
A Stream-based Implementation of XML Encryption
Takeshi Imamura

IBM Research, Tokyo Research
Laboratory

1623-14, Shimotsuruma, Yamato,
Kanagawa 242-8502, Japan

+81-46-215-4479

imamu@jp.ibm.com

Andy Clark
977 Hollow Creek Dr., Milford,

OH 45150, USA
+1-513-248-4169

andyc@apache.org

Hiroshi Maruyama
IBM Research, Tokyo Research

Laboratory
1623-14, Shimotsuruma, Yamato,

Kanagawa 242-8502, Japan
+81-46-215-4576

maruyama@jp.ibm.com

ABSTRACT
W3C has been working on the standardization of XML
Encryption and released its specification as a W3C Proposed
Recommendation in 2002. There are several implementations of
the specification, all of which are implemented using DOM.
However, it is commonly accepted that DOM has higher costs in
time and space than other APIs. Also, even if SAX is used, with
this kind of API, it is impossible to parse decrypted data both
efficiently and correctly. Therefore, we thought of using the
Xerces Native Interface (XNI) of Xerces2. Using this API, we
prototyped a stream-based implementation of the specification.
We also evaluated its performance. As compared with a DOM-
based implementation, it achieves a 0.27%-26% reduction in
processing time (i.e., 1.0x-1.3x performance) for encryption of
XML documents with sizes larger than 2 KB, and 34%-88% (i.e.,
1.5x-8.5x) for decryption of XML documents with any sizes.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption – Standards

General Terms
Security, Standardization

Keywords
XML, encryption, stream-based processing

1. INTRODUCTION
1.1 Motivation
XML [1] is a language for representing tree-structured data and
was standardized by W3C [2] in 1998. Because data represented
in XML is just clear text, it is difficult to use such data, especially
for business, unless some security is provided. For such reasons,
the joint standardization of XML Signature [3] was started by
W3C and IETF [4] in 1999. The specification for XML Signature
became a W3C Recommendation in 2002. When this
standardization was almost completed, the standardization of

XML Encryption [5] was started by W3C in 2000. The
specification for XML Encryption became a W3C Proposed
Recommendation in 2002.

Because at least two independent and interoperable
implementations are required for a specification to proceed to a
W3C Recommendation, an interoperability test was done.
According to this report [6], there are four implementations at
present. Based on their API documentation, all of them are
implemented using DOM [7]. Though DOM makes it possible to
manipulate an XML document easily, it is commonly accepted
that DOM has higher costs in time and space than other APIs.
Because they are reference implementations of the specification
and are intended for verifying whether it really works, efficient
performance is not crucial. However, performance is very
important for certain applications, such as online transactions.

One of the methods to improve performance is to process data as
a stream. With this kind of processing, the costs in time and space
are reduced and accordingly performance is improved. Actually,
it is possible to process data as a stream if the encryption
algorithms are limited to block encryption (e.g., Triple DES [8]),
stream encryption (e.g., RC4 [9]), and similar.

We have SAX [10] as a stream-based API and using it, it would
be possible to implement the specification. However, the use of
APIs such as DOM and SAX raises an issue. With this kind of
API, it is impossible to parse decrypted data both efficiently and
correctly. The reason is that though it is very likely that decrypted
data is a part of an XML document, the method to parse it directly
is not defined anywhere. The XML specification is not helpful
because it only defines how to parse a complete XML document,
and therefore other methods have to be used. One of them is to
serialize an XML document, replacing an encrypted part with its
decrypted data, and then reparsing the XML document. Though
this method would work, it is not efficient if an XML document is
very large but decrypted data is very small. A better method is to
parse decrypted data as if it is parsed as a part of an XML
document. This method recreates the parsing context of the
decrypted data. In the XML Encryption specification, namespace
declarations [11] and general entities [1] are considered as the
parsing context. These would be sufficient for most cases, and it
is expected that this method is adopted in the implementations
mentioned above. However, it is a temporary solution and is not
regarded as correct.

This issue arises from the use of APIs such as DOM and SAX. In
other words, it arises because we try to decrypt a part of an XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Workshop on XML Security, Nov. 22, 2002, Fairfax VA, USA.
Copyright 2002 ACM 1-58113-632-3/02/0011…$5.00.

