
A New Optimization Technique for the Inspector-Executor Method
Daisuke Yokota

Doctoral Program in Engineering
University of Tsukuba

Tsukuba, Ibaraki, Japan
email: daisuke@hlla.is.tsukuba.ac.jp

Shigeru Chiba
Department of Mathematical and Computing Sciences

Tokyo Institute of Technology
Meguro-ku, Tokyo, Japan

email: chiba@is.titech.ac.jp
Kozo Itano

Department of Information Science and Electronics
University of Tsukuba

Tsukuba, Ibaraki, Japan
email: itano@is.tsukuba.ac.jp

ABSTRACT
This paper presents our HPF compiler using our modified
inspector-executor method for implementing accesses to a
distributed array. In our modified method, a compiler runs
an inspector during compile time to obtain the information
of data dependency among node processors, and it uses that
information to optimize communication code included in
the executor. This paper presents our idea, performance
improvement shown by our prototype compiler, and limita-
tions of our method.

KEY WORDS
distributed memory machine, compiler, optimizing com-
munications, inspector-executor

1 Introduction

Computer simulation is nowadays a significant research
tool in natural sciences like physics and astronomy. Re-
searchers use high-performance parallel computers with
more than a thousand processors and they simulate natural
phenomena. For example, their programs repeatedly cal-
culate the energy of every particle in a simulated space at
every time tick so that they could investigate a new physical
model.

Since their programs exchange a large amount of data
between node processors, the ability of compilers to opti-
mize inter-processor communication is significant. In this
application domain, long compilation time for strong opti-
mization is acceptable; a single run of the compiled code
often takes a week or more. Manual optimization of inter-
processor communication by programmers is not realistic.
Since the programmers are not computer engineers but usu-
ally physicists or astronomers, we should not expect that
they have detailed knowledge of underlying hardware or
complicated programming magic.

This paper presents our Fortran compiler providing
HPF-like directives [8]. Our compiler uses the inspector-
executor method [3] for producing communication code for
exchanging data among node processors. A unique feature

of our compilation is that data dependency among node
processors, which is reported by the inspector, is used for
statically optimizing the communication code in the execu-
tor. In the current implementation, our compiler first pro-
duces only inspector code and then runs it as part of compi-
lation process. After the inspector reports the data depen-
dency among node processors, our compiler collects that
dependency information and uses it for producing executor
code optimized with respect to inter-processor communi-
cation. This optimization includes constant folding at com-
pile time. The final compiler-output includes only the ex-
ecutor code statically optimized with the given data depen-
dency. The users run that executor for their simulation. Due
to this architecture, our compiler cannot correctly compile
a program if data dependency in the program changes dur-
ing runtime.

This somewhat odd compiler has been experimentally
developed for studying the feasibility of our idea. Our re-
search goal is to develop a compiler producing executable
binary that can dynamically recompile the executor to be
optimal if the inspector reports that data dependency is
changed during runtime. However, we believe that the cur-
rent prototype of our compiler is already useful in practice.
According to our interview with our users, who are nat-
ural scientists, typical simulations for computational sci-
ences show complex data dependency that the inspector-
executor method is needed to analyze. However, the de-
pendency is not chaos; there is some regularity that can
be used for static optimization. Also, the data dependency
never changes during simulation.

The organization of the rest of the paper is as follows.
Section 2 presents overview of our compiler architecture.
Section 3 shows optimization techniques that our compiler
applies. Section 4 mentions the flow of the compilation
with our compiler. Section 5 illustrates the performance
of the optimization by our compiler. Section 6 discusses
related work and Section 7 concludes this paper.

2 Our Compiler Architecture

Our compiler accepts a Fortran program written with a sub-
set of HPF directives. The target machine is CP-PACS
and Pilot3 [13], which are parallel computers of Center
for Computational Physics at University of Tsukuba. CP-
PACS has 2048 processors and Pilot3 has 128 processors.
CP-PACS and Pilot3 are not shared memory machines; ev-
ery node processor has local memory. The node processors
are connected with each other by hyper crossbar network,
which is three dimensional in CP-PACS and is two dimen-
sional in Pilot3. The theoretical peak performance of CP-
PACS is 614Gflops.

