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Abstract: This paper describes an alternative encryption 
method for XML [1] which is capable to encrypt single 
XML Information Set [2] items. It is able to hide the size 
and the existence of encrypted contents. As a result, it pre-
vents a ‘traffic analysis’, i.e. it’s analogous counterpart for 
documents. In 2001, the W3C launched the XML Encryp-
tion working group which, among other things, defined how 
to encrypt portions of XML documents [3]. The portion 
must always be a subtree or a consecutive sequence of sub-
trees. On the other hand, XML Access Control allows more 
granular restrictions on what portions on an XML docu-
ment a client is allowed to see: XML Access Control can re-
move an ancestor node from a document while leaving a 
descendant node in the document. This paper describes an 
encryption system which allows to have these ‘deep chil-
dren’ in plaintext while having the ancestors encrypted, i.e. 
bringing the property from XML Access Control to XML 
Encryption. 

CATEGORIES AND SUBJECT DESCRIPTORS
E.1 Data structures (trees), E.3 Data encryption

1. INTRODUCTION
Today more and more applications are deployed which use 
XML [1] as primary data format. As security becomes a re-
quirement for new systems, ways are needed to provide security 
services on the application layer. Given XML, various security 
mechanisms are defined which help providing end-to-end-se-
curity, like XML Signature [4] and XML Encryption [3]. Addi-
tionally, much research is done in the field of regulating access 
to XML documents, which e.g. resulted in standards like the 
eXtensible Access Control Markup Language [5]. 

1.1 Motivation
The motivation for this work is quite simple: The server-based 
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XML access control mechanisms can provide some features 
which cannot be provided using XML Encryption. Given the 
mechanisms in this paper, these features can be provided using 
only cryptographic mechanisms, without the need of a server 
component. 

1.2 Security Services
In information security, various security services are defined: 
For this paper, the relevant ones are 

1 confidentiality (of data), 
2 access control (for reading XML),
3 traffic flow confidentiality or 

prevention of traffic analysis

Data confidentiality does keep particular content information 
secret, i.e. the information is not made available or disclosed to 
unauthorized individuals or entities. Data confidentiality is usu-
ally achieved by using security mechanisms like encryption al-
gorithms or access prevention mechanisms which use physical 
media protection or routing control. 
Access control is a service which prevents the unauthorized use 
of a resource, e.g. reading the contents of a file. In most cases, a 
single point of control like a trusted enforcement engine enforc-
es a given access control policy. 
The term traffic flow confidentiality refers to keep the context of 
a given information exchange secret, not only the information 
transmitted during the communication. Traffic analysis is the in-
ference of information from the observation of traffic flows, i.e. 
presence, absence, amount, direction and frequency of informa-
tion exchange [7]. Mechanisms to achieve traffic flow confiden-
tiality are e.g. data padding or the creation of dummy events. 
Data padding changes the size of the exchanged information, 
e.g. by adding data at the beginning and/or the end of a data 
item. Dummy events prevent that an adversary learns something 
about the communications frequency on the channel. 

2. W3C XML ENCRYPTION
This part will work out two properties of W3C XML Encryption 
[3]: 

1 It is not possible to encrypt an ancestor node (an ele-
ment) while leaving any of the descendants of this 
node in plaintext. 

2 There is information leakage between different users 
about their own capabilities compared to the other 
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ones. 

2.1 Granularity of encryption
The W3C XML Encryption (XEnc) recommendation specifies 
a confidentiality mechanism for XML. XEnc is capable to en-
crypt user data like 

* complete XML documents, 
* single elements (and all their descendants) inside an 

XML document, 
* the contents of an element (some or all child nodes 

(and all their descendants)) inside an XML docu-
ment or 

* arbitrary binary contents outside of an XML docu-
ment. 