11

document and then parse the resulting data at the application level.
If it is possible to do so at the parser level, the issue would never
arises. Actually, this is possible with Xerces2 [12], an XML
parser developed by Apache XML Project [13]. It has an
extensible architecture that makes it possible to place any parser
components in a pipeline of components of which it consists. Also,
these components are stream-based. These features are sufficient
for our requirements.

1.2 Related Work
As mentioned in Section 1.1, according to the interoperability
report of the XML Encryption specification, there are four
implementations at present. However, based on their API
documentation, all of them are implemented using DOM. This
means that neither of them addresses the issues we present, and
therefore we believe that our work is worthwhile.

1.3 Achievements
We prototyped a stream-based implementation of the XML
Encryption specification as parser components of Xerces2. We
also evaluated its performance. As compared with a DOM-based
implementation, it achieves a 0.27%-26% reduction in processing
time (i.e., 1.0x-1.3x performance) for encryption of XML
documents with sizes larger than 2 KB, and 34%-88% (i.e., 1.5x-
8.5x) for decryption of XML documents with any sizes.

1.4 Organization
In Sections 2 and 3, we outline the specification of XML
Encryption and the design of Xerces2, respectively. In Section 4,
we describe the design and development environment of our
implementation. In Section 5, we present and discuss its
performance through an experiment. Finally, in Section 6, we
present a summary of this paper and future work.

2. XML ENCRYPTION
The XML Encryption specification [5] was released as a W3C
Proposed Recommendation in 2002. It specifies (1) steps for
encrypting data, (2) steps for decrypting encrypted data, and (3)
the syntax in XML for representing encrypted data and the
information used for decrypting it. XML Encryption can be
applied to an XML element, XML element content, and arbitrary
data (including an XML document). In this section, we outline the
specification.

2.1 Syntax
The encrypted data is represented as an EncryptedData
element, whose syntax is illustrated in Figure 1. In this figure, it is
assumed that prefixes “e” and “ds” are associated with URI
references [14] of the XML Encryption and XML Signature
namespaces, respectively, i.e.:

xmlns:e="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

2.2 Processing Rules
The steps to encrypt data are as follows:

• For each data item to be encrypted:
1. Select the algorithm and parameters.

 <e:EncryptedData
 Id? Type? MimeType? Encoding?>
 <e:EncryptionMethod Algorithm/>?
 <ds:KeyInfo Id?>
 <e:EncryptedKey
 Id? Type? MimeType? Encoding?/>?
 <e:AgreementMethod Algorithm/>?
 <ds:*/>?
 </ds:KeyInfo>?
 <e:CipherData>
 <e:CipherValue/>?
 <e:CipherReference URI/>?
 </e:CipherData>
 <e:EncryptionProperties/>?
 </e:EncryptedData>

Figure 1. EncryptedData element

2. Obtain the key. If the key itself is to be encrypted,
construct an EncryptedKey element by applying
these steps recursively.

3. Encrypt the data. If it is of type ‘element’ or element
‘content’, serialize it in UTF-8 [15] first.

4. Construct an EncryptedData element.
5. Return the EncryptedData element. If the data is

of type ‘element’ or element ‘content’ and is required
to be replaced, replace it with the EncryptedData
element.

The steps to decrypt the encrypted data are as follows:

• For each EncryptedData element to be decrypted:
1. Identify the algorithm, parameters, and the KeyInfo

element.
2. Locate the key according to the KeyInfo element. If

the key itself is encrypted, locate the corresponding
key to decrypt it.

3. Decrypt the data contained in the CipherData
element.

4. Return the decrypted data. If it is of type ‘element’ or
element ‘content’ and the EncryptedData element
is required to be replaced, replace the
EncryptedData element with the decrypted data.

3. XERCES2
Xerces2 [12] is an XML parser developed by Apache XML
Project. It has an extensible architecture that makes it possible to
build any parser components and configurations. Our stream-
based implementation of the XML Encryption specification,
which is described in the next section, depends on it. In this
section, we outline its design.

