
Towards an XML Format for Time-Stamps

Karel Wouters
∗

karel.wouters@esat.kuleuven.ac.be
Bart Preneel

bart.preneel@esat.kuleuven.ac.be
COSIC research group, Department of Electrical Engineering - ESAT/SCD

Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Heverlee-Leuven, Belgium

http://www.esat.kuleuven.ac.be/cosic

Ana Isabel González-Tablas
aigonzal@inf.uc3m.es

Arturo Ribagorda

Computer Science Department-GSTI
Carlos III University of Madrid

Avda. de la Universidad 30, 28911 Leganés, Spain

ABSTRACT
XML has become a well-established format for information
exchange. Several formats have been defined to secure XML
data, such as XML Digital Signatures, XML Encryption and
XKMS. In recent work by ETSI on XML digital signa-
tures conforming to European legislation, time-stamps play
a key role for qualified digital signatures. Some ASN.1-based
formats for time-stamp protocols have been defined within
IETF and ISO/IEC. In this paper, we investigate how the
wide range of time-stamping protocols in the literature can
be embedded into a single XML format; our work is based
on existing standardisation efforts. We present our ideas in
the form of a concrete XML structure, which can be used
as the starting point to develop a mature XML-based time-
stamping protocol.

1. INTRODUCTION
Digital time-stamping is a set of techniques that enables

us to determine if a certain digital document has been cre-
ated or signed before a given time. In most practical appli-
cations, the time-stamping service is performed by a trusted
third party – a Time-Stamping Authority (TSA) – that cre-
ates time-stamps. These time-stamps are the digital asser-
tions that a given document was presented to the TSA at
a given time. There also exist some distributed time-stamp

∗The author was partially supported by the GOA project
MEFISTO 2000/6 of the Flemish Government

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on XML Security,Nov. 22, 2002, Fairfax VA, USA
Copyright 2002 ACM 1-58113-632-3/02/0011...$5.00.

techniques in which a group of users/TSAs collaborates to
compute a time-stamp.

Apart from obvious applications, time-stamping also plays
an important role in the classical Public Key Infrastructure
(PKI). In this context, it can be used to extend the lifetime
of digital signatures: a time-stamp on a digital signature can
prove that the signature was generated before the signature
key-pair expired or was revoked. Even if the underlying
mathematics or the hash algorithm is broken, the signature
can still remain valid if the time-stamping algorithm is suf-
ficiently strong. This is clearly taken into account in the
relatively new European standards on advanced electronic
signatures [17]. Note that this may not be necessary for
low-value electronic signatures.

Throughout the past few years, a significant amount of
research has been done on the time-stamping problem. In
Section 2, we classify existing time-stamping schemes. Sec-
tion 3 gives an overview of the standards that we studied to
construct our time-stamping format. In Section 4, we spe-
cify our format and we apply it to some existing schemes.
We conclude with an overview of our work and some open
issues.

2. CLASSIFICATION OF TIME-STAMPING
SCHEMES

We classify time-stamping schemes into three sections:
simple schemes, linking schemes and distributed schemes.

2.1 Simple Schemes
Simple schemes generate time-stamp tokens that are in-

dependent; they do not include information of other time-
stamps. A classical example of this scheme is the digital
signature of a TSA on a pair (time,document), which is pro-
posed by Adams et al. [6] and in ISO/IEC FDIS 18014-2 [2].
The main limitation of these schemes is that they assume a
rather high level of trust in the issuing party, the TSA. Fur-
thermore, nobody can detect possible fraudulent behaviour
of the TSA. All of these time-stamps offer so-called absolute

61

temporal authentication; they include the time at which the
time-stamp was made and so they can be situated into a
small accuracy interval, if the TSA does not cheat.

2.2 Linking Schemes
Linking schemes try to lower the required trust in the

TSA by linking time-stamps. Data from other time-stamps
is included into the computation of the issued time-stamp,
such that they depend on each other. Linking happens in
three phases:
Aggregation: in the first step, all documents received by
the TSA within a small time interval – the aggregation round
– are being considered simultaneous. The output of the ag-
gregation round is a binary string that securely depends on
all the documents submitted in that round. Users receive in-
formation on how to compute the aggregation output, using
their submitted document. The purpose of aggregation is
to lower the load on the TSA, if the linking operation is ex-
pensive.
Linking: the output of the aggregation round is taken,
and linked to previous aggregation round values, where the
output of the linking operation cannot be computed with-
out previous aggregation round values. This establishes a
one-way order between aggregation round values, such that
so-called relative temporal authentication is obtained: time-
stamps of different aggregation rounds can be compared.
This implies also that a time value is not necessary in lin-
king schemes.
Publication: from time to time (e.g., each week), the TSA
publishes the most recent time-stamp in a widely witnessed
medium, such as a newspaper. By doing this, the TSA com-
mits itself to all of the previously issued time-stamps. The
published values are used for verifying time-stamps and they
enable other parties to check if the TSA is behaving properly.

Examples of linking can be found in Bayer et al. [8], Be-
naloh et al. [9] and Buldas et al. [13]. In these cases, the
linking can be visualised by a graph and optimised in time-
stamp size. In Benaloh et al. [10] and Merkle [24], some ag-
gregation schemes are proposed. These can be based on hash
functions in graph-like structures or on number-theoretic
problems.

2.3 Distributed Schemes
Another way of lowering the required level of trust in the

TSA is to distribute the trust. In that approach, multiple
users/TSAs cooperate to generate a time-stamp, possibly
using a secure distribution of secret data necessary to ge-
nerate a time-stamp. In this way, forgery of a time-stamp
requires the collusion of a predetermined (high) number of
parties, which is considered to be very unlikely. Example
of such protocols can be found in Benaloh et al. [9, 10] and
Ansper et al. [7]. They can be extensions of the schemes
described above, and as such provide relative temporal au-
thentication or absolute temporal authentication.