Related to encrypting XML, XEnc allows two different granu-
larity levels: the encryption of full subtrees (a single element 
and all it’s descendants) or sequences of subtrees (whereas a 
subtree can be a single node like a text node or also a mixed 
sequence of comments, elements, text and processing instruc-
tions). Including an element in the encryption process always 
includes the descendants of that element, too. Figure 1-1 illus-
trate these possiblities. 

* Example A shows encrypting an element (and it’s 
descendants), which refers to the #Element type. 

* Example B shows encrypting an elements content 
(#Content type). 

* Example C encrypted the content of an element 
using three separate envelopes. Each envelope can 
have individual encryption properties. 

* Example D shows that #Content type does not 
only enforce to encrypt all children of an element, 
but it also allows to encrypt well-balanced portions. 
This could even be used to split a single Text node (a 
sequence of multiple character information items) 
into encrypted and unencrypted parts1. 

If an encryptor decides to encrypt a given node like an element, 
W3C XML Encryption constrains that all descendants of this 
node are encrypted, too. 

2.2 Encryption for multiple recipients

2.2.1 Encrypting the same content
Encryption a given resource for multiple recipients can be done 
in several ways. The trivial case is that all recipients are allowed 
to see the same portion of the XML document. In that case, the 
content is only encrypted once, whereas the content encryption 
key is encrypted multiple times, once for each recipient. Such a 
document contains a single xenc:EncryptedData element 
for the encrypted content and one xenc:EncryptedKey el-
ement for each recipient. This element contains the content en-
cryption key encrypted under the recipients key. 

2.2.2 Super-Encryption
Another way to encrypt contents for multiple recipients applies 
when the contents overlap, i.e. when encrypted contents have to 
be re-encrypted. 

In figure 1-2, a part of the tree is encrypted under a key B for a 
recipient B. The encrypted contents are, tied up with some 
plaintext, encrypted under key A for the recipients A and B. 
So when it comes to decryption, the recipient A can decrypt the 
outer envelope. After that initial decryption, recipient A en-
counters a second envelope which was encrypted under key B. 
Since key B is not available to recipient A, the second envelope 
remains undecrypted. Recipient A is aware of the existence of 
a part in the document which he is not allowed to decrypt; there 
is information leakage to recipient A that very likely more pow-
erful users of the system exist2. Additionally, based on the octet 
size of the inner envelope, recipient A can make good estima-
tion on how large the inner content is. 
The decryption by recipient B is done in two steps: recipient B 

Figure 1-1: W3C XML Encryption modes
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1. Given DOM, XPath and the Infoset, different data 
models exist to describe XML; for instance, in a 
DOM tree, a alternating sequence of Text nodes 
and CDATA sections are different nodes in the 
DOM model, whereas the Infoset does not make 
this distinction but simply refers to the content of 
these nodes as a long character information item 
sequence. 

Figure 1-2: W3C Super-Encryption: Encrypting 
EncryptedData

2. The term ‘powerful’ refers to the ability to decrypt 
content. More powerful means more content can 
be decrypted as there are more keys available to 
the powerful user. 
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has access to both key A and key B. After decrypting the outer 
envelope using key A, the inner envelope B is decrypted. After 
both encryption steps, the full document is decrypted and avail-
able to recipient B. Recipient B is aware that the super-encryp-
tion of the inner envelope is (certainly) done in order to prevent 
other users from accessing the inner information. So there is in-
formation leakage to recipient B that (1) he was able to decrypt 
the full document and that (2) there may exist other users which 
are not allowed to see the contents of the inner envelope. 
So information leaks to all users about their own decryption ca-
pabilities compared to the abilities of other users. Both, an ad-
versary and regular users can gain knowledge about the 
privileges of themselves and other users. 

2.3 Former location of the plaintext
When encryption a part of an XML document, the former plain-
text is removed from the document and substituted by an 
xenc:EncryptedData element. The ciphertext itself can 
either be directly included using an xenc:CipherValue el-
ement or a link to an external location can be done using the 
xenc:CipherReference element. But regardless which 
mechanisms is choosen, the xenc:EncryptedData ele-
ment tells an adversary where the plaintext had been before. An 
adversary can see where plaintext had been. 