3.1 Architecture
In Xerces2, a parser is configured as a pipeline of parser
components. Each component is either capable of producing data,
consuming data, or both. The input data flows through this
pipeline to produce some kind of programming interface as the
output. For example, it could be a DOM tree or a series of SAX
events.

12

A pipeline consists of a source, zero or more filters, and a target.
The source is typically the XML scanner; filters are DTD [1] and
XML Schema [16] valildators, the namespace binder, and similar;
and the target is the parser to produce a programming interface
such as DOM or SAX. A basic pipeline configuration is
illustrated in Figure 2.

ParserParserValidatorValidatorScannerScannerXML API

Parser Configuration

Figure 2. Basic pipeline configuration

The component manager is responsible for configuring a parser.
More precisely, it does the following:

• Keeps track of parser settings and options.
• Instantiates and configures various components in a parser.
• Assembles a pipeline and initiates parsing.

What we want to do here is to place our own components for
encryption and decryption in a pipeline. Therefore, all we have to
do is to build those components and a component manager that
places them in the pipeline.

3.2 Xerces Native Interface (XNI)
Parser components communicate with each other using a set of
interfaces, called the Xerces Native Interface (XNI). The data
communicated through XNI is a streaming XML document
information set, which is the information obtained by parsing an
XML document in a serial manner. While XNI is similar to SAX,
it is different in several ways:

• XNI attempts to provide lossless communication of the
streaming information set. For example, XNI passes an
XML declaration, text declarations, encodings of external
parsed entities, parameter entities, and so forth, which are
lost when using SAX.

• XNI makes it possible to modify and augment the streaming
information set in each component, whereas SAX is
primarily read-only.

XNI breaks the streaming information set into several more
manageable information sets: XML document structure and
content information, basic DTD information, element
declaration’s content model information, and so forth, each of
which is communicated through a different interface. For example,
the interface for the XML document structure and content
information, called XMLDocumentHandler, includes methods
illustrated in Figure 3.

4. STREAM-BASED IMPLEMENTATION
Using the extensible architecture of Xerces2, we prototyped a
stream-based implementation of the XML Encryption
specification. In this section, we describe its design and
development environment.

 void startDocument(XMLLocator locator,
 String encoding,
 Augmentations augs)
 void xmlDecl(String version,
 String encoding,
 String standalone,
 Augmentations augs)
 void doctypeDecl(String rootElement,
 String publicId,
 String systemId,
 Augmentations augs)
 void startPrefixMapping(String prefix,
 String uri,
 Augmentations augs)
 void startElement(QName element,
 XMLAttributes attributes,
 Augmentations augs)
 void startGeneralEntity(String name,
 XMLResourceIdentifier identifier,
 String encoding,
 Augmentations augs)
 ...

Figure 3. XMLDocumentHandler interface

4.1 Architecture
Each function for encryption and decryption is implemented as a
parser component of Xerces2. The component receives a series of
XNI events from an upper-level component. If the component for
encryption (say, an encryptor) finds any elements to be encrypted
in the series, it encrypts them or their contents and then sends the
results as XNI events to a lower-level component. On the other
hand, if the component for decryption (say, a decryptor) finds any
EncryptedData elements to be decrypted in the series, it
decrypts them and then sends the results also as XNI events to a
lower-level component. Both the encryptor and the decryptor send
the other XNI events in the series to lower-level components as
they are. The pipeline containing the encryptor and that
containing the decryptor are illustrated in Figures 4 and 5,
respectively. In these figures, the encryptor is placed after the
validator while the decryptor is placed before the validator. We
note that this placement does not always have to be used though
we believe that it is quite natural approach. If necessary, they can
be placed anywhere else, as outlined in the previous section.