2.4 Other schemes
Not all existing time-stamping schemes can be classified

into these three sections. For example, the scheme of
Haber et al. [18] includes the time value in a digitally signed
document that contains linking information. This linking
information has to be checked “as far as necessary to
convince the most suspicious verifier.” Obviously, this also
includes no checking at all, although the scheme suggest to

follow at least one link.
It has to be noticed that not all of these time-stamping

schemes are equally secure, see Just [22] for some remarks
on that. Some of them have their security goals strictly set,
others have not. For a security classification of some recent
schemes, we refer to Une [27].

3. STANDARDS FOR XML
AND TIME-STAMPING

In this section, we briefly describe some standards upon
which we would like to build.

3.1 XMLDSig and XAdES
The mission of the joint W3C and IETF XML Signature

working group [14] was to develop an XML compliant syn-
tax used for representing a digital signature of Web resources
and portions of protocol messages (anything referencable by
a URI), and procedures for computing and verifying such
signatures. The resulting document, XML Signature Syn-
tax and Processing (XMLDSig, [14]), specifies the XML di-
gital signature processing rules and syntax. XML Signatures
provide integrity, message authentication, and/or signer au-
thentication services for data of any type, whether located
within the XML that includes the signature or elsewhere.

ETSI TS 101 903 [16, 17] (better known as XAdES , XML
Advanced Electronic Signatures) was built on top of XMLD-
Sig. It defines XML formats for advanced electronic signa-
tures that remain valid over longer periods, are compliant
to the Europeans Directive on a community framework for
Electronic Signatures [25], and incorporate additional useful
information in common use cases.

Obviously, XMLDSig and XAdES play an important role
in the context of this paper. Not only do they provide us
with useful tools for the definition of our XML time-stamp
format, they also provide an interesting application to use
time-stamps for the extension of digital signatures. (XAdES
explicitely assumes the existence of a TSA).

3.2 IETF Standards
The IETF PKIX Working Group [23] was established

in the Fall of 1995 with the intent of developing Internet
standards needed to support an X.509-based PKI. The
PKIX Time-Stamp Protocol, (PKIX-TSP, RFC 3161 [6]),
describes the format of a request sent to a TSA and of
the response that is returned. It also establishes several
security-relevant requirements for TSA operation, with
regard to processing requests to generate responses. This
standard describes a simple scheme: time-stamps are
digital signatures by the TSA on the submission time and
the value of a digital document’s message digest.

Another IETF Working Group, S/MIME Mail Secu-
rity [20], developed the Cryptographic Message Syntax
(SMIME-CMS, [21]). This syntax is used to digitally
sign, digest, authenticate, or encrypt arbitrary messages.
Although we did not base our format directly on this
document, it is referenced by PKIX-TSP for the signature
functionality. PKIX-TSP and SMIME-CMS are based on
ASN.1 [4] and imply DER/BER-encoding [5] of the defined
objects.

3.3 ISO Standards
In 1999, the ISO/IEC JTC1/SC27 on security techniques

started a project on time-stamping services (ISO/IEC

62

18014). In this project, three work items have been defined
until now:

• A time-stamping services framework [1]. In this
item, a general framework for time stamping services
was built. Communications between the TSA and the
client are discussed. The time stamping formats them-
selves are defined in the following documents.

• Mechanisms producing independent tokens [2].
The group of experts decided to integrate the exis-
ting IETF PKIX-TSP in this work item. Apart from
that, they defined two other time-stamp formats: one
where Message Authentication Codes (MACs) replace
the digital signatures, and one where the submitted
information is archived by the TSA, together with the
time of submission (in this case the TSA has to be
trusted completely). All of these tokens have the pro-
perty that they can be verified without access to other
tokens. These time-stamp tokens are situated in the
simple schemes described above.

• Mechanisms producing linked tokens [3]. This
document describes time-stamp tokens of a linking
scheme. It is still in development and at the time of
writing it provides a generic framework that should
support several types of aggregation, linking and
publication.

As far as we could understand, none of these work items aim
to define a distributed time-stamping scheme.

3.4 XER
The ITU-T X.693 Recommendation/International Stan-

dard [28] defines two sets of encoding rules that may be
applied to values of ASN.1 types and that use XML. These
encoding rules are called the XML Encoding Rules (XER)
for ASN.1, and both produce an XML document compliant
to W3C XML 1.0. The first set is called the Basic XML En-
coding Rules. The second set is called the Canonical XML
Encoding Rules because there is only one way of encoding
an ASN.1 value using these encoding rules. At first sight, it
would appear to be interesting to translate the IETF or ISO
standards directly into XML using these encoding rules, but
that proved to be impossible, because both standards expli-
citly assume DER-encoding of the time-stamp information.
Furthermore, it would be a missed opportunity to ignore the
existing rich framework of XMLDSig and XAdES.

Note that, at the time of writing, a complete ASN.1/XML
solution for CMS is being defined in the American Bankers
Association X9F3 working group [31]. X9.96 XML Cryp-
tographic Message Syntax (XCMS, [30]) will use a single
ASN.1 schema for CMS to provide both compact binary
encodings using BER/DER, and an XML markup solution
using XER. Using this solution, combined with a XER-
translation of the IETF or ISO/IEC standards will result
in a XML time-stamp format. This may be something to
explore in the future. The same group is also working on a
Trusted Time-Stamp format (X9.95, [29]), which appears to
be based on the ISO/IEC work.