2.4 Size of plaintext
An adversary with access to the ciphertext can also make a 
good estimation on the size of the plaintext by inspecting the 
size of the ciphertext. An encrypted passphrase or credit card 
number is usually of a smaller magnitute than an encrypted 
book or catalog is, so a second place of information leakage ex-
ists. An adversary can guess how big the plaintext had been. 

3. XML ACCESS CONTROL
In XML Access Control, a trusted access control processor, 
a.k.a. policy enforcement engine, decides based on a policy 
which portions of a document can be given to a particular user. 
The processor labels the tree according to the policy (and the 
users access rights) with ‘permit’ and ‘deny’ labels. After the 
labeling step, the document is pruned, i.e. nodes which are fi-
nally labeled ‘deny’ are removed from the document [8]. 

3.1 The invisible ancestors problem
One question must be discussed in more detail: “What happens 
if an ancestor (namely an element) is labeled ‘deny (-)’ but a de-
scendant is labeled ‘permit (+)’ ?”. There are different solutions 
how such a conflict is handled: 

3.1.1 The DTD/Schema friendly solution
The authors of [8] suggest the following: 

“Note that, in order to preserve the structure 
of the document, the portion of the document 
visible to the requester will also include start 
and end tags of elements with a negative or 
undefined label, if the elements have a de-
scendant with a positive label.” 

The advantage of this solution is that the damage to with respect 
to validity is limited: The elememt structure remains the same 
as in the original document, but all attributes from the confiden-
tal element are removed. The disadvantage is that the existence 
of the ancestor elements remains visible for the requester. It can 
be envisioned that in particular cases, even the existence of the 
ancestor element should be kept secret. 
Given the following XML snippet: The B element in 
example 1-1 is labeled ‘deny (-)’, while all other elements are 
permitted to be seen by the requester: 

During pruning the tree, all attributes of the B element are re-
moved, but the element itself remains in the document subset, 
although access to it is denied. The serialized XML result looks 
like in example 1-2, the tree structure corresponds to figure 1-3.  

3.1.2 Real invisible ancestors
Another solution is to fully omit the ancestor like this is done in 
Canonical XML. No start or and tags are output if the element 
is labeled ‘deny (-)’. This has a large impact on Schema-valid-
ity, if required elements are omitted from the serialized form. 
On the other hand, this is a clean way to solve the problem, be-
cause it is consistent with the idea of serializing an Infoset as 
defined by Canonical XML. 
The result from the sample would look like in example 1-3 and 

<A someAttrInA="foo">
  <B someAttrInB="bar">
    <C someAttrInC="baz">
    </C>
  </B>
</A>

Example 1-1: Input document (XML Access Control)

<A someAttrInA="foo">
  <B>
    <C someAttrInC="baz">
    </C>
  </B>
</A>

Example 1-2: Result after pruning, DTD/Schema friendly 
solution

Figure 1-3: Result after pruning, DTD/Schema 
friendly solution
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someAttrInB="bar"

someAttrInA="foo"

someAttrInC="baz"

B

Original document

A

C

someAttrInA="foo"

someAttrInC="baz"

B

Pruned tree (1)
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figure 1-4. 

Denying access to the B element results in a complete removal 
of the node, so that the requester does not gain any knowledge 
about the existence of element in the original document. This 
model allows to remove ancestors from the document while de-
scendants remain accessible (readable) to the requester. 

4. COMPARISON BETWEEN W3C XML 
ENCRYPTION AND XML ACCESS CON-
TROL

By comparing the results from W3C XML Encryption and 
XML Access Control, it can be seen that W3C XML Encryp-
tion is only capable to encrypt full subtrees, while XML Access 
control can remove sensitive material from the middle of the 
tree. 
XML Encryption does not allow to encrypt an ancestor while 
leaving a descendant in plaintext. XML Access Control has this 
ability, but requires a trustworthy access control processor with 
access to the full document. This server-based component  en-
forces the policy by removing nodes before giving the results to 
the client. 
XML Encryption does not allow “deep visible children” while 
XML Access control does. The rest of this work will answer the 
question on how the goal of deep visible descendants with in-
visible (encrypted) ancestors can be reached only with crypto-
graphic mechanisms and how the information leakage (“Where 
are encrypted contents?”) can be prevented. 