ParserParserValidatorValidatorScannerScanner EncryptorEncryptorXML API

Parser Configuration

Figure 4. Pipeline containing encryptor

ParserParserValidatorValidatorScannerScanner DecryptorDecryptorXML API

Parser Configuration

Figure 5. Pipeline containing decryptor

13

4.2 Processing of the Components
The processing of each component is described in more detail
here. The encryptor watches each XNI event corresponding to an
element in a series of XNI events received from an upper-level
component and checks whether it is an element to be encrypted. If
the XNI event is not such an element, it is sent to a lower-level
component as it is. Otherwise, a subcomponent that is responsible
for encryption (say, an encryptor body) is created and the XNI
event and the following related XNI events are sent to it instead.
Before those XNI events are sent, the encryptor body sends a
series of XNI events corresponding to the part between the start
tag of an EncryptedData element and that of a
CipherValue element to the lower-level component. Then, the
encryptor body serializes each XNI event received from the
upper-level component, encrypts the resulting plaintext, and sends
XNI events corresponding to the resulting ciphertext to the lower-
level component. When all of the XNI events to be encrypted
have been sent, the encryptor body sends an XNI event
corresponding to the still remaining ciphertext, if any, and a series
of XNI events corresponding to the part between the end tag of
the CipherValue element and that of the EncryptedData
element to the lower-level component. Finally, the encryptor body
is discarded and the following XNI events are sent directly to the
lower-level component. If an XNI event corresponding to another
element to be encrypted is found while a series of XNI events are
being encrypted, another encryptor body is created and the XNI
event and the following related XNI events are sent to it instead.
Therefore, multiple encryptor bodies may be chained. This case is
illustrated in Figure 6.

BodyBody

BodyBody

ParserParserValidatorValidator

BodyBody

Encryptor

Figure 6. Chained encryptor bodies

In a similar manner, the decryptor watches each XNI event
corresponding to an element in a series of XNI events received
from an upper-level component and checks whether it is an
EncryptedData element to be decrypted. If the XNI event is
not such an EncryptedData element, it is sent to a lower-level
component as it is. Otherwise, a subcomponent that is responsible
for decryption (say, a decryptor body) is created (or its state is
reset if it has been already created) and the XNI event and the
following related XNI events are sent to it instead. The decryptor
body buffers those XNI events, if necessary, and when all of the
XNI events to be decrypted are received, decrypts the buffered
ciphertext. More precisely, the ciphertext is not actually
decrypted at this time, but just wrapped within a wrapper in which
it will be decrypted when the wrapper is asked to return the
resulting plaintext. The wrapper is then pushed on the top of the
entity stack of a parser. Because the parser always reads data from
the top of the entity stack, it reads the plaintext. Consequently, the

plaintext is parsed in an appropriate context. Finally, the
decryptor body is discarded and the following XNI events are sent
directly to the lower-level component.

4.3 Environment
According to the design described above, we prototyped an
implementation with Java. We used the following software:

• Java 2 SDK 1.3.1 [17]
• Java Cryptography Extension (JCE) 1.2.1 [18]
• Xerces2 Java Parser 2.0.1 [12]
• XML Security Suite [19]

5. PERFORMANCE EVALUATION
We performed an experiment to evaluate the performance of our
stream-based implementation against that of a DOM-based
implementation. In this section, we present the conditions,
environment, and results, and discuss what influenced the results.

5.1 Conditions
The scenario of the experiment was that an XML document was
parsed, its root element was encrypted or decrypted, and the root
element was replaced with the resulting element. For XNI, the
root element was detected by evaluating an XPath-like [20]
expression (e.g., “/foo”) for each XNI event, and for DOM, it
was extracted through the API of DOM. The times for parsing and
for encryption or decryption with replacement were measured
separately. An XML document before encryption had a balanced
binary tree structure and contained text only in leaf elements.
Various sizes of XML documents were used. The size of an XML
document before encryption varied from 60 B to 1.6 MB, and that
after encryption, from 350 B to 2.1 MB. We note that if an XML
document is encrypted and the resulting ciphertext is contained in
it, its size generally gets larger, because it contains an
EncryptedData element and the base64-encoded [21]
ciphertext. For simplicity, validation was not performed.
Serialization was performed using the serializer of Xerces2 as it
was for DOM and with some extension for XNI, because it does
not provide any API for XNI. Triple DES [8] was used as an
encryption algorithm. The key was generated and given in
advance so as to avoid generating or retrieving it each time. The
encrypted data was contained in the CipherValue element.