4. PROTOCOL AND SYNTAX

4.1 Overview
The main structures of a time-stamping scheme are:

• A TimeStampRequest, the message a user sends to the
TSA(s), requesting a time-stamp of type X of some
data. The core component of this request is a digest
value that should be time-stamped. Optionally, the
user can specify other elements, such as the preferred
TSA policy, a nonce to thwart replay attacks and in
the PKI case an indication if the user wants to receive
additional certificate information in the response. The
replay attack occurs when a middleman is replaying
legitimate TSA responses. It may also be desirable
to send multiple digest values (using a different hash
function) of the same document to protect against –
unknown– attacks on a single hash function, see for
example the TIMESEC project [26]. In the request
there should be no information that could reveal the
content of the document to be time-stamped. There
is one exception to this rule: the user might want the
TSA to act as a notary authority, so the document is
sent (over an authenticated encrypted channel) to be
stored by the TSA.

• A TimeStampResponse, the response message genera-
ted by the TSA, should contain a field indicating the
response status and, if the time-stamp could be gene-
rated, the time-stamp itself. Note that this may be a
partial time-stamp in the case of a distributed scheme.

• A VerifyRequest and a VerifyResponse, in the case
where the explicit cooperation of the TSA is required
to verify a time-stamp.

In the next sections, we elaborate the main structures. Note
that if XAdES or XMLDSig elements were fit to do the
job, we adopted them in our scheme. From here on, ele-
ments borrowed from XMLDSig will be prefixed with “ds:”;
elements from XAdES will be prefixed by “xades:”. Our
scheme has been written in W3C’s Schema language [19];
schema elements shall be prefixed with “xs:”, and our newly
defined elements will be prefixed by “tsp:”. For presenting
our ideas, we will work with simplified structures; the full
schema can be found in the appendix A.

4.2 Common syntax
The tsp:TimeStampRequest element is sent to the TSA

when a client wants to have a document time-stamped. Nor-
mally, the request will contain the digest value of the docu-
ment to be time-stamped. It has the following structure:

<tsp:TimeStampRequest Type? CertReq?>
<tsp:MessageImprints Id?>
(<xades:SignaturePolicyIdentifier>)?
(<tsp:Nonce>)?
(<ds:Object>)?

</tsp:TimeStampRequest>

• The tsp:TimeStampRequest element has an attribute
Type that indicates the requested time-stamp type,
and a CertReq attribute to indicate if detailed cer-
tificate information is required if the TSA uses digital
signatures.

• tsp:MessageImprints contains the digest values to be
time-stamped. This element is described further on.

63

• xades:SignaturePolicyIdentifier identifies the sig-
nature policy that the user wants the TSA to apply.
A default policy will be applied if none is specified in
the request.

• tsp:Nonce contains a random value to prevent replay
attacks. It should be copied into the response of the
TSA.

• ds:Object will contain the documents to be
time-stamped in the case of a notary authority.

When a user submits a tsp:TimeStampRequest, the TSA
responds with a tsp:TimeStampResponse. This element is
structured as follows:

<tsp:TimeStampResponse>
<tsp:Status>

<tsp:MajorStatus Code>
(<tsp:FailInfo Code>)?

</tsp:Status>
(<tsp:TimeStampToken Id?>)?

</tsp:TimeStampResponse>

The Status element contains information about how the
request was handled. Its children contain machine-readable
information in the attribute Code and human-readable infor-
mation in their (textnode) children. MajorStatus indicates
general information, such as “Time-stamp granted”, while
FailInfo can indicate the reason why a request failed.
The tsp:TimeStampToken contains the time-stamp itself. Its
structure is as follows:

<tsp:TimeStampToken Id?>
(<tsp:References>

[(<ds:Reference>)+ OR <tsp:XadesTSTLink Idref>]
</tsp:References>)?

(<tsp:MessageImprints Id?>
(<tsp:DigestAlgValue Id?>)+

</tsp:MessageImprints>)?
<tsp:TSTInfo Id?>

(<xades:SignaturePolicyIdentifier>)?
(<tsp:SerialNumber>)?
(<tsp:GenTime MilliSeconds? MicroSeconds?>)?
(<tsp:Accuracy>

(<Seconds>)? (<MilliSeconds>)? (<MicroSeconds>)?
</tsp:Accuracy>)?

(<tsp:Ordering />)?
(<tsp:Nonce>)?
(<tsp:TSA URI?>)?
(<tsp:Id Name>)?

</tsp:TSTInfo>
(<ds:Signature>)?
(<tsp:BindingInfo Algorithm Id?>)?

</tsp:TimeStampToken>

• The tsp:References element contains references
to time-stamped content. It is a set of digest
values that are used as input of a hash func-
tion that will produce the digest values in the
tsp:MessageImprints element. Or, it can contain
a tsp:XadesTSTLink, a link to XAdES time-stamp
information (a xades:HashDataInfo element) that
specifies the octet stream to be time-stamped, again
used as input for the tsp:MessageImprints element.
The tsp:References element can contain several
references to the same content, but digested with
different hash functions. Note that this element is
added by the user after receiving the time-stamp
response.

• tsp:MessageImprints contains the digest values and
the algorithms to produce those values from the
concatenated digest values or the octet stream above.
This construction allows for several ‘imprints’ with
different hash functions.

• The tsp:TSTInfo element contains TSA-specific
time-stamp information; we expect it to be present
in each type of time-stamp. Its format is almost the
same as the TSTInfo element in PKIX-TSP. Note
that <tsp:GenTime> is an extension of xs:dateTime.

• ds:Signature. Depending on the time-
stamping scheme, this element is included to
sign tsp:MessageImprints, tsp:TSTInfo and/or
tsp:BindingInfo.

• tsp:BindingInfo. This element contains the binding
information for linked time-stamps.

With these elements every time-stamp token of the simple
and linked schemes can be constructed.

