
A Secure Access Control Mechanism against Internet Crackers

Kenichi Kourai
University of Tokyo

7–3–1 Bunkyo-ku, Tokyo
Japan 113–0033

kourai@is.s.u-tokyo.ac.jp

Shigeru Chiba
University of Tsukuba

1–1–1 Tennodai, Tsukuba, Ibaraki
Japan 305–8573
chiba@acm.org

Abstract

Internet servers are always in danger of being “hi-
jacked” by various attacks like the buffer overflow attack.
We propose the process cleaning technique for making an
access control mechanism secure against hijacking. To min-
imize damages in cases where the full control of the servers
is stolen, access restrictions must be imposed on the servers.
However, designing a secure access control mechanism is
not easy because that mechanism itself can be a security
hole. Process cleaning prevents malicious code injected by
a cracker from illegally removing access restrictions from
a hijacked server. In this paper, we describe the access
control mechanism of our Compacto operating system us-
ing process cleaning. According to the results of our exper-
iments, process cleaning can be implemented with accept-
able performance overheads.

1. Introduction

Internet servers, such as web servers and mail servers,
are always in danger of attacks by crackers. Their typical
attack is the buffer overflow attack [4], which injects ma-
licious code into a server and takes the full control of the
server, that is, “hijacks” it. Once a server is hijacked, the
cracker can use the server for performing malicious opera-
tions. To protect the servers from these attacks with negli-
gible costs, several techniques for detecting the buffer over-
flow attack have been developed, but those techniques can-
not detect all types of the buffer overflow attack. Thus, im-
posing access restrictions on a server is still necessary since
access restrictions minimize damages by the attack in cases
where the server is hijacked.

However, it is not easy to design an access control mech-
anism against hijacking. An access control mechanism
should prevent hijacked servers from illegally removing ac-
cess restrictions and obtaining higher privileges for access-
ing system resources. On the other hand, it must allow le-

gitimate servers to remove access restrictions if they need
higher privileges. Unfortunately, it is difficult to determine
whether a server is hijacked or not; even if the server has
not been hijacked yet, malicious code might have been al-
ready injected and might be activated later for hijacking the
server.

In this paper, we present a secure access control mecha-
nism provided by the Compacto operating system, which
we are developing. It allows the users to impose access
restrictions on a particular process. To prevent hijacked
servers from illegally removing access restrictions, we pro-
pose a new technique calledprocess cleaning. If a hijacked
process attempts to remove access restrictions, Compacto
recovers the process from malicious code that has hijacked
it. It first resets the thread of control so that the malicious
code terminates. Then it restores the state of the process and
thereby eliminates malicious code from the memory.

We also describe the implementation of process clean-
ing. Performance overheads of process cleaning is mainly
due to restoring a memory image. To reduce the overheads,
Compacto allows the users to choose a strategy for restoring
a memory image. To show performance improvement by
this technique, we measured the performance of the Apache
web server running on Compacto. We show the results of
this experiment and discuss the overheads of process clean-
ing.

The rest of this paper is organized as follows. Section 2
describes security risks caused by removing access restric-
tions. Section 3 presents process cleaning and describes de-
tails of the implementation. Section 4 shows the results of
our experiments. Section 5 concludes this paper.

2. Access Restrictions

The Compacto operating system, which we are devel-
oping, allows the users to impose access restrictions on a
server process. With this facility, Compacto can protect the
rest of the system if the server is hijacked, for example, by
the buffer overflow attack. Since preventing all hijacks is

not realistic, access restrictions are still necessary for mini-
mizing damages. Suppose that a hijacked server attempts to
modify a security-related system file. If the server is prohib-
ited from issuing thewrite system call on that file, Com-
pacto can deny that modification. Compacto also provides
thesetuid system call originating from UNIX for giving
a server process a lower access privilege.

2.1. Changing Access Restrictions

If access restrictions imposed on a server cannot be
changed during the execution of that server, several prob-
lems would happen in practice. Suppose that a web server
is serving both the Internet and Intranet users. The adminis-
trators would want to impose strict access restrictions on the
server while it is serving the Internet users. On the contrary,
they would want to impose loose ones while it is serving the
Intranet users. For example, while the server is handling a
request from an Intranet user, it should be able to read a file
that only the user can read.

Elevating the privileges of a process needs to remove
some access restrictions from the process. However, allow-
ing the users to remove access restrictions implies security
risks. At least, a hijacked server must be prevented from il-
legally removing access restrictions imposed on that server.
For example, theseteuid (notsetuid) system call pro-
vided by UNIX can be a security hole. It temporarily lowers
the privileges of a privileged server and later gives the orig-
inal privileges back. Since it allows that operation whether
the process is hijacked or not, even a hijacked server may
recover the original higher privileges.

Confirming that a server is not hijacked is difficult. A
server that seems to be running normally may include mali-
cious code for hijacking the server later. If this server is al-
lowed to remove access restrictions, then the malicious code
may be activated after the access restrictions are removed.
The server’s execution environment may be compromised.
For example, if the variableargv[0] in a process is mod-
ified, a cracker can send aHUP signal to the process after
the access restrictions are removed and thereby execute an
arbitrary command indicated by that variable.

