
UNPUBLISHED 1

Latency Performance of SOAP Implementations
Dan Davis, Manish Parashar

Department of Electrical and Computer Engineering
Center for Advanced Information Processing (CAIP)

Rutgers, The State University of New Jersey
94 Brett Road

Piscataway, NJ 08855-1390, USA
{dand,parashar}@caip.rutgers.edu

Abstract— This paper presents an experimental evalua-
tion of the latency performance of several implementations
of Simple Object Access Protocol (SOAP) operating over
HTTP, and compares these results with the performance of
JavaRMI, CORBA, HTTP, and with the TCP setup time.
SOAP is an XML based protocol that supports RPC and
message semantics. While SOAP has been designed as an
interoperable business-to-business protocol usable over the
Internet, we believe that applications will also use SOAP
for interactive web applications running within an intranet.
The objective of this paper is to identify the sources of ineffi-
ciency in the current implementations of SOAP and discuss
changes that can improve their performance. SOAP im-
plementations studied include Microsoft SOAP Toolkit, the
SOAP::Lite Perl module, and Apache SOAP.

Keywords—Performance study, SOAP, JavaRMI, CORBA,
Network programming

I. Introduction

Remote Procedure Call (RPC) and Remote Method In-
vocation (RMI) provide elegant and powerful models for
programming distributed systems. These programming
models typically include a protocol to exchange informa-
tion, a language to describe an application’s interface, and
bindings that preserve the syntax of intra-computer com-
munication for inter-computer communication.

The Simple Object Access Protocol (SOAP) and Web
Service Description Language (WSDL) are a new protocol
and an interface language that provide these same bene-
fits for web services and web applications in peer-to-peer
systems [1][2]. These technologies are capable of support-
ing a web service infrastructure [4] where SOAP accessible
services are described using WSDL and discovered through
service registries. In such an infrastructure, Web services
can be directly accessed and can be combined and com-
posed. For example, the practice of screen scraping [5],
where relevant information is extracted from a web page
and is reformatted and passed to another web page, can be
avoided using these technologies. One service can directly
invoke another to produce composite results.

SOAP and WSDL are increasingly accepted as the means
for supporting distributed applications on the web. This
has made the performance of SOAP critical. As SOAP
will be used to support evolving interactive web applica-

Dan Davis is a software engineer working for Compaq Computer
Corporation and a student at Rutgers. Manish Parashar is an Assis-
tant Professor in the Department of Electrical and Computer Engi-
neering at Rutgers. E-mail: {dand,parashar}@caip.rutgers.edu

tions, it should be fast enough for productive human com-
puter interaction. Furthermore, web services will also be
deployed on intranets where there are fewer hops and fire-
walls between the web service producing information and
the consumer of that information.

In this paper, we analyze the latency performance of sev-
eral SOAP implementations and compare these with results
for JavaRMI, CORBA, TCP setup delay, and HTTP ser-
vices using Microsoft Internet Information Services (IIS)
and Apache Tomcat. Previous studies have shown the im-
pact of XML parsing and formatting on SOAP performance
[3]. The evaluation presented in this paper supports these
results and identifies additional factors at the network level
that can have a significant impact on SOAP performance.
Based on the results, the paper discusses strategies in net-
work programming that will improve the performance of
Microsoft SOAP Toolkit, Perl SOAP::Lite, and Apache
SOAP.

II. Protocol Overview

SOAP is a lightweight protocol for exchange of informa-
tion in a decentralized, distributed environment. It is an
XML based protocol that consists of three parts: an enve-
lope that defines a framework for describing what is in a
message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and
a convention for representing remote procedure calls and
responses.

While SOAP doesn’t specify a transport mechanism,
most SOAP RPC implementations use HTTP. The SOAP
request is the body of an HTTP POST request; the re-
sponse is the body of the HTTP response. Figure 1 and
2 show a request sent to a SOAP service and a response
containing an array of 4 integers. The trace was generated
using Apache SOAP with the Tomcat application server.