Since CP-PACS and Pilot3 have unique hardware,
called remote DMA (Direct Memory Access), for network
communication, the executable binary generated by our
compiler exploits that hardware to improve the execution
performance. (1) Remote DMA enables to transfer data
between node processors with the minimum software inter-
vention. The receiver processor does not have to explicitly
read network port and store the read data on memory. (2)
Remote DMA also enables block-stride communication, in
which the transferred data does not need to be stored on
contiguous memory area. The hardware can read multi-
ple data blocks placed on memory at regular intervals and
transfer to network as a single packet. (3) The last feature
of remote DMA is communication reusing TCWs (trans-
fer control words). If a node processor repeatedly transfers
data to the same memory address on the same destination
node processor, it can set up the network hardware in ad-
vance and performs low-latency data transfer.

Our compiler automatically distributes elements of ar-
ray data to each node processor according to HPF directives
embedded in the source program. Data exchanges among
processors are implemented by an extended inspector-
executor method we have developed. The inspector-
executor method is appropriate for parallelizing a program
performing complicated data access.

A typical simulation for computational sciences is de-
scribed as a program consisting of nested loop statements.
We call them the inner loops and the outer loop (Figure 1).
The inner loops are for computing new values of array ele-
ments from old values. Some of them are marked with the
independent directive. The compiler may parallelize
those loops with the inspector-executor method. On the
other hand, iterations of the outer loop are sequentially ex-
ecuted. They increment the clock of the simulated time and
invokes the inner loops.

In the original inspector-executor method, the body
of the inner loop is compiled so that it is executed in two
stages. The first stage is called inspector and the second
is called executor. The inspector goes through the loop
body and records when and which array elements are ac-
cessed during the execution. It does not actually perform
inter-processor communication. Then, the executor runs
for performing inter-processor communication according
to the data dependency obtained by the inspector. It also

DO I=0,[Huge number]

END DO

DO
 :
 :
END DO

OUTER LOOP

INNER LOOP

Figure 1. The inner loop and the outer loop

performs computation described in the loop body.

Since both the inspector and the executor are run at
runtime, optimizing network communication is not easy
with the original inspector-executor method. If the pro-
grammer guarantees that the data dependency between pro-
cessor nodes in the inner loop never changes among the
iterations of the outer loop, the inspector can be run only
once at the first iteration of the outer loop. Although this
significantly reduces the runtime overheads due to running
the inspector, the executor still includes runtime overheads.
The executor must access the data-dependency information
obtained by the inspector and decide what array elements
node processors must exchange with each other. This run-
time inquery decreases the execution performance.

Our compiler separately generates the inspector code
and the executor code. It first generates the inspector code
and runs it as a stage of compilation. Then it analyzes the
data-dependency information obtained by the inspector and
it finally generates the executable binary of the compiled
source program, which includes only the executor code.
Since our compiler can apply various static optimization
techniques to the executor code, the executable binary can
include statically optimized executor code. Since the ex-
ecutable binary does not include the inspector code, our
compiler requires the programmers to guarantee that the
data dependency does not change among iterations of the
outer loop. We do not think that this feature is a major de-
fect of our compiler because typical simulations for com-
putational sciences satisfy this feature.

For deeply analyzing data dependency, we have im-
plemented our compiler on a parallel computer, which
is not CP-PACS but a PC cluster. Our compiler runs
an inspector in parallel as the original inspector-executor
method runs an inspector in parallel. However, the inspec-
tor generated by our compiler performs more aggressive
examination of data dependency as presented in the next
section.

3 Optimization

Our compiler applies three optimization techniques to the
executor code with respect to network communication.
They are constant folding, packing multiple messages into
a single one, and optimal allocation of loop iterations.

3.1 Constant folding

Our compiler performs constant folding as much as possi-
ble. In a typical implementation of the original inspector-
executor method, an inspector produces a table represent-
ing data dependency. An executor looks up that table at
runtime to get the node processors that array elements must
be sent to or received from. Our compiler eliminates this ta-
ble lookup since the contents of the table are constant. The
table lookup is replaced with a linear expression including
only loop index variables and constants (Figure 2).

If the node processors that array elements are ex-
changed with are statically known, an executor can improve
the speed of data transfer by reusing TCWs (Transfer Con-
trol Words). TCWs are data blocks specifying the destina-
tion of a network packet. The executor can prepare TCWs
in advance to avoid redundantly preparing TCWs at every
iteration of the loop (Figure 3).