2.2. Spawning a Child Process

Since removing access restrictions implies security risks,
a number of operating systems such as UNIX, in general, al-
low a process only to impose access restrictions. For exam-
ple, thesetuid system call provided by UNIX can change
the access privilege from higher to lower but not from lower
to higher. However, in spite of this limitation, a server run-
ning on those operating systems can still impose different
access restrictions on itself depending on a request. If the
server is connected from a client, then the server spawns a

child process, imposes additional restrictions on that child
process, and makes the child process handle the request
from the client. Removing the access restrictions from the
child process is not necessary because the child process just
terminates after handling the request.

This technique, however, is not workable if the perfor-
mance of the server is crucial. Since spawning and termi-
nating a child process involves serious performance penal-
ties, practical Internet servers use the process pool tech-
nique; the servers spawn several child processes in advance
and repeatedly reuse them instead of spawning a new child
process for every request. The child processes never termi-
nate since they must handle the next request. Thus the tech-
nique for imposing different access restrictions on a newly
spawned process for each request cannot be used together
with the process pool technique. The implementor of a
server running on UNIX must choose either efficiency or
security.

3. Process Cleaning

We propose a new technique calledprocess cleaningso
that removing access restrictions does not involve security
risks mentioned in the previous section. Thereby the users
can impose access restrictions on a server only while the
server is handling a request from an untrustworthy client.
The imposed access restrictions minimize damages in cases
where the server is hijacked and after that they are removed
without security risks.

3.1. Recovering a Hijacked Process

For securely removing access restrictions from a process,
the thread of control must be recovered from malicious code
injected by, for example, the buffer overflow attack. Then
the malicious code must be eliminated from memory even
if it has not been activated yet. To do this, Compacto pro-
vides thesave state system call, which saves the state
of a process. This system call must be issued before access
restrictions are imposed on a process. These access restric-
tions are removed if therestore state system call is
issued. This system call removes the access restrictions and
also restores the saved state of the process. Since the saved
state includes an instruction pointer and the memory image
of the process, the thread of control is recovered and, if any,
malicious code is eliminated from the memory.

For example, a typical web server running on Compacto
uses thesave state andrestore state system calls
as in Figure 1. (1) After initialization, the web server issues
the save state system call. (2) Then the server waits
until a client connects to it. (3) If a client connects, ac-
cess restrictions depending on that client are imposed on

save state(); (1)
accept(); (2)
if (from Internet) (3)

impose strong restrictions
else

impose weak restrictions
handle a request
restore state(); (4)

Figure 1. Server code using process cleaning.

the server. The server handles a request from that client un-
der those access restrictions. (4) After the server finishes
handling the request, it issues therestore state sys-
tem call. This system call recovers the state of the server.
Finally, the thread of control is moved back to the next state-
ment ofsave state. The server repeatedly handles an-
other request from a client.

3.2. Restored Process State

Therestore state system call restores the values of
all the registers, including an instruction pointer. If injected
malicious code successfully takes the control of the process,
the execution of that malicious code is terminated when this
system call is issued. Thus the malicious code cannot re-
move access restrictions without losing the control of the
process.
Restore state also restores the memory image of a

process. This eliminates the Trojan horse, which is mali-
cious code left on memory and later activated for hijack-
ing. Restoring the whole memory image is necessary since
distinguishing malicious memory accesses from regular ac-
cesses is difficult. Restoring a memory image also keeps a
server stable. If an attack causes a memory fault, the server
can recover the memory image and avoid termination.
Restore state also restores signal handlers. If a sig-

nal handler is replaced with a malicious handler, a cracker
could activate this malicious handler by sending a signal af-
ter access restrictions are removed. Also, this system call
restores the state of opened files and sockets. If malicious
code closes a file or a socket, this system call opens it again
and restores the file descriptor for it. To avoid the exhaus-
tion of file descriptors, this system call closes files and sock-
ets that have been opened betweensave state andre-
store state.

3.3. Restoring Memory

Performance penalties of process cleaning are mainly
due to copying memory for saving and restoring the state

remap

unmap&
discard

original
page

shadow
page

copy

original
page

shadow
page

(a) remap strategy (b) copy strategy

kernel kernel

Figure 2. Two strategies to restore memory.

of a process. To reduce the amount of saved memory, Com-
pacto uses thecopy-on-writetechnique. Thesave state
system call does not immediately duplicate the whole mem-
ory image. It only changes the state of every writable mem-
ory page into the write-protected mode. The memory page
is duplicated only if the process first attempts to write in the
page and hence a page fault occurs. The original page is
moved into the kernel address space and a new page allo-
cated for the duplication is mapped at the original address.
We call this new page ashadowpage. Since the shadow
page is writable, no page fault occurs after the first one.