5. POOL ENCRYPTION

5.1 Basic idea
The basic idea of pool encryption is to encrypt each node sepa-
rately and to move all encrypted nodes from their original posi-
tion in the document into a pool of encrypted nodes. This pool 
can be either inside the document where the plaintext nodes 
originated from or it can be in one or multiple different docu-
ments. When it comes to decryption, the nodes ‘magically’ find 
their way back into the appropriate positions. 

Each node is encrypted with an unique node key. To transfer the 
node keys to the recipient, the node keys are grouped in a set of 
node keys and this pool is encrypted under the recipents key. 
Depending on the privileges of a particular recipient (called de-
cryptor), different views to the document can be defined by 
choosing which set of node keys is given to the decryptor. 
Figure 1-5 illustrates the basic concept: Given the document 
tree below, some nodes are to be encrypted, while others remain 
unencrypted. The selected nodes (namely E, F, J, M, N, O, P, U 
and V) are to be encrypted in the subsequent steps (marked 
black):

In the encryption step, the selected nodes are removed from 
their original position in the plaintext document. The plaintext 
of the node (i.e. all necessary information set data) is bundled 
together with the nodes position information. This tuple is en-
crypted individually under a randomly choosen node key and 
the ciphertext of the encrypted nodes is collected in a pool of 
encrypted nodes. The illustration below does not specifically 
show the encryption itself, but only the result of the moving op-
eration. During this step, orphaned child nodes which lost their 
parent node are made childs of their grandparent (or the next 
unencrypted ancestor if the grandparent is also encrypted). For 
instance, the node J is encrypted, so K looses its parent; there-
fore, A becomes the new parent of K. 
The pool of encrypted nodes can be either be placed in the orig-
inal document (dashed line in figure 1-6) or in a separate XML 
document. 

Depending on which decryption keys are available to the de-
cryptor, a specific set of encrypted nodes can be decrypted. In 
this example, the decryptor is given five node keys to decrypt 
the nodes N, O, P, U and V. The keys for the nodes E, F, J and 
M are not available to the decryptor, so these nodes cannot be 
decrypted. The decrypted nodes are placed back into the docu-

<A someAttrInA="foo">
  
    <C someAttrInC="baz">
    </C>
  
</A>

Example 1-3: Result after pruning, element completely 
removed

Figure 1-4: Result after pruning, element 
completely removed
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Figure 1-5: Input document with selected nodes

Figure 1-6: Document with encrypted nodes
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ment, restoring their original position. 
After decryption, a view to the document has been established 
which differs from both the unencrypted original document 
(which contained all nodes) and the encrypted document (in 
which all confidental nodes have been removed). The original, 
unencrypted form cannot be reconstructed because the decryp-
tor was not given access to all necessary decryption keys 
(figure 1-7). 
The overall process of an encryption looks like in figure 1-8. 

From the input tree (1), the nodes which are to be encrypted are 
selected (2). The selected nodes are extracted from the tree pri-
or encryption, so that the pruned tree (3) and the extracted 
nodes (4) are separated. Each extracted node is encrypted with 
an individual node key (5), resulting in separate encrypted 
nodes (6). These nodes are bundled in a pool of encrypted nodes 
(7). The encrypted pool is merged into the pruned tree (7) or can 
be left as a separate entity in an second document. 

