getLocalAddr, getForeignAddr, setLocalPort, getLocalPort,
setForeignPort, getForeignPort, getSocket, getIp, getRoute, getOptions

Ip Class

This is the class for handling IP.

• void setSrcAddr(struct in addr src)
This sets the source IP address to src.

• void setDstAddr(struct in addr dst)
This sets the destination IP address to dst.

• int output(MbufChain* m, MbufChain* opt, Route* ro, int flags,
MbufChain* mopt)

This is a static method. This attaches an IP header and the IP options
opt to the packet m and passes it to a lower network layer, e.g. ethernet
device driver.

• int ctloutput(int op, Socket* so, int level, int optname,
MbufChain*& mp)

This is a static method. This processes a socket option for IP

• void stripOptions(MbufChain* m)
This is a static method. This strips out IP options from the packet m.

• int control(Socket* so, u long cmd, caddr t data, IfNet* ifp,
Proc* p)

This is a static method. This processes generic internet control operations.
The arguments cmd and data are the same with those of ioctl system
call.

• Miscellaneous
getSrcAddr, getDstAddr, setTtl, getTtl, getTos, getOptLen

Socket Class

This is the class for handling a socket.

• void setOptions(short options)
This sets the bits of options in the socket option. The type of the option
is SO DONTROUTE, SO REUSEADDR, and so on.
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• void setState(short state)
This sets the bits of state in the socket state. The type of the state is
SS NBIO for non-blocking operations, SS ASYNC for asynchronous I/O, and
so on.

• Bool hasQueueingSpace()
This returns True if there is a space to queue a new connection. The limit
is determined by listen system call.

• InPcb* allocateInPcb()
This allocates a new protocol control block.

• SockBuf* getSndBuf()
This returns the send buffer.

• Socket* getNewConn(int connstatus)
This creates a new socket with the state of connstatus.

• int reserve(u long sndcc, u long rcvcc)
This reserves buffer spaces for send and receive to sndcc and rcvcc, re-
spectively.

• int abort()
This aborts sending packets.

• void cantSendMore()
This makes this socket not send any more packets.

• void wakeupRead()
This wakes up a thread waiting for socket read.

• int connect(SockAddr* addr)
This connects this socket with a socket specified by addr.

• int shutdown(int how)
This shuts down part of a full-duplex connection.

• int close()
This disconnects if this socket is connected and then close this socket.

• int send(SockAddr* addr, MbufChain* m, int flags)
This sends a packet m to the address addr.

• int receive(SockAddr** paddr, MbufChain** m, int* flagsp)
This reads a pakcet from the receive buffer and the pointer is set in m.

• void setUpcall(NetworkSystem* ns)
This sets up so that NetworkSystem::soUpcall() for ns is called by a
socket upcall. The socket upcall is done when this socket is woken up for
read.
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• Socket* create(int dom, int type, int proto)
This is a static method. This creates a new socket with the arguments of
socket system call and returns it.

• Socket* create(int fd)
This is a static method. This returns a socket corresponding to fd.

• Miscellaneous
getOptions, checkOptions, clearState, checkState, getProtoSw,
getRcvBuf, setConnecting, setConnected, setDisconnecting,
setDiconnected, setError, cantRecvMore, wakeupWrite, clearUpcall,
destroy

SockBuf Class

This is the class for handling a socket buffer.

• void setHighWatermark(u long hiwat)
This sets the maximum buffer size to hiwat.

• int getSpace()
This returns the size of space in this buffer.

• MbufChain* getMbufChain()
This returns data in this buffer as a mbuf chain.

• int reserve(u long cc)
This checks for the value of cc and sets the maximum buffer size to it if
acceptable.

• void drop(int len)
This drops data from the front of this buffer by the size of len.

• Bool needNotify()
This returns True if I/O is possible. It is used to to notify the other sock-
ets.

• Bool appendAddr(SockAddr* asa, MbufChain* m0,
MbufChain* ctrl)

This appends the address asa, the data m0, and control data ctrl to this
buffer.

• void append(MbufChain* m)
This appends the data m to this buffer.

• Miscellaneous
getHighWatermark, setLowWatermark, getLowWatermark, size
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SockAddr Class

This is the class for an socket address.

• void setAddr(in addr addr)
This sets the IP address to addr.

• Bool isNullHost()
This returns True if this socket address points to null address.

• Miscellaneous
length, getAddr, setPort, getPort, isMulticast, isBroadcast

IfAddr Class

This is the class for an interface address of internet.

• struct in addr getAddr()
This returns the internet address.

• Miscellaneous
getIfNet, getSockAddr, getBroadAddr, create, destroy

IfNet Class

This is the class for a network interface.

• u long getMtu()
This returns the value of maximum transmission unit (MTU).

• Miscellaneous
checkFlags

Route Class

This is the class for a route.

• SockAddr* getDstAddr()
This returns the destination address.

• void allocateRtEntry()
This allocates a new routing table entry.

• Miscellaneous
setRtEntry, getRtEntry, freeRtEntry
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RtEntry Class

This is the class for a routing table entry.

• Bool checkFlags(short flags)
This returns True if the bits of flags are set in the flag. The type of the
flag is RTF UP for an usable route, RTF HOST for a host entry, and so on.

• SockAddr* getGwAddr()
This returns the gateway address.

• SockAddr* getNetmask()
This returns the network mask.

• Miscellaneous
getFlags, getIfNet, getIfAddr, getRtMetrics, getDstAddr

RtMetrics Class

This is the class for route metrics.

• u long getMtu()
This returns the maximum packet size called maximum transmission unit
(MTU).

• Bool checkLocks(u long locks)
This returns True if the bits of locks are set in the lock flag. The type of
the flag is RTV MTU, RTV RPIPE, RTV RTT, and so on.

• Miscellaneous
setPecvPipe, setThreshold, getThreshold, setRtt, getRtt, setRttVar,
getRttVar, getSendPipe



Appendix D

Kernel Functions for the
Protection Manager

Some of kernel functions for the parameter of the kernfunc system call are
listed in Table D.1.

Table D.1: Kernel functions available to the protection manager.

command description
KF UCINTR This changes an upcall enable flag according to the ar-

gument.
KF WAKEUPALL This wakes up a kernel thread waiting for the identifier

specified by the argument.
KF GET NEW FSID This returns a unique file system identifier.
KF VREF This increments a reference count of a vnode of a file

system in the kernel. This is used for NFS to access file
systems in the kernel.

KF IP OUTPUT This calls the output routine of an IP layer.
KF SOSEND This sends a packet. The mbuf chain passed as the ar-

gument is copied to the kernel memory so that it can be
accessed in interrupt handlers of a network device driver.

KF RTALLOC This allocates a new routing table entry.
KF SOSETUPCALL This sets an upcall handler for a socket. The upcall is

done when the socket receives packets.
KF KERNFS * This executes a function provided by a file system in the

kernel. * is LOCK, UNLOCK, GETATTR, READ, WRITE, and
so on. This is used for NFS to access file systems in the
kernel.
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