4.3 Simple schemes
For signed time-stamps or time-stamps computed with

a MAC algorithm, the TSAs response will contain a
tsp:MessageImprints, a tsp:TSTInfo (including a time),
and a ds:Signature element. The references in the
signature will point to the tsp:MessageImprints and
the tsp:TSTInfo element. It is preferable that Exclusive
Canonicalization (exc-C14N, [11]) is used, as well for
the references in the signature, as for the C14N of the
ds:SignedInfo in the signature. This is because, more
than likely, the time-stamp is going to be embedded into
another XML document, which will corrupt the signature if
the enveloping document introduces additional namespaces,
and if ordinary C14N is applied.

For archiving schemes, the tsp:MessageImprints and
tsp:TSTInfo elements are required. Of course, the
document to be archived should be protected. This can be
obtained by using a secure connection such that the entire
communication is confidential and authenticated (client
and server), or by using XML Encryption [15] to encrypt
the document only, combined with an authentication
mechanism.

4.4 Linking schemes
A linking scheme takes a digest value as input. If a

tsp:TSTInfo element is present in the response, it can also
be taken into account in the digest value that is presented
to the linking scheme. The response of the TSA was de-
scribed above, and the tsp:BindingInfo has the following
structure:

<tsp:BindingInfo Algorithm Id?>
<tsp:DigestAlgValue Idrefs? Id?>
(<tsp:AggregationInfo Algorithm? Id?>)?
<tsp:LinkingInfo Algorithm?>

(<tsp:Head Id?>)?
(<tsp:Tail Id?>)?
(<ds:Object>)?

</tsp:LinkingInfo>
(<tsp:PublishedInfo Id? Location?>)?

</tsp:BindingInfo>

• tsp:DigestAlgValue contains the digest value that is
passed on to the linking scheme. This is the result

64

of selecting the nodes referred to by the attribute
Idrefs, and use their concatenation as the input of
the specified hash function. The attribute can point
to digest values within tsp:MessageImprints and to
the tsp:TSTInfo element. In the first case, the octet
stream representing the referenced digest value is
taken, in the last case, the output of exc-C14N of the
referenced element is taken.

• tsp:AggregationInfo: if present, this element speci-
fies the aggregation algorithm and the necessary data
to compute the output of the aggregation round with
the tsp:DigestAlgValue element.

• tsp:LinkingInfo contains the algorithm and data
to compute the value of the linking round, given the
output of the aggregation round. If no aggregation is
specified, the value from the tsp:DigestAlgValue ele-
ment is taken. tsp:Head contains linking information
from time-stamps, issued before this one. tsp:Tail

contains information from time-stamps after this one,
which is transmitted by the TSA at the end of the
linking round. ds:Object contains information that
we thought was ‘unnatural’ to include directly into
tsp:Head or tsp:Tail. It can be referenced from
within these elements.

• tsp:PublishedInfo: contains round values for linking
rounds, plus the location where they can be retrieved
or verified.

The elements tsp:AggregationInfo, tsp:Head, tsp:Tail

and tsp:PublishedInfo all have the same structure,
tsp:ChainingType, which is defined as follows:

<xs:complexType name="ChainType">
<xs:sequence>

<xs:element name="Node"
type="tsp:NodeType"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="Id" type="xs:ID" use="optional"/>

</xs:complexType>

<xs:complexType name="NodeType">
<xs:choice>

<xs:sequence>
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
<xs:element ref="ds:DigestValue" minOccurs="0"/>

</xs:sequence>
<xs:element name="BinaryContent"

type="xs:base64Binary"/>
</xs:choice>
<xs:attribute name="Id"

type="xs:ID" use="optional"/>
<xs:attribute name="Reference"

type="xs:IDREF" use="optional"/>
<xs:attribute name="Alignment"

type="xs:string" use="optional"/>
</xs:complexType>

• An element of type tsp:ChainType consists of a series
of tsp:Nodes, following the ideas of Buldas et al. [12].

• We chose tsp:Node to be a multi-functional basis ele-
ment; it occurs in different contexts, depending on
the linking, aggregation or publishing algorithm. As
many linking schemes are based on hash functions,
the tsp:Node should be able to hold a digest value.

The tsp:BinaryContent element is provided to spe-
cify other binary information, such as the result of a
modular exponentiation in the aggregation scheme of
Benaloh et al. [10].

• The attribute Reference of the tsp:Node is included
to avoid over-definition of the tsp:NodeType. This
can be used to refer to structured data, embedded
in the ds:Object element in the linking information.
Alignment is included to provide location information
in Merkle trees, used for aggregation.

4.5 Application to some time-stamping
schemes

This section illustrates our XML time-stamping format by
applying it to some recent/used time-stamping schemes.
Scenario: let a user A send a TimeStampRequest of some
type containing a digested value Xn (X n) to the TSA.
Suppose that the TSA is able to issue the time-stamp and
that he/she sends to A a TimeStampResponse with the time-
stamp contained in the TimeStampToken element. This ele-
ment will be different for each of the schemes applied, and it
is this element that will be illustrated in the following exam-
ples. Note that some descendant elements of ds:Signature
were omitted to save space. Exc-C14N should be included
for all references and the C14N algorithm in ds:SignedInfo.

4.5.1 Linear linking
We apply our XML format to the Linear linking scheme

of Haber et al. [18]. For the details of this scheme and the
meaning of L n, we refer to Sect. 5.1 of the cited paper.
This example is a time-stamp for the variant on the basic
scheme, with k = 2.