5.2 Key management
For simplicity, the above example does not show how the node 

keys are transported to the recipients. Additionally to the pool 
of encrypted nodes, the node keys are transported to the recipi-
ent(s). This is done in a straightforward fashion: Each encrypt-
ed node is identified by a node ID which is attached to the 
ciphertext, e.g. a 128 bit identifier. A node key and a node ID 
are grouped into a tuple. To give a decryptor access to two en-
crypted nodes, both tuples for the respective nodes are grouped 
together in a key pool; this key pool is encrypted under the re-
cipients key. All encrypted key pools (for the various recipi-
ents) are grouped in a pool of encrypted key pools which can be 
added to the pool of encrypted nodes1. 

Figure 1-7: Document after (partial) decryption

BB SS

KKII RR

NLL QQ

O P

TT

U

WW

CC

HH

V

XX

DD

GG YY

AA

J MFE

PoolPool

Figure 1-8: Overall encryption process

1

2

3

5

4

6

7

8

select

extract
5



A recipient can decrypt his portion of the document (recon-
struct his view) by locating his encrypted key pool, decrypting 
it (similar to the mechanisms like in W3C xenc, e.g. with his 
private key), extracting the different (nodeKey/nodeID) tuples, 
locating the encrypted nodes which correspond to the node IDs 
and decrypting the nodes and the position using the node keys. 
Afterwards, the nodes are inserted back into the document us-
ing the decrypted node position. 

5.3 Position of a node in the tree
The biggest problem in the above scenario is to find a good rep-
resentation for the position of each node. To make decryption 
possible, the decryptor needs the position information of a de-
crypted node, i.e. on which place the node was in the original 
tree. This isn’t trivial because the decryptor may have only ac-
cess to a reduced subset of the original tree. 
The absolute position of a node could be described by it’s an-
cestor nodes (i.e. the depth in the tree) and the position relative 
to it’s siblings. If the position information is expressed in terms 
of ancestors and the decryptor does not see the direct ancestors 
(e.g. because they cannot be decrypted), the re-insertation of 
nodes into the tree becomes impossible. 
One (insufficient) way to represent the position information us-
ing an XPath based expression would be 

/A[1]/K[1]/N[1]/P[1] 

to describe the position of the P node. The problem with this 
representation is that the model allows that also ancestor nodes 
are encrypted, i.e. that some nodes in the XPath are not avail-
able in the document. For instance, if the N node is encrypted, 
the above path cannot be evaluated. 
A powerful and extensible scheme for describing the position 
of a node will be described in the following section. 

5.3.1 The “Adjacency List Mode”
In the article “Trees in SQL” [9], JOE CELKO describes a 
scheme how tree structures can be stored in flat tables like SQL 
data bases, i.e. how a tree can be converted into a flat table and 
restored back from the table information. He called this scheme 
Adjacency List Mode (ALM). Given the tree in figure 1-9.  

The tree contains six nodes (Albert, Bert, Chuck, Donna, 
Fred and Eddie). The algorithm for defining the position of 
each node has to traverse the full tree. For each node, the posi-
tion information consists of two integer values, the left and the 
right value. Each time a node is visited for the first time, a vari-
able  is incremented by  and the value of  is assigned to 
the nodes left value. Each time a node is visited the second time, 
the variable  is incremented by  and the value of  is as-
signed to the nodes right value. 
Starting with an initial value of , the node Albert is 
the first on in the traversal. Albert is visited for the first time, 

 is incremented by  and the new value is assigned to the 
nodes left value: . Bert is visited for the 
first time,  is incremented by  and the new value is assigned 
to the nodes left value: . Bert has no further 
descendants, so the algorithm visits Bert for the second time,  
is incremented by  and the new value is assigned to the nodes 
right value: . This method is applied to all 
nodes in the tree. The dashed grey line outlines the order in 
which the labels are assigned to the left and right values of the 
respective nodes, i.e. the way of the traversal. 
The tabular representation of the tree in figure 1-9  is listed in 
table 1-1. 

Given table 1-1, it is simple to determine the position of two 
given nodes relative to each other. The range which is spanned 
by the left and the right value determine the position in the tree. 
Figure 1-10 shows the ranges for all nodes. 