WSDL provides an interface definition language for
SOAP. WSDL is not required, but the use of WSDL with
SOAP is a de facto standard. WSDL supports the defi-
nition of complex structures. WSDL defines the request
and response messages for a number of ports, which cor-
respond to methods for an RPC service. The definition
of a message specifies the names and XML types for each
parameter. WSDL can also describe messages and doc-
uments for non-RPC SOAP. SOAP implementations use
WSDL to dynamically bind to web services. However,

UNPUBLISHED 2

POST /soap/servlet/rpcrouter HTTP/1.0

Host: 192.168.1.1

Content-Type: text/xml; charset=utf-8

Content-Length: 408

SOAPAction: "urn:test:soap"

Cookie: JSESSIONID=hypwiuar12

Cookie2: JSESSIONID=hypwiuar12

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getIntegers xmlns:ns1="urn:test:soap"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/

soap/encoding/">

</ns1:getIntegers>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 1. HTTP POST request with SOAP request

SOAP implementations differ in their support for binding
to application-defined datatypes. In general, associating
high-level structures is not as easy for the programmer as
with JavaRMI or CORBA.

III. SOAP Implementations and Related Work

Several implementations of SOAP are maturing rapidly.
Web sites facilitate interoperability testing and provide tu-
torials for rapid learning [6][7]. Implementations differ in
their support for class binding, ease of use, and perfor-
mance.

A. Apache SOAP

Apache SOAP was developed by IBM alphaWorks and
donated to the Apache Software Foundation [8]. It provides
SOAP support for Apache’s Tomcat application server.
Apache SOAP and Tomcat are also used within IBM’s
WebSphere product. To support non-basic types, users
must write classes to serialize and deserialize from an XML
parse tree and map these to an element tag.

B. SoapRMI

Indiana University’s Extreme Laboratory wrote SoapRMI
(now called XSOAP) to study how SOAP might be ap-
plied for high performance technical computing [9]. They
compared the performance of SOAP with JavaRMI, Nexus
RMI, and HPC++ and also analyzed the performance limi-
tations of SOAP. They found that the encoding and decod-
ing time for SOAP was greater than for protocols such as
Java’s object serialization. SoapRMI uses their own parser,
the XML Pull Parser (XPP), to improve performance on
large arrays and data structures. SoapRMI excels because
the interface is nearly identical with JavaRMI. Due to this,
experienced Java programmers learn SoapRMI quickly.

HTTP/1.0 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 1260

Servlet-Engine: Tomcat Web Server/3.2.1 (JSP 1.1; Servlet

2.2; Java 1.3.0; Windows 2000 5.0 x86; java.vendor=Sun

Microsystems Inc.)

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getIntegersResponse xmlns:ns1="urn:test:soap"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

<return xmlns:ns2=

"http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="ns2:Array" ns2:arrayType="xsd:int[4]">

<item xsi:type="xsd:int">0</item>

<item xsi:type="xsd:int">1</item>

<item xsi:type="xsd:int">2</item>

<item xsi:type="xsd:int">3</item>

</return>

</ns1:getIntegersResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fig. 2. HTTP response with SOAP response

C. SOAP::Lite module for Perl

Paul Kulchenko has written this module so Perl may be
used for a web service server or client [10]. A server may
be run as a stand-alone HTTP server or as a CGI script.
Both the server and client support non-basic types using
Perl’s associative arrays.

D. Microsoft SOAP Toolkit

Microsoft SOAP Toolkit provides a wizard that gener-
ates the files needed to export methods of a COM object
using SOAP [11]. These files include the Web Service De-
scription Language (WSDL) file that defines the interface.
One tradeoff of using Visual Basic is that arrays and struc-
tures must be passed as XML node lists, and the XML may
need to be parsed by the application. Microsoft expects the
SOAP Toolkit to ease the transition to Microsoft .NET.

E. JavaRMI and CORBA

JavaRMI and CORBA should be compared with SOAP
because Java makes it easy to invoke these protocols from
Java Applets. JavaRMI’s advanced features include code
distribution, graph serialization, and distributed garbage
collection [12]. CORBA is designed for interoperability and
a model-oriented software process [13].

UNPUBLISHED 3

F. Peer-to-peer performance studies

Web services are often associated with peer-to-peer soft-
ware. The composition expected of web services resembles
the forwarding common to Gnutella and Freenet peers. The
performance studies of peer-to-peer small world networks
suggest that if such a model evolves for web services, then
the network of composite web services is likely to have short
paths [5].

IV. Experimental Design

For each protocol or SOAP implementation we tested,
we implemented a remotely accessible server with this in-
terface:
• void doNothing() – Our tests call this method to de-
termine the overhead associated with a SOAP call.
• void setSize(int size) – Our tests call this method
to set the size of the string and array returned by
getString() and getIntegers(). The time required for
this call is not measured.
• String getString() – Our tests call this method be-
cause the encoded response to each getString() call has
the same XML elements regardless of the size of the string
returned.
• int[] getIntegers() – Our tests call this method so we
can compare the latency performance as additional XML
elements are encoded and decoded.