Figure 2. eliminating table lookup

Figure 3. Reusing TCWs

3.2 Packing multiple messages

Our compiler merges several messages sent through net-
work into a single message if possible. This reduces the
number of messages and thus improves average throughput
because every message implies inherent handling overhead.

Messages sent in the iterations of the loop with the
independent directive can be merged into a single mes-
sage if they are transferred from the same source to the
same destination. The independent directive specifies
that the result of the execution of that loop is independent
of the execution order of the iterations. In other words, the
iterations can be executed in parallel.

Our compiler examines the source and destination of
the messages sent in the iterations. To do this, it uses
the data-dependency information obtained by the inspector.
Then, it collects the messages sent from the same source
to the same destination. Our compiler merges messages if
the transferred data are stored at contiguous memory ad-
dresses. The hardware of our target machines, called re-
mote DMA, directly transfers such data without extra mem-
ory copies. Our compiler also uses the block-stride com-
munication provided by the remote DMA. If the transferred
data are stored in memory blocks at regular intervals, our
compiler also merges messages. The hardware packs those
memory blocks into a single message to send. At the des-
tination, the hardware unpacks the message and stores the
transferred data on memory at regular intervals.

3.3 Allocating iterations

Our compiler distributes array elements to node processors
according to HPF directives specified by the programmers.
The whole array is divided into multiple blocks and every
node processor holds only one of the blocks on the local
memory. The programmers are responsible for how the ar-
ray is divided and which node processor holds each block.

If our compiler encounters a loop statement with the
independent directive, it also distributes iterations of
that loop statement to node processors. However, the itera-
tions are distributed without the programmers’ support.

Suppose that a do loop iterates its body n-times. If
the number of node processors is N , a naive distribution
of the loop iterations is that every node processor executes
contiguous n

N
iterations. However, this naive distribution

may not be optimal with respect to the amount of data ex-
changed among node processors through network.

To optimize the amount of the exchanged data, our
compiler can allocate adjacent iterations to different node
processors. It selects the best node processor that each iter-
ation is allocated to under the data distribution specified by
the programmer. To do this, the inspector examines all the
possible allocations of loop iterations and selects the best
one.

If loop statements with the independent directive
are nested, our compiler parallelizes only one loop state-
ment so that it minimizes the amount of data exchanged
among node processors; it does not parallelize the others.
Our compiler examines all the loop statements for selecting
the best one.

For each iteration and each node processor, the in-
spector computes the amount of exchanged data during the
iteration in the case that the node processor executes that
iteration. Then, the inspector selects a node processor for
every (from the first to the last) iteration. (1) For the i-th it-
eration, if the inspector finds the single best node processor
that minimizes the amount of exchanged data, that iteration
is allocated to that node processor. (2) If the inspector finds
multiple best for the i-th iteration, the iteration is allocated
to the node processor that executes the (i � 1)-th iteration

among the best ones. (3) If no node processor executes the
(i � 1)-th iteration, the iteration is allocated to the node
processor that executes the smallest number of iterations
among the best ones. (4) Otherwise, if there are multiple
candidates in the rule (3), then the iteration is allocated to
the node-0 processor.

In this algorithm, all the iterations can be allocated to
the single node processor. Although this allocation means
that those iterations are sequentially executed, our compiler
selects this allocation since parallel execution of those iter-
ations would cause serious communication overheads.

4 Implementation

Our compiler accepts Fortran 77 with some of the HPF di-
rectives [9], which are independent, processor, and
distribute(block). It also supports our original di-
rective outer, which are used to explicitly specify outer
loops.

Figure 4 illustrates the flow of the compilation. Our
compilers run on a PC-cluster computer so that several
compilation stages are executed in parallel and thus aggres-
sive optimization is feasible. (1) First, a source program
is sent to all the node PCs, which generate the inspector
code. (2) Then, the inspectors runs on every node PC. It
produces the log including the data dependency informa-
tion of the compiled program. (3) The produced log is an-
alyzed on every node PC. The amount of exchanged data
is computed for all the possible allocations of iterations of
the inner loops. (4) The results of the previous stage are
collected on the master node PC. Then the master PC de-
termines the allocation of the iterations to node processors
of the target machine. (5) The determined allocation is sent
to all the node PCs. Each node PC attempts to pack multi-
ple messages into one. (6) All the information of messages
sent from every node processor is exchanged through the
master node PC. (7) After that, every node PC generates fi-
nal code including the executor code. (8) All the final code
is collected on the master node PC, which merges it into a
SPMD code. This SPMD code is compiled by a backend
Fortran compiler into executable binary.