It can be seen that the range of Albert includes the ranges of 
all other nodes, so Albert is in the [ancestor axis] of 
all other nodes, i.e. Albert is the root node. The ranges of 
Bert and Donna have no common interval, so there is no an-
cestor/descendant relationship between them. Bert is in the 
[preceeding axis] of Donna and Donna is in the 
[following axis] of Bert. So the left and right values 1. sorry for this pool-o-mania, it’s simply a grouping 

process ;-)

Figure 1-9: Sample tree for the „Adjacency List Mode“

2 3 4 11

7 85 6 9 10

1 12

Bert Chuck

FredDonna Eddie

Albert

Node left right

Albert 1 12
Bert 2 3
Chuck 4 11
Donna 5 6
Fred 7 8
Eddie 9 10

Table 1-1: Sample table for the „Adjacency List 
Mode“

Figure 1-10: Sample ranges for the „Adjacency List 
Mode“
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can be used to determine whether a given node is on the [self 
axis], [ancestor axis], [descendant axis], 
[preceeding axis] or [following axis] of a sec-
ond node. 

Given a context node C and node X, it has to be defined on 
which of these five axes the node X is located (relative to C). 
After labeling the tree according to the above algorithm, this 
classification can be done this way: 
Four parameters from table 1-2 are available. The classification 

is done as in table 1-3. The traversal algorithm guarantees that 
the left value of a node is always smaller than its right value. 
The Adjacency List Mode (ALM) always converts a full and 
complete tree into a table structure and vice versa. This property 
allows an easy labeling scheme: To assign the left and right val-
ues to the nodes, the counter is incremented by 1 in each step. 
The ALM is not able to label a partial tree. 

When applying this algorithm to a tree, a full labeling traversal 
is performed. There is no need to attach the left/right values to 
the nodes in the tree, because the full tree is converted to the ta-
ble on-the-fly. The tree is not altered by attaching the labels di-
rectly to the tree. 
When it comes to encrypting (parts of) an XML tree, this label-
ing scheme has an important drawback: Removing encrypted 
nodes from the tree messes the labeling algorithm and decryp-
tion becomes impossible.  Using the scheme to increase the 
counter by 1 and labeling the tree, the example looks like in 
figure 1-11. 

After pruning the tree, all nodes which have been selected for 
encryption are removed from tree and the remaining numbering 
scheme looks like  figure 1-12. 
It can be seen that the created number sequence (1, 2, 3, 4, 7, 9, 
10, 11, 12, 14, ..., 50) cannot be reconstructed by the decryptor. 
In the pruned document, the decryptor needs access to the la-
bels of the unencrypted nodes in order to perform the decryp-
tion correctly. The numbering cannot be simply reconstructed 
by re-labeling the document prior decryption, because the num-
bering scheme is not an ‘increment-by-one’ sequence. In the 
above document, the labels would have to be transferred into 

the document. This can be accomplished by adding specific at-

Symbol Type

Left value of the context node

Right value of the context node

Left value of the node which is to be classi-
fied
Right value of the node which is to be classi-
fied

Table 1-2: Used symbols

CL

CR

XL

XR

Axis condition 1 condition 2

 is on the [self axis] 

of 

 is on the [ancestor 

axis] of 

 is on the [descendant 

axis] of 

 is on the [preceding 

axis] of 

 is on the [following 

axis] of 

Table 1-3: Classification by document order

X
C

CL XL= CR XR=

X
C

XL CL< CR XR<

X
C

CL XL< XR CR<

X
C

XR CL<

X
C

CR XL<

Figure 1-11: Labeled plaintext document
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tributes for the left and right value to the document1: 

In the pruned document, the left and the right values are includ-
ed by using attributes in a particular namespace to store these 
values so that the decryptor has access to them. 
The most obvious drawback of this approach is the ‘pollution’ 
of the documents infoset with a large number of attribute and 
namespace nodes; the size of the pruned document is increased 
significantly. 
The second disadvantage is more subtle: The simple ‘increase-
by-one’ scheme for incrementing the X counter enables an at-

tacker to make good assumtions in which places a node has 
been removed (because it was encrypted) and where no en-
crypted nodes have been as there is no space to do re-insert one. 
For instance, the Y element cannot have child nodes after de-
cryption, because the difference between the right and the left 
value is 1. 