Each client implementation makes a tunable number
of calls to one of the timed functions, doNothing(),
getString(), or getIntegers(). The client prints the
time required for these calls excluding a warm-up period
and one-time protocol costs. So, for CORBA and RMI, the
times we report exclude the lookup time in the ORB reg-
istry. Similarly, for Apache SOAP, the times we report ex-
clude the setup time to create the objects that correspond
to each method. This experiment uses a single client to
access the server.

These protocols and SOAP implementations are included
in all tests:
• JavaRMI – The client and server are written in Java
and compiled and run with Sun’s JDK 1.3.0-C for Microsoft
Windows.
• CORBA – The client and server are written in Java and
compiled and run with Sun’s JDK 1.3.0-C for Microsoft
Windows.
• Microsoft SOAP Toolkit SP2 – The client and
server are written in Visual Basic with Visual Studio 6.0.
The client uses the Win32 call GetTickCount() to get
a timer with comparable millisecond resolution to Java’s
System.currentTimeMillis(). Because Visual Basic is
unable to return arrays, getIntegers() returns an XML
node list designed to produce responses of similar size and
complexity. We used an ASP listener for these tests in-
stead of an ISAPI listener. Microsoft Internet Information
Services (IIS) provided the web server.
• SoapRMI/Java 1.1 – The client and sever are written
in Java and compiled with Sun’s JDK 1.3.0-C. SoapRMI
can be run with a registry or with an HTTP endpoint for

interoperability. Tests performed for normalization show
little difference between these two options.
• SOAP::Lite module in Perl – The client and server
were written using ActiveState distribution of Perl 5.6.0
• Apache SOAP 2.2 – The client and server were written
in Java and compiled and run with Sun’s JDK 1.3.0-C for
Microsoft Windows. Tomcat 3.2.1 with JAXP 1.1 provided
the web server and XML parser.

We performed each test with both client and server on
the same host, and then repeated the test with separate
client and server hosts joined by a small LAN. The LAN
was a 10 Mbps LAN with only these two hosts. For the
client machine, we used a laptop with a Pentium-III 550
MHz processor and 256 MB RAM, running Windows 2000
Professional. For the server, we used a desktop with an
AMD Athlon 700 MHz processor and 160 MB RAM, run-
ning Windows 2000 Server. The laptop was used for both
client and server when both client and server were on the
same host except in cases noted below.

Since each time measurement represents 200 calls and
the timer’s precision is 10 ms, the precision of our mea-
surements is +-0.05 milliseconds.

A. void doNothing()

In order to seperate the overhead contributed by TCP,
HTTP, and SOAP, we added these experiments to the
doNothing() case:
• TCP setup time – How long does it take in our envi-
ronment to connect and then close a TCP connection using
Java?
• HTTP to Apache Tomcat – How long does it take to
get the response to a Servlet request of Tomcat? Tomcat
is the Web Server for Apache SOAP.
• HTTP to Microsoft IIS – How long does it take to get
a cached file from Microsoft Internet Information Services
(IIS)? Microsoft IIS is the web server for Microsoft SOAP
Toolkit.

Just as with the other experiments, we repeated these
tests with the client and server on the same host and with
separate client and server hosts.

B. String getString()

Tests were performed for strings of length 200, 400, and
800. Since the strings contain no XML tags, parsing the
message is independent of the string length. We expected
the latency performance with each of these lengths to re-
flect additional transfer time. Since all of these are under
the minimum packet size of the network, we expected the
getString() results to be similar to the doNothing() re-
sults.

C. int[] getIntegers()

Tests were performed for integers arrays containing 200,
400, and 800 integers. Since larger arrays will contain more
XML tags, we expected to see dramatically worse latency
with integer arrays.