The last stage (8) is necessary since the backend com-
piler of our target machine only accepts a SPMD program.
At execution time, our target machine loads a single bi-
nary image into all the node processors. Although the sim-
plest way to produce a SPMD program is to just concate-
nate all the programs for every node processor, it extremely
increases the length of the produced program. Hence our
compiler merges those programs at statement level so that
the length of the produced program is acceptable.

Our compiler can correctly compile only the pro-
grams satisfying the following restrictions. First, the data
dependency among node processors must not change for
every iteration of the outer loop. Second, the data depen-
dency must be independent of the values of the array el-
ements distributed to every node processor. For example,

our compiler cannot correctly compile the IS program in
the NAS parallel benchmarks.

Figure 4. The flow of compilation

5 Experiment

We measured the execution performance of a few bench-
mark programs compiled by our compiler. The bench-
mark programs are pde1 from the genesis distributed
benchmarks[10],[12], FT and BT from the NAS parallel
benchmarks[11],[12]. The task size parameter N of pde1
was 7. FT and BT were class A.

The target machine was Pilot3 with 16 nodes proces-
sors. The PC-cluster computer we used for compilation
consisted of 16 node PCs, which run Redhat 7.1 Linux on
PentiumIII 733MHz with 512 Mbyte memory. The back-
end compiler was a commercial Fortran compiler by Hi-
tachi (version 02-06-/C + 02-06-XF + 02-06-XJ) running
on a single node of Pilot3.

5.1 Execution time

We first shows comparison between the execution time of
the compiled executable code and the number of node pro-
cessors (Figure 5, 6, and 7). In these figures, we also
showed the execution time of the executable code com-
piled by a commercial HPF compiler (version 02-05) by
Hitachi for the target machine. Our compiler showed def-
initely better results against Hitachi’s compiler with re-
spect to both the absolute execution time and the scalabil-
ity. This is because Hitachi’s compiler is a traditional opti-
mizing compiler and hence it cannot generate efficient ex-
ecutable code without detailed control by the programmers
with more HPF directives than we inserted in the bench-
mark programs.

Figure 7 also shows the execution time of the exe-
cutable code compiled with the original inspector-executor
method. This executable code dynamically performs op-
timization equivalent to one presented in Section 3.2
although our compiler statically performs it. At run-
time, this code tries to dynamically pack multiple mes-
sages. Thus, the difference between our compiler and this
inspector-executor method is effects of constant folding.

Figure 7 shows that our compiler was 4.9% faster than
this inspector-executor method when 16 node processors
are used.

Figure 5. FT-classA Speedup

Figure 6. BT-classA

Figure 7. pde1,N=7

5.2 Compilation time

Our compiler takes longer compilation time than traditional
compilers. For example, our compiler takes 207 seconds to
compile the pde1 benchmark for 16 node while the original
inspector-executor method takes 85 seconds. The differ-
ence is 122 (= 207� 85) seconds, which is bigger than the
improvement of the execution time (262 � 249 = 13 sec-
onds). To pay this extra compilation time off, we have to
modify the benchmark program so that it iterates the outer
loop more than 9,400 times instead of the original 1,000
times. However, we do not think that this is a serious prob-
lem since the applications of our compiler is simulation

programs, which iterate the outer loop a huge number of
times.

Figure 8. FT-classA compilation time

Figure 9. BT-classA compilation time

Figure 10. pde1,N=7 compilation time

Figure 8, 9, and 10 show the break down of the com-
pilation time by our compiler. To compile the benchmark
programs, we used a PC-cluster computer with the same
number of node PCs as the number of node processors of
the target machine. If we compile for 4 node processors, we
used 4 node PCs for compilation. In the figures, backend
represents the time consumed by the backend compiler, se-
quential represents the time by the master node PC, parallel
represents the time by all the node PCs running, and data
exchange represents the time for exchanging data among
node PCs.

These figures illustrate that the backend compiler took
proportional time to the number of node processors since
the generated SPMD code for a larger number of node pro-
cessors tends to be longer. The time consumed by the back-

end compiler could be reduced if our compiler can opti-
mally merges programs into a SPMD code at the last stage.