5.3.2 The Modified Adjacency List Mode
A more advantagous way to label the tree is to increment the 
counter in larger (defined) steps. This is done by modifying the 
label algorithm sightly: 
The tree labeling algorithm is done similar to the original ALM. 
Two traversals are performed. The first traversal assignes labels 
to the unselected2 nodes, the second traversal labels the select-
ed nodes. 
The algorithm uses a parameter, the step size .  defines in 
which steps X is incremented. In the original ALM, . 
In the first traversal run, only unencrypted nodes are labeled by 
incrementing the counter  using the step size . The select-
ed nodes are skipped during this first traversal. After the first 
traversal, all unselected nodes (which remain unencrypted) 
have been assigned a left/right pair. 
In a second step, the remaining nodes are labeled. Due to the 
property that , there are ‘gaps’ between the left/right 
values of two unencrypted nodes. The left/right values  of 
unselected nodes always are always aligned on the values 

. This gap is used to assign interstitial3 
values to the selected nodes. 
Note: The above description uses two independent traversals; it 
is possible to easily label the tree in a single traversal step. 
Figure 1-13 shows a simplified tree which is completely la-
beled. The step size is chosen , the white nodes are 
plaintext nodes, the black nodes will be encrypted subsequent-

Figure 1-12: Labeled and pruned plaintext document
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<A  xmlns:pe="http://xmlsecurity.org/#poolenc"
           pe:L="1" pe:R="50">
  <B       pe:L="2" pe:R="17">
     <C    pe:L="3" pe:R="14">
        <D pe:L="4" pe:R="7" />
        <G pe:L="9" pe:R="10" />
        <H pe:L="11" pe:R="12" />
     </C>
     <I    pe:L="15" pe:R="16" />
  </B>
  <K       pe:L="19" pe:R="32">
     <L    pe:L="20" pe:R="23" />
     <Q    pe:L="30" pe:R="31" />
  </K>
  <R       pe:L="33" pe:R="34" />
  <S       pe:L="36" pe:R="49">
     <T    pe:L="37" pe:R="48">
        <W pe:L="41" pe:R="42" />
        <X pe:L="43" pe:R="44" />
        <Y pe:L="45" pe:R="46" />
     </T>
  </S>
</A>

Example 1-4: Serialized plaintext with left/right values in 
attributes

1. The example tree in figure 1-12 consists only of 
elements. The XML source code adds whitespace 
for indentation to show the depth of the tree. These 
whitespace text nodes do not show up in the figure, 
so strictly speaking, both figures do not match. 

2. a ‘selected’ node will be encrypted later, an ‘unse-
lected’ node remains in the document.

3. interstitial: (german: „Zwischengitterplatz“) In 
crystallography, an interstitial is a place in the 
crystals lattice where foreign atoms can be 
inserted, e.g. by doping a semiconductor. 
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ly: 

The plaintext nodes A, C and F are assigned the values 1000, 
2000, 3000, 4000, 5000 and 6000. The selected nodes are as-
signed values which do reside between these values (1123, 
3012, 3432, 3445, 3764 and 3921), so after pruning the tree 
(figure 1-14), it cannot be derived whether nodes have been be-
tween the unencrypted nodes. It will be discussed later how this 
segmantation os done. 

The value of the step size  defines how many nodes have 
place between two unencrypted nodes. The lower bound for the 
step size is , in order to allow at least a single encrypted 
node to fit into the interval. Generally speaking, to allow  en-
crypted nodes to be descendants of an unencrypted node, the 
size must be choosen . 