5.2 Environment
The experiment was done on the following environment:

• CPU: Pentium III 1 GHz
• Memory: 512 MB
• OS: Windows 2000
• Java VM: Sun HotSpot Client VM [17]
• JCE provider: IBM [22]
• DOM-based implementation: XML Security Suite [19]

5.3 Results
The results in encryption and decryption are illustrated in Figures
7 and 8, respectively. In these figures, the horizontal axis

14

represents the size of an XML document in bytes, and the vertical
axis, the time for processing of an XML document in milliseconds.
Each dot in Figure 7 corresponds to the dot at the same position in
Figure 8. That is, the XML document represented by a dot in
Figure 8 is the one obtained by encrypting the XML document
represented by the dot at the same position in Figure 7. Naturally
enough, in both encryption and decryption, as the size of an XML
document increases, more time is taken for processing of the
XML document. Also, in general, the performance of the stream-
based implementation is better than that of the DOM-based
implementation. The stream-based implementation achieves a
0.27%-26% reduction in processing time (i.e., 1.0x-1.3x
performance) for encryption of XML documents with sizes larger
than 2 KB, and 34%-88% (i.e., 1.5x-8.5x) for decryption of XML
documents with any sizes. The best performance for the
combination of encryption and decryption is achieved if the size
of an XML document before encryption is in the range
approximately from 100 KB to 200 KB. We note that processing
time is superlinear in the size of an XML document. We suppose
that this result is due to memory overhead of Java.

5.4 Discussion
The times for parsing and for actual encryption or decryption
should be analyzed separately. In encryption, the time for parsing
is reduced as expected. We believe that this result is due to
avoiding the creation of any DOM nodes. However, the time for
encryption increases for XML documents with sizes smaller than
2 KB and this increase contributes to the increase of total time.
We suppose that this result is due to overhead for encryption, e.g.,
creating an encryptor body dynamically. Because the time for this
creation is constant regardless of the size of an XML document
under the conditions of the experiment, it cannot be ignored if the
size of an XML document is small. Serialization can also be
overhead because, as presented in Section 5.1, the serializer of
Xerces2 was not used as it was, but extended for XNI. It may not
much influence the result if the size of an XML document is small,
though, because this overhead increases as the size of an XML
document increases. These problems can be solved by creating an
encryptor body beforehand and using another serializer
specialized for XNI, respectively.

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7
Size (bytes)

Ti
m

e
(m

ill
is

ec
on

ds
)

DOM (parse)
DOM (total)
XNI (parse)
XNI (total)

Figure 7. Result in encryption

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7
Size (bytes)

Ti
m

e
(m

ill
is

ec
on

ds
)

DOM (parse)
DOM (total)
XNI (parse)
XNI (total)

Figure 8. Result in decryption

15

In decryption, the result is very interesting. It is surprising that the
time for parsing is drastically reduced. This result is the exact
opposite of that in encryption. Before encryption, as the size of an
XML document increases, the XML document has a wider and
deeper structure. By contrast, after encryption, even if the size of
an XML document increases, the XML document does not have a
more complicated structure, but just contains longer text in the
CipherValue element. With Xerces2, as the text gets longer,
creating a DOM text node corresponding to the text takes more
time because allocating space and copying text to the space
occurs more frequently. By contrast, sending a series of XNI
events corresponding to the text takes less time, because it does
not do allocation or copying. We believe that this causes the result.

However, this advantage in parsing contributes to the
disadvantage in decryption, because, as described in Section 4,
the decryptor body buffers XNI events (including ones
corresponding to text), if necessary, and this buffering can cause
the same problem as above. We believe that this is why the time
for decryption increases drastically as the size of an XML
document increases. Actually, as illustrated in Figure 9, where the
horizontal and vertical axes represent the same as in Figure 8, the
details of the time for decryption, i.e., the times for buffering and
for actual decryption (including parsing) indicate that as the text
gets longer, much more time is required for buffering.
Consequently, this problem can be solved (1) by reducing the
number of times allocation or copying occurs or (2) by avoiding
the buffering itself.