<TimeStampToken xmlns="our-timestamp-URI">
<MessageImprints Id="messageImprintsID">

<DigestAlgValue Id="digestvalue1">
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue> X_n </DigestValue>

</DigestAlgValue>
</MessageImprints>
<TSTInfo Id="TSTInfoID">

<SerialNumber>n</SerialNumber>
<GenTime>2002-11-22Z12:00:00:00</GenTime>
<ID Name="ID-of-A"/>

</TSTInfo>
<ds:Signature>

<ds:SignedInfo>
<ds:Reference URI="#messageImprintsID"/>
<ds:Reference URI="#TSTInfoID"/>
<ds:Reference URI="#BindingInfoID"/>

</ds:SignedInfo>
<ds:SignatureValue>

msbOAt...NwdrSJX9fcL6=
</ds:SignatureValue>

</ds:Signature>
<BindingInfo Algorithm="LinearLinking-URI-HS91"

Id="BindingInfoID">
<DigestAlgValue Idrefs="digestvalue1 TSTInfoID">

<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>
dQ8Nx7zFrCmyiCQ9vYk0N2N88MI=

</DigestValue>
</DigestAlgValue>
<LinkingInfo Algorithm="LinearLinking-k2">

<Head>
<Node Id="hash(L_(n-1))">

65

<DigestValue>H(L_(n-1))</DigestValue>
</Node>
<Node Reference="tstinfo-n-1"/>
<Node Reference="imprint-n-1"/>
<Node Id="hash(L_(n-2))">

<DigestValue>H(L_(n-2))</DigestValue>
</Node>
<Node Reference="tstinfo-n-2"/>
<Node Reference="imprint-n-2"/>

</Head>
<Tail>

<Node Reference="tstinfo-n+1"/>
<Node Reference="tstinfo-n+2"/>

</Tail>
<ds:Object>

<TSTInfo Id="tstinfo-n-1">...</TSTInfo>
<MessageImprints Id="imprint-n-1">

...
</MessageImprints>
<TSTInfo Id="tstinfo-n-2">...</TSTInfo>
<MessageImprints Id="imprint-n-2">

...
</MessageImprints>
<TSTInfo Id="tstinfo-n+1">

<Id Name="ID-of-n+1"/>
</TSTInfo>
<TSTInfo Id="tstinfo-n+2">

<Id Name="ID-of-n+2"/>
</TSTInfo>

</ds:Object>
</LinkingInfo>

</BindingInfo>
</TimeStampToken>

4.5.2 Binary Linking
For the details of this scheme and meaning of the symbols,

we refer to Buldas et al. [12], Sect. 5.

<TimeStampToken xmlns="our-timestamp-URI">
<MessageImprints Id="MessageImprintsID">

<DigestAlgValue Id="digestvalue1">
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue> X_n </DigestValue>

</DigestAlgValue>
</MessageImprints>
<TSTInfo Id="TSTInfoID">

<SerialNumber> n </SerialNumber>
</TSTInfo>
<ds:Signature>

<ds:SignedInfo>
<ds:Reference URI="#TSTInfoID"/>
<ds:Reference URI="#BindingInfoID"/>

</ds:SignedInfo>
</ds:Signature>
<BindingInfo Id="BindingInfoID"

Algorithm="BinaryLinking-URI-BLLV98">
<DigestAlgValue Idrefs="TSTInfoID digestvalue1">

...
</DigestAlgValue>
<LinkingInfo Algorithm="m-value">

<Head>
<Node Id="L_n">

<DigestValue> L_n </DigestValue>
</Node>
<Node Id="L_n_1">

<DigestValue> L_n_1 </DigestValue>
</Node>
...

<Node Id="L_n_q">
<DigestValue> L_n_q </DigestValue>

</Node>
<Node Reference="prev-round"/>

</Head>
</LinkingInfo>
<PublishedInfo>

<Node Id="prev-round">
<DigestValue>L_(eps_(r-1))</DigestValue>

</Node>
</PublishedInfo>

</BindingInfo>
</TimeStampToken>

The full time-stamp, including the tail, will be sent when
the current linking round finishes.

5. CONCLUSION AND OPEN ISSUES
The purpose of this paper was to study existing time-

stamping schemes and standards, and, based on that study,
to propose ideas for an XML format for time-stamps. We
note that there are many different time-stamp protocols with
widely varying data structures. Therefore, it was not an
easy task to provide one single structure that covers them
all. The resulting format can be a basis for the definition of a
mature time-stamp protocol. We focused on the time-stamp
token format, so there remain some gaps to be filled:

• We did not define a protocol for verifying time-stamps.
This is necessary if the cooperation of the TSA is re-
quired or wanted for verification.

• For processing rules, TSA behaviour and polices, we
refer to the ETSI and ISO documents covering this
subject. Also, in PKIX-TSP, some requirements for
the TSA can be found, for simple schemes based on
digital signatures.

• We studied some of the proposals for distributed time-
stamps. In most of them, the TSAs return a partial
time-stamp that can be used to compute the full to-
ken. We believe that these types of time-stamps can be
fitted in our structures. If there exist time-stamping
schemes based on distributed computations, or a real
splitting of secret information among the TSAs, we
might run into problems. A possible solution would
be to introduce a proxy that performs the distribution
and recombination tasks for the user.

• The identifiers for the algorithms are not yet defined.

It was also noted that our proposal depends heavily on
ID/IDREF pairs. A document will be broken if a time-
stamp containing an ID that already exists in the document
is added to that document. Moreover, if the same IDs are
used for each instance of a specific type of time-stamp, it
is not possible to add two time-stamps of that kind to one
document. Note that this action is very likely in XAdES.
Even if we would resolve this problem by choosing appropri-
ate IDs, it would still be possible to break a document by
adding the same time-stamp twice. We can eliminate some
ID instances by defining custom transformations for signa-
tures on time-stamps, as suggested by one of the referees.
At least two transformations are necessary to accommodate
all possible schemes. Furthermore, the ID/IDREFS con-
struction to indicate which digest values are taken for the
production of linking information can be replaced by URIs.
The rest of the IDs are used to add structure to the linking
information, but that structure can be assumed to be known
by the application.

66

6. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous referees

for their useful comments and suggestions.

7. REFERENCES
[1] ISO/IEC 18014-1. Information technology – Security

techniques – Time-stamping services – Part 1:
Framework. Draft available at http:

//oberon.postech.ac.kr/kiisc-sis/timestamp/,
2002.