The compilation time of BT was unacceptably long.
Most of the time was spent to exchange data among node
PCs. Since accesses to the distributed array spread over the
program, the size of the exchanged data was huge.

6 Related Work

Although there have been a number of research activities on
optimization techniques for the inspector-executor method,
few activities have been dealing with a technique enabling
constant folding like our proposal. Most of the activities
have been dealing with runtime optimization that does not
need to generate specialized code. Ponnusamy et al studied
a scheduling algorithm of data transfer and so on [5]. Wu et
al proposed a technique of packing multiple packets into a
single one to reduce overheads due to packet handling [7].
Viswanathan et al studied a distributed memory system per-
forming optimization with runtime information [6]. Das
et al developed a middleware system using the inspector-
executor method for transferring data among node proces-
sors [1]. Ding et al studied the use of runtime information
for optimizing cache consistency maintenance[2].

As for research activities on code specialization,
few activities have been dealing with parallel computing.
Philippsen et al [4] studies the use of compile-time and run-
time information for optimally allocating objects on a node
processor so that inter-node data exchange is minimized. If
the best allocation is not statically determined, objects are
dynamically allocated with runtime information.

7 Conclusion

This paper presented our Fortran compiler providing a sub-
set of HPF directives. It uses our extended version of
inspector-executor method for implementing accesses to a
distributed array specified with HPF directives. A unique
feature of our compiler is that the inspector runs during
compilation time. The compiler exploits the data depen-
dency information reported by the inspector and it gener-
ates the executable code including only the executor. This
allows the compiler to generate executable code statically
specialized for the reported data dependency. For this ag-
gressive optimization, our compiler runs in parallel on a
PC-cluster computer. This paper presented effects of this
optimization with results of experiments. Although the ex-
periments showed the execution performance was signifi-
cantly improved, the compilation took long time. Further-
more, our compiler can compile only a program in which
data dependency does not change for every iteration of the
outer loop since the executable binary does not include the
inspector. However, these problems are not serious in the
application domain of our compiler, which is simulation for
natural science.

References

[1] R. Das, M. Uysal, J. Saltz and Y. S. Hwang, Com-
munication optimizations for irregular scientific com-
putations on distributed memory architectures, Techni-
cal Report CS-TR-3163, University of Maryland, Oct.,
1993.

[2] C. Ding and K. Kennedy, Improving cache perfor-
mance in dynamic applications through data and com-
putation reorganization at run time, In Program. Lan-
guage Design and Imple., 1999, 229-241.

[3] C. Koelbel and P. Mehrotra, Compiling Global Name-
Space Parallel Loops for Distributed Execution, IEEE
Trans. on parallel and distr. systems, 2(4), 1991, 440-
451.

[4] M. Philippsen and B. Haumacher, Locality optimiza-
tion in JavaParty by means of static type analysis, In
Proc. Workshop on Java for High Performance Net-
work Computing at EuroPar ’98, Southhampton, Sep.,
1998.

[5] R. Ponnusamy, J. Saltz, A. Choudary, Y. S Hwang and
G. Fox, Runtime Support and Compilation Methods
for User-Specified Irregular Data Distributions, IEEE
Trans. on parallel and distr. Systems, 6(8), 1995, 815-
831.

[6] G. Viswanathan and J. R. Larus, Compiler-directed
shared-memory communication for iterative parallel
computations, In Proceedings of Supercomputing ’96,
Pittsburgh, PA, Nov., 1996.

[7] J. Wu, R. Das, J. Saltz, H. Berryman and S. Hiranan-
dani, Distributed memory compiler design for sparse
problems, IEEE Trans. on computers, 44(6), 1995,
737-753.

[8] D. Yokota, S. Chiba and K. Itano, A Parallelizing Com-
piler Optimizing for Communication Devices, Infoma-
tion processing society of Japan journal, 42(4), 2001,
860-867.

[9] High Performance Fortran Forum
http://www.crpc.rice.edu/HPFF/home.html

[10] Nas Parallel Benchmarks
http://www.nas.nasa.gov/Software/NPB/

[11] J. Klose and M. Lemke, GENESIS Distributed Mem-
ory Benchmarks
http://www.pallas.de/

[12] Portland Group
ftp://ftp.pgroup.com/pub/HPF/examples

[13] Center for Computational Physics at Unversity of
Tsukuba
http://www.rccp.tsukuba.ac.jp