6. CONCLUSION
In this paper, we have described the design and performance of a
stream-based implementation of the XML Encryption
specification that we prototyped. It is implemented as parser
components of Xerces2 and works as a part of a parser. As
compared with a DOM-based implementation, it achieves a
0.27%-26% reduction in processing time (i.e., 1.0x-1.3x
performance) for encryption of XML documents with sizes larger
than 2 KB, and 34%-88% (i.e., 1.5x-8.5x) for decryption of XML
documents with any sizes.

Future work includes a solution for the overhead problem in
encryption. This can be solved by creating an encryptor body
beforehand and/or using another serializer specialized for XNI.
However, even if these solutions are taken, the performance for
encryption may not be much improved. We have not thought of
any ideas to improve it drastically yet, and therefore to find such
ideas is another area for future work. The other area is to solve the
buffering problem in decryption. This can be solved (1) by
reducing the number of times allocation or copying occurs or (2)
by avoiding the buffering itself. If these problems are effectively
solved, it is expected that the performance for both encryption and
decryption will be further improved.

ACKNOWLEDGMENTS
The authors are grateful to the anonymous referees for their
valuable comments.

REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.

Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation, 2000.
http://www.w3.org/TR/2000/REC-xml

[2] World Wide Web Consortium (W3C).
http://www.w3.org

[3] D. Eastlake, J. Reagle, and D. Solo. XML-Signature Syntax
and Processing, W3C Recommendation, 2002.
http://www.w3.org/TR/xmldsig-core

[4] Internet Engineering Task Force (IETF).
http://www.ietf.org

[5] D. Eastlake and J. Reagle. XML Encryption Syntax and
Processing, W3C Proposed Recommendation, 2002.
http://www.w3.org/TR/xmlenc-core

[6] XML Encryption Implementation and Interoperability
Report, 2002.
http://www.w3.org/Encryption/2002/02-xenc-interop.html

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7
Size (bytes)

Ti
m

e
(m

ill
is

ec
on

ds
)

XNI (buffer)
XNI (decrypt)

Figure 9. Details of time for decryption

16

[7] A. L. Hors, P. L. Hégaret, L. Wood, G. Nicol, J. Robie, M.
Champion, and S. Byrne. Document Object Model (DOM)
Level 2 Core Specification Version 1.0, W3C
Recommendation, 2000.
http://www.w3.org/TR/DOM-Level-2-Core

[8] Triple Data Encryption Algorithm Modes of Operation,
ANSI X9.52, 1998.

[9] B. Schneier. Applied Cryptography, Second Edition, John
Wiley & Sons, Inc., 1996, Section 17.1, pp. 397-398.

[10] Simple API for XML (SAX) 2.0, 2000.
http://sax.sourceforge.net

[11] T. Bray, D. Hollander, and A. Layman. Namespaces in XML,
W3C Recommendation, 1999.
http://www.w3.org/TR/REC-xml-names

[12] Apache XML Project. Xerces2 Java Parser 2.0.1.
http://xml.apache.org/xerces2-j

[13] Apache XML Project.
http://xml.apache.org

[14] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifiers (URI): Generic Syntax, RFC 2396, 1998.
http://www.ietf.org/rfc/rfc2396.txt

[15] F. Yergeau. UTF-8, a transformation format of ISO 10646,
RFC 2279, 1998.
http://www.ietf.org/rfc/rfc2279.txt

[16] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn.
XML Schema Part 1: Structures, W3C Recommendation,
2001.
http://www.w3.org/TR/xmlschema-1
P. V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes, W3C Recommendation, 2001.
http://www.w3.org/TR/xmlschema-2

[17] Sun Microsystems. Java 2 SDK, Standard Edition, Version
1.3.1.
http://java.sun.com/j2se/1.3

[18] Sun Microsystems. Java Cryptography Extension (JCE) 1.2.1.
http://java.sun.com/products/jce/index-121.html

[19] IBM. XML Security Suite.
http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

[20] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0, W3C Recommendation, 1999.
http://www.w3.org/TR/xpath

[21] N. Freed and N. Borenstein. Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies, RFC 2045, 1996.
http://www.ietf.org/rfc/rfc2045.txt

[22] IBM. Developer Kit for Windows, Release 1.3.0.
http://www7b.boulder.ibm.com/wsdd/wspvtdevkit-info.html

17