The restore state system call restores only the
memory pages that have been saved since the last
save state system call was issued. For restoring them,
Compacto can choose one of two strategies. The first
strategy is to unmap and discard a shadow page and
move the original page back from the kernel address space
(Fig. 2 (a)). The original page is write-protected to detect
the next write. We call this theremapstrategy. The second
strategy is to copy the contents of the original page into the
shadow page and leave the original page in the kernel ad-
dress space (Fig. 2 (b)). The dirty bit of the shadow page
is cleared to detect the next write. We call this thecopy
strategy.

The remap strategy does not need to copy memory for
the restoration and is also good with respect to memory
consumption. However, the users can request Compacto
to use the copy strategy. As shown in Figure 1, a typical
server running on Compacto repeatedly restores the same
state saved by thesave state system call at the begin-
ning. In this case, the copy strategy may be more efficient
than the remap strategy. The copy strategy does not have to
make the restored page write-protected or to catch a page
fault for a shadow page. If the process writes in the same
set of memory pages for every request, the copy strategy is
faster than the remap strategy. On the other hand, if the pro-
cess writes in a totally different set of pages, the copy strat-
egy is slower because maintaining shadow pages is mean-
ingless. For details of our implementation, see a different
article [2].

0

200

400

600

800

1000

1200

1400

2 4 6 8 10 12 14 16

C
on

ne
ct

io
ns

/s
ec

of Client Machines

POOL
COPY

REMAP
SPAWN

Figure 3. The server throughput.

4. Experiments

We measured the execution performance of the Apache
web server performing process cleaning by the WebStone
benchmark program. Apache is implemented with the pro-
cess pool technique and is running on the Compacto operat-
ing system based on the Linux 2.2.16 kernel. The server
machine is a PC with a Pentium III 933MHz processor.
Client machines are PCs with a Celeron 300MHz proces-
sor and the operating system is FreeBSD 3.4. The clients
and the server are connected through the 100baseT Ether-
net. The details of our experiments are described in [2].

For comparison, we used four different types of Apache
server. ThePOOLserver is an Apache server which does not
perform process cleaning. TheCOPY server is an Apache
server performing process cleaning with the copy strategy.
TheREMAP server is an Apache server performing process
cleaning with the remap strategy. These three servers use 16
pooled processes. Finally, theSPAWN server is an Apache
server modified for spawning a child process for every re-
quest. It neither uses the process pool technique nor per-
forms process cleaning.

Figure 3 shows the server throughput (the number of ac-
ceptable requests per second) in the case that various re-
quests were done. The average size of requested data was
7.6KB. All the servers modified 18.3 pages of memory on
average, changed one signal handler, opened one file and
one socket while handling every request.

According to the results of our experiments, theCOPY

server is 1.4 times faster than theSPAWN server. Since
secure servers, which impose access restrictions depend-
ing on each request, have had to spawn a new child pro-
cess for every request as described in Section 2.2, process
cleaning achieves great performance improvement on those
traditional secure servers. It allows the secure servers to
handle a request with pooled processes although its per-
formance penalties are not negligible if compared with the

POOL server.
In our experiments, theCOPY server was always faster

than theREMAP server. The performance improvement was
8% on average. Although the copy strategy is better than
the remap strategy in the case of the Apache web server, the
remap strategy may be better in the case of other kinds of
Internet servers.

5. Conclusion

In this paper, we proposed process cleaning, which pre-
vents hijacked servers from illegally removing access re-
strictions. Process cleaning can be regarded as a variation of
the technique known as checkpointing/recovery. Several re-
searchers have proposed to use copy-on-write for efficiently
implementing that technique. Our contribution is to apply
that technique to the security domain instead of traditional
domains such as fault tolerance.

According to our experiments, overheads due to process
cleaning were 40% at the worst case. However, process
cleaning enables Internet servers to use pooled processes
for handling a request even if they must impose access re-
strictions depending on each request. Previous servers must
spawn a child process for every request. A web server using
pooled processes that perform process cleaning achieved
approximately 40% performance improvement against a
web server spawning a child process.

We use a process as a protection domain but Takahashi
et al. [3] and Chiueh et al. [1] proposed to divide a process
into multiple protection domains. Their idea is to impose
a different set of access restrictions on each domain. The
process can switch a protection domain for changing a set
of access restrictions. One of our future research directions
is to apply process cleaning to such a fine-grained protection
domain.

References

[1] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating
Segmentation and Paging Protection for Safe, Efficient and
Transparent Software Extensions. InProc. of the 17th ACM
Symposium on Operating Systems Principles, pages 140–153,
Dec. 1999.

[2] K. Kourai and S. Chiba. A Secure Access Control Mecha-
nism against Internet Crackers. Technical Report ISE-TR-01-
176, Institute of Information Sciences and Electronics, Univ.
of Tsukuba, 2001.

[3] M. Takahashi, K. Kono, and T. Masuda. Efficient Kernel Sup-
port of Fine-grained Protection Domains for Mobile Code. In
Proc. of the 19th IEEE Intl. Conf. on Distributed Computing
Systems, pages 64–73, June 1999.

[4] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step
Towards Automated Detection of Buffer Overrun Vulnerabili-
ties. InProc. of the Network and Distributed Systems Security
Symposium, pages 3–17, Feb. 2000.