5.4 Dummy Nodes
Without further countermeasures, an adversary can determine 
how many nodes have been removed from the original docu-
ment by counting the encrypted nodes in a pool. Given the se-
curity service prevention of traffic flow analysis, a similar 
service can be defined for encrypted trees: An attacker should 
not be able to gain knowledge about how many nodes have 
been in the original document. It should be hidden from  attack-
ers and also from all legitimate users how the original structure 
has been. Given all node keys, a legitimate user can decrypt the 
full document, but he’ll never know that he reached this state. 

Based on the available node keys, three different classes of at-
tackers are defined: 

1 Attackers without access to any decryption key.
2 Attackers with access to a reduced set of decryption 

keys. 
3 Attackers with access to the all decryption keys. 

An attacker without any decryption key has only access to the 
pruned tree. Depending on how the encrypted nodes are orga-
nized, the attacker has access to a particular set of encrypted 
nodes. From this set, the attacker can count how many nodes 
are in the set. The step size parameter from the labeling scheme 
allows to calculate how many nodes can exist in the original 
document. 
An attacker with access to a reduced set of decryption keys can 
decrypt some nodes from the pool and therefore reconstruct 
parts of the document. After the decryption, the attacker can 
count how many nodes remain undecrypted in the pool (or more 
exactly, in the pools he is aware of). In contrast to the previous 
attacker, he knows some left/right values of decrypted nodes, so 
he can make a better assumtion on how many nodes have place 
in particular areas of the tree. 
A decryptor with full access to all decryption keys can fully re-
construct the original tree. But is such a decryptor an attacker? 
It seems that this decryptor already has access to anything, but 
that’s not the case: It can be hidden from this decryptor that he 
has already full access. 
The left/right values assigned to encrypted nodes are randomly 
choosen (within the required interval). Therefore, a decryptor 
cannot determine whether he already decrypted all nodes. To 
support this uncertainty, the encryptor can add dummy nodes to 
the pool of encrypted nodes. A dummy node is the analogy to 
the data padding and dummy events from the traffic flow con-
fidentiality. No decryptor is given the key required to decrypt a 
dummy node, therefore all decryptors must assume that the en-
crypted envelope containing the dummy node contains a node 
which they are not allowed to see. 
The doubt whether a decryptor can see the full document or not 
is also increased by the possibility of pools which he is not 
aware of. 

5.5 Collaboration of decryptors
Each decryptor who is allowed to decrypt a particular node is 
given the node key for that node. All node keys for a decryptor 
are grouped in the key collection owner by this decryptor. A 
key collection is mathematically a set. Two decryptors which 
are allowed to decrypt a given node do have the same node key 
in their respective key collections. Multiple decryptors with 
(partly) disjunctive key collections can collaborate to decrypt a 
larger part of the tree: By merging different key collections, a 
larger set is composed which decrypts a larger part of the tree: 
Given that user  has the keys  and  so that the encrypt-
ed nodes  and  can be decrypted. User  has the keys 

 and  so that the encrypted nodes  and  can be 
decrypted. By merging their key sets, the nodes  ,  and 

 can be decrypted. 

6. CONCLUSIONS
The presented system is able to encrypt XML at the level of the 
information set. In contrast to W3C XML Encryption, even an-
cestors can be encrypted while descendants remain unencrypt-
ed. Using cryptographic mechanisms, it provides the same 
facilities like XML Access Control (w.r.t. read operations on a 
document). 
The design of the system pays special attention to information 

Figure 1-13: Labeled tree (Modified ALM)

Figure 1-14: Pruned tree (Modified ALM)
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leakage. It is possible to encrypt (parts of) a document in a way 
so that no traces of the encryption process remain in the plain-
text. It can hide the origins of ciphertext, the size of ciphertext 
and even the existence of ciphertext. Enforcing the use of dum-
my nodes can even promote esoteric security features like plau-
sible deniability (which has not been described in this paper). 
Of course, unmindfully use of the system can destroy DTD or 
Schema validity, but this is the case for all systems which mod-
ify documents like XML Encryption or Access Control. 
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