[2] ISO/IEC FDIS 18014-2. Information technology –
Security techniques – Time-stamping services – Part
2: Mechanisms producing independent tokens. Draft
available at http:

//oberon.postech.ac.kr/kiisc-sis/timestamp/,
2002.

[3] ISO/IEC WD 18014-3. Information technology –
Security techniques – Time Stamping Services – Part
3: Mechanisms producing linked tokens. Draft
available at http:

//oberon.postech.ac.kr/kiisc-sis/timestamp/,
2002 (working draft).

[4] ISO/IEC 8824-1. Information Technology – Abstract
Syntax Notation One (ASN.1): Specification of Basic
Notation, 1998.

[5] ISO/IEC 8825-1. Information Technology – ASN.1
Encoding Rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER), 1998.

[6] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato.
Internet X.509 Public Key Infrastructure Time-Stamp
Protocol (TSP). Available at http:

//www.ietf.org/html.charters/pkix-charter.html,
April 2002, work in progress.

[7] Arne Ansper, Ahto Buldas, Märt Saarepera, and Jan
Willemson. Improving the availability of
time-stamping services. In The 6th Australasian
Conference on Information Security and Privacy -
ACISP’2001, Lecture Notes in Computer Science,
pages 360–375, Sydney, Australia, July 2001.
Springer-Verlag.

[8] Dave Bayer, Stuart Haber, and W. Scott Stornetta.
Improving the Efficiency and Reliability of Digital
Time-Stamping. In R. Capocelli, A. De Santis, and
U. Vaccaro, editors, Sequences II: Methods in
Communication, Security and Computer Science,
pages 329–334. Springer-Verlag, 1993. Available at
http://www.surety.com/solutions/DN/

presentation.html.

[9] J. Benaloh and M. de Mare. Efficient Broadcast
Time-Stamping. Technical Report TR-MCS-91-1,
Clarkson University, Department of Mathematics and
Computer Science, April 1991.

[10] J. Benaloh and M. de Mare. One-way Accumulators:
A Decentralized Alternative to Digital Signatures. In
T. Helleseth, editor, Advances in Cryptology -
Proceedings of EuroCrypt ‘93, volume 765 of Lecture
Notes in Computer Science, pages 274–285, Lofthus,
Norway, May 1993. Springer-Verlag.

[11] J. Boyer, D. Eastlake III, and J. Reagle. Exclusive
XML Canonicalization Version 1.0 (EXC-C14N).
http://www.w3.org/TR/xml-exc-c14n/, Juli 2002.

[12] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan
Villemson. Time-Stamping with Binary Linking
Schemes. In Hugo Krawczyk, editor, Advances on
Cryptology - CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 486–501, Santa
Barbara, USA, August 1998. Springer-Verlag.

[13] Ahto Buldas, Helger Lipmaa, and Berry
Schoenmakers. Optimally Efficient Accountable
Time-Stamping. In Public Key Cryptography -
PKC’2000, Lecture Notes in Computer Science, pages
293–305, Melbourne, Australia, 2000. Springer-Verlag.

[14] D. Eastlake, J. Reagle, and D. Solo. XML-Signature
Syntax and Processing.
http://www.w3.org/Signature/, February 2002.

[15] Donald Eastlake and Joseph Reagle (eds). XML
Encryption Syntax and Processing.
http://www.w3.org/Encryption, August 2002.

[16] ETSI. European Telecommunications Standards
Institute, Security Technical Committee(ETSI-SEC).
http://www.etsi.org/sec.

[17] ETSI-SEC-ESI. XML Advanced Electronic Signatures
(XAdES), ETSI TS 101 903. Available at
http://portal.etsi.org/sec/el-sign.asp,
February 2002.

[18] S. Haber and W. S. Stornetta. How to Time-Stamp a
Digital Document. Journal of Cryptology, 3(2):99–111,
1991. Available at http://www.surety.com/

solutions/DN/presentation.html.

[19] Dave Hollander and C. M. Sperberg-McQueen
(chairs). XML Schema Working Group.
http://www.w3.org/XML/Schema.

[20] R. Housley. S/MIME Mail Security (smime), IETF
Working Group. http:
//www.ietf.org/html.charters/pkix-charter.html.

[21] R. Housley. Cryptographic Message Syntax. Available
at http://www.ietf.org/html.charters/

smime-charter.html, April 2002, work in progress.

[22] Michael Just. Some timestamping protocol failures. In
Proceedings of the Symposium on Network and
Distributed Security (NDSS 98), pages 89–96, San
Diego, CA, USA, March 1998.

[23] S. Kent and T. Polk (chairs). Public-Key
Infrastructure(X.509)(pkix), IETF Working Group.
http:

//www.ietf.org/html.charters/pkix-charter.html.

[24] Ralph C. Merkle. Protocols for public key
cryptosystems. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 122–134, 1980.

[25] European Parliament. Directive 1999/93/EC of the
European Parliament and of the Council of 13
December 1999 on a Community framework for
electronic signatures. Available at
http://europa.eu.int/information_society/

topics/ebusiness/ecommerce/3in%formation/

law&ecommerce/legal/digital/index_en.htm,
Januari 2000.

[26] Bart Preneel, Bart Van Rompay, Jean-Jacques
Quisquater, Henri Massias, and J. Serret Avila.
Specification and Implementation of a Timestamping
System. Technical Report TIMESEC WP4, Université
Caltholique de Louvain, 1999.

[27] Masashi Une. The Security Evaluation of Time

67

Stamping Schemes: The Present Situation and
Studies, IMES Discussion Paper Series. Technical
Report 2001-E-18, Institute for Monetary and
Economic Studies, Japan, December 2001. http:
//www.imes.boj.or.jp/english/publication.html.