UNPUBLISHED 4

TABLE I

doNothing() with server and client on same host

System Language Latency
(ms)

JavaRMI Java 0.5
CORBA Java 0.7
Apache SOAP 2.2 Java 12.2
SOAP::Lite Perl 35.5
No-op Servlet Java 3.0
MS SOAP Toolkit Visual Basic 16.8
IIS noop.txt - 1.1
SoapRMI/Java 1.1 Java 12.7
TCP setup time Java 0.9

V. Experimental Results

When the client and server are run on separate hosts,
SOAP performs very poorly. Table II presents results for
the doNothing() call when the the client and server run on
separate hosts. The network delay is calculted by compar-
ing identical rows in Table I and II. TCP connection setup
time takes only 0.3 milliseconds more time than across the
network, yet Apache SOAP, the Microsoft SOAP Toolkit,
and the SOAP::Lite Perl module all take roughly 200 mil-
liseconds. Since this time is so surprising and so constant,
we expected this was due to something other than SOAP
processing.

To explain the delay, we compared network traces of the
communication for Apache SOAP and SoapRMI. Figure 3
shows the network packets exchanged for Apache SOAP.
We found that the HTTP POST request was divided into
two packets, one containing the HTTP headers and one
containing the HTTP body including the SOAP envelope.
For Apache SOAP, the second packet in the HTTP request
was delayed about 170 milliseconds from the first request.
Once the second packet is received, the server processes
the SOAP call. Then, at least two packets are sent for the
HTTP response, one containing the headers and additional
packets for the body with the SOAP envelope. The delay in
the request is caused by the interaction between the Nagle
algorithm and TCP delayed ACK algorithm in the operat-
ing systems for the client and server. The Nagle algorithm
is controlled using the TCP NDELAY socket option [14]. Both
the Nagle algorithm and TCP delayed ACK algorithm are
designed to reduce the number of small network packets
from telnet like applications. The preferred way to avoid
this performance penalty is to use a vector write opera-
tion that writes two buffers in the same system call. Java,
Visual Basic, and Perl do not have a vector write opera-
tion. Java programmers can change socket options, and the
delay is large enough to justify buffer copying. As the re-
sults for getIntegers() in Table V and VI show, Apache
SOAP shows no additional delay when more than one re-
sponse packet is required. This implies that the response
is written with one system call.

Microsoft SOAP Toolkit has a different pattern of net-

TABLE II

doNothing() with separate client and server

System Language Latency
(ms)

JavaRMI Java 1.0
CORBA Java 1.1
Apache SOAP 2.2 Java 200.0
SOAP::Lite Perl 200.3
No-op Servlet Java 3.2
MS SOAP Toolkit Visual Basic 200.9
IIS noop.txt - 1.2
SoapRMI/Java 1.1 Java 20.2
TCP setup time Java 1.2

HTTP POSTrequest

HTTP body(SOAP envelope)

HTTP response

header

TCP delayed
ACK prevents
server ACK

Nagle algorithm
prevents immediate

send of SOAP
envelope

Client
system

Server
system

HTTP body

(SOAP envelope)

.

.

.

Fig. 3. Event trace of SOAP communication

HTTP POST request
& body (SOAP message)

HTTP continue

response

TCP delayed
ACK prevents

client ACK

Nagle algorithm
prevents immediate
send of response
SOAP envelope

Client
system

Server
system

HTTP ok status & body

(SOAP envelope)

.

.

.

Fig. 4. Event trace of Microsoft SOAP communication.

UNPUBLISHED 5

TABLE III

getString() with server and client on same host

System char[200]
Latency
(ms)

char[400]
Latency
(ms)

char[800]
Latency
(ms)

JavaRMI 0.6 0.7 0.9
CORBA 0.6 0.8 0.9
Apache SOAP 2.2 11.6 11.7 12.1
SOAP::Lite 35.6 35.7 35.9
MS SOAP Toolkit 16.6 23.7 34.8
SoapRMI/Java 1.1 13.0 13.2 13.5

TABLE IV

getString() with separate client and server

System char[200]
Latency
(ms)

char[400]
Latency
(ms)

char[800]
Latency
(ms)

JavaRMI 1.2 1.5 1.9
CORBA 1.2 1.6 2.0
Apache SOAP 2.2 199.8 199.9 200.0
SOAP::Lite 200.3 200.1 200.1
MS SOAP Toolkit 200.2 200.3 200.3
SoapRMI/Java 1.1 20.3 20.4 20.9

work communication, shown in Figure 4. The Nagle al-
gorithm and delayed ACK cause the same delay, but this
time, the server waits for the client’s ACK. The HTTP
POST request and body are sent in the first packet af-
ter the TCP connection is built. Microsoft SOAP Toolkit
sends an HTTP response with continue status (status code
100) before sending the HTTP message with the SOAP re