[28] ITU-T X.693. Information technology – ASN.1
encoding rules: XML encoding rules (XER). Available
at http://www.itu.int/ITU-T/studygroups/com17/

languages/, December 2001.

[29] BSR X9.95-200x. Trusted Timestamp. to be published.

[30] BSR X9.96-200x. XML Cryptographic Message
Syntax (XCMS). to be published.

[31] X9F3. Data and Information Security – Protocols.
http://www.x9.org/.

APPENDIX

A. TIMESTAMP SCHEMA

1 <?xml version="1.0" encoding="utf-8"?>
2 <!DOCTYPE schema PUBLIC
3 "-//W3C//DTD XMLSchema 200102//EN"
4 "http://www.w3.org/2001/XMLSchema.dtd" [
5 <!ATTLIST schema
6 xmlns:tsp CDATA #FIXED
7 "http://www.cosic.be/2002/08/xmltsp#"
8 xmlns:ds CDATA #FIXED
9 "http://www.w3.org/2000/09/xmldsig#"

10 xmlns:xades CDATA #FIXED
11 "http://uri.etsi.org/01903/v1.1.1#">]>
12 <xs:schema
13 targetNamespace="http://www.cosic.be/2002/08/xmltsp#"
14 xmlns:xades="http://uri.etsi.org/01903/v1.1.1#"
15 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
16 xmlns:xs="http://www.w3.org/2001/XMLSchema"
17 xmlns:tsp="http://www.cosic.be/2002/08/xmltsp#"
18 elementFormDefault="qualified"
19 attributeFormDefault="unqualified">
20 <xs:import
21 namespace="http://www.w3.org/2000/09/xmldsig#"
22 schemaLocation="xmldsig-core-schema.xsd"/>
23 <xs:import
24 namespace="http://uri.etsi.org/01903/v1.1.1#"
25 schemaLocation="XAdES.xsd"/>
26
27 <xs:element name="TimeStampRequest">
28 <xs:complexType>
29 <xs:sequence>
30 <xs:element ref="tsp:MessageImprints"/>
31 <xs:element
32 ref="xades:SignaturePolicyIdentifier"
33 minOccurs="0"/>
34 <xs:element name="Nonce"
35 type="xs:int" minOccurs="0"/>
36 <xs:element ref="ds:Object" minOccurs="0"/>
37 </xs:sequence>
38 <xs:attribute name="CertReq"
39 type="xs:boolean" use="optional"/>
40 <xs:attribute name="Type"
41 type="xs:anyURI" use="optional"/>
42 </xs:complexType>
43 </xs:element>
44
45 <xs:element name="MessageImprints">
46 <xs:complexType>
47 <xs:sequence>
48 <xs:element name="DigestAlgValue"
49 type="tsp:DigestAlgValueType"
50 maxOccurs="unbounded"/>
51 </xs:sequence>

52 <xs:attribute name="Id"
53 type="xs:ID" use="optional"/>
54 </xs:complexType>
55 </xs:element>
56
57 <xs:complexType name="DigestAlgValueType">
58 <xs:complexContent>
59 <xs:extension base="xades:DigestAlgAndValueType">
60 <xs:attribute name="Id"
61 type="xs:ID" use="optional"/>
62 </xs:extension>
63 </xs:complexContent>
64 </xs:complexType>
65
66 <xs:element name="TimeStampResponse">
67 <xs:complexType>
68 <xs:sequence>
69 <xs:element name="Status">
70 <xs:complexType>
71 <xs:sequence>
72 <xs:element name="MajorStatus">
73 <xs:complexType>
74 <xs:simpleContent>
75 <xs:extension base="xs:string">
76 <xs:attribute name="Code"
77 type="xs:int"
78 use="required"/>
79 </xs:extension>
80 </xs:simpleContent>
81 </xs:complexType>
82 </xs:element>
83 <xs:element name="FailCode" minOccurs="0">
84 <xs:complexType>
85 <xs:simpleContent>
86 <xs:extension base="xs:string">
87 <xs:attribute name="Code"
88 type="xs:int"
89 use="required"/>
90 </xs:extension>
91 </xs:simpleContent>
92 </xs:complexType>
93 </xs:element>
94 </xs:sequence>
95 </xs:complexType>
96 </xs:element>
97 <xs:element name="TimeStampToken"
98 type="tsp:TimeStampTokenType"
99 minOccurs="0"/>

100 </xs:sequence>
101 </xs:complexType>
102 </xs:element>
103
104 <xs:complexType name="TimeStampTokenType">
105 <xs:complexContent>
106 <xs:restriction base="ds:SignatureType">
107 <xs:sequence>
108 <xs:element ref="tsp:References"
109 minOccurs="0"/>
110 <xs:element ref="tsp:MessageImprints"
111 minOccurs="0"/>
112 <xs:element name="TSTInfo"
113 type="tsp:TSTInfoType"/>
114 <xs:element ref="ds:Signature"
115 minOccurs="0"/>
116 <xs:element ref="tsp:BindingInfo"
117 minOccurs="0"/>
118 </xs:sequence>
119 </xs:restriction>
120 </xs:complexContent>
121 </xs:complexType>
122
123 <xs:element name="References">
124 <xs:complexType> <xs:choice>

68

125 <xs:element ref="ds:Reference"
126 maxOccurs="unbounded"/>
127 <xs:element name="XADESInfoLink">
128 <xs:complexType>
129 <xs:attribute name="idref"
130 type="xs:IDREF"
131 use="required"/>
132 </xs:complexType>
133 </xs:element>
134 </xs:choice> </xs:complexType>
135 </xs:element>
136
137 <xs:complexType name="TSTInfoType">
138 <xs:sequence>
139 <xs:element ref="xades:SignaturePolicyIdentifier"
140 minOccurs="0"/>
141 <xs:element name="SerialNumber"
142 type="xs:integer" minOccurs="0"/>
143 <xs:element name="GenTime"
144 type="tsp:ExtendedDateTimeType"
145 minOccurs="0"/>
146 <xs:element name="Accuracy" minOccurs="0">
147 <xs:complexType>
148 <xs:sequence>
149 <xs:element name="Seconds" type="xs:int"/>
150 <xs:element name="MilliSeconds"
151 minOccurs="0">
152 <xs:simpleType>
153 <xs:restriction base="xs:short">
154 <xs:minInclusive value="0"/>
155 <xs:maxInclusive value="999"/>
156 </xs:restriction>
157 </xs:simpleType>
158 </xs:element>
159 <xs:element name="MicroSeconds"
160 minOccurs="0">
161 <xs:simpleType>
162 <xs:restriction base="xs:short">
163 <xs:minInclusive value="0"/>
164 <xs:maxInclusive value="999"/>
165 </xs:restriction>
166 </xs:simpleType>
167 </xs:element>
168 </xs:sequence>
169 </xs:complexType>
170 </xs:element>
171 <xs:element name="Ordering"
172 type="xs:boolean" minOccurs="0"/>
173 <xs:element name="Nonce"
174 type="xs:int" minOccurs="0"/>
175 <xs:element name="TSA" minOccurs="0">
176 <xs:complexType>
177 <xs:simpleContent>
178 <xs:extension base="xs:string">
179 <xs:attribute name="URI"
180 type="xs:anyURI"
181 use="optional"/>
182 </xs:extension>
183 </xs:simpleContent>
184 </xs:complexType>
185 </xs:element>
186 <xs:element name="Id" minOccurs="0">
187 <xs:complexType>
188 <xs:attribute name="Name"
189 type="xs:string"
190 use="required"/>
191 </xs:complexType>
192 </xs:element>
193 </xs:sequence>
194 <xs:attribute name="Id"
195 type="xs:ID" use="optional"/>
196 </xs:complexType>
197

198 <xs:complexType name="ExtendedDateTimeType">
199 <xs:simpleContent>
200 <xs:extension base="xs:dateTime">
201 <xs:attribute name="MilliSeconds"
202 use="optional">
203 <xs:simpleType>
204 <xs:restriction base="xs:short">
205 <xs:pattern value="[0-9]{3}"/>
206 </xs:restriction>
207 </xs:simpleType>
208 </xs:attribute>
209 <xs:attribute name="MicroSeconds"
210 use="optional">
211 <xs:simpleType>
212 <xs:restriction base="xs:short">
213 <xs:pattern value="[0-9]{3}"/>
214 </xs:restriction>
215 </xs:simpleType>
216 </xs:attribute>
217 </xs:extension>
218 </xs:simpleContent>
219 </xs:complexType>
220
221 <xs:element name="BindingInfo">
222 <xs:complexType>
223 <xs:sequence>
224 <xs:element name="DigestAlgValue">
225 <xs:complexType>
226 <xs:complexContent>
227 <xs:extension base="tsp:DigestAlgValueType">
228 <xs:attribute name="IdRefs"
229 type="xs:IDREFS"
230 use="optional"/>
231 </xs:extension>
232 </xs:complexContent>
233 </xs:complexType>
234 </xs:element>
235 <xs:element name="AggregationInfo"
236 minOccurs="0">
237 <xs:complexType>
238 <xs:complexContent>
239 <xs:extension base="tsp:ChainType">
240 <xs:attribute name="Algorithm"
241 type="xs:anyURI"
242 use="optional"/>
243 </xs:extension>
244 </xs:complexContent>
245 </xs:complexType>
246 </xs:element>
247 <xs:element name="LinkingInfo">
248 <xs:complexType>
249 <xs:sequence>
250 <xs:element name="Head"
251 type="tsp:ChainType"
252 minOccurs="0"/>
253 <xs:element name="Tail"
254 type="tsp:ChainType"
255 minOccurs="0"/>
256 <xs:element ref="ds:Object"
257 minOccurs="0"/>
258 </xs:sequence>
259 <xs:attribute name="Algorithm"
260 type="xs:anyURI"
261 use="optional"/>
262 </xs:complexType>
263 </xs:element>
264 <xs:element name="PublishedInfo" minOccurs="0">
265 <xs:complexType>
266 <xs:complexContent>
267 <xs:extension base="tsp:ChainType">
268 <xs:attribute name="Location"
269 type="xs:anyURI"
270 use="optional"/>

69

271 </xs:extension>
272 </xs:complexContent>
273 </xs:complexType>
274 </xs:element>
275 </xs:sequence>
276 <xs:attribute name="Id"
277 type="xs:ID" use="optional"/>
278 <xs:attribute name="Algorithm"
279 type="xs:anyURI" use="required"/>
280 </xs:complexType>
281 </xs:element>
282
283 <xs:complexType name="ChainType">
284 <xs:sequence>
285 <xs:element name="Node"
286 type="tsp:NodeType"
287 maxOccurs="unbounded"/>
288 </xs:sequence>
289 <xs:attribute name="Id"
290 type="xs:ID"
291 use="optional"/>
292 </xs:complexType>
293
294 <xs:complexType name="NodeType">
295 <xs:choice>
296 <xs:sequence>
297 <xs:element ref="ds:DigestMethod"
298 minOccurs="0"/>
299 <xs:element ref="ds:DigestValue"
300 minOccurs="0"/>
301 </xs:sequence>
302 <xs:element name="BinaryContent"
303 type="xs:base64Binary"/>
304 </xs:choice>
305 <xs:attribute name="Id"
306 type="xs:ID" use="optional"/>
307 <xs:attribute name="Reference"
308 type="xs:IDREF" use="optional"/>
309 <xs:attribute name="Alignment"
310 type="xs:string" use="optional"/>
311 </xs:complexType>
312 </xs:schema>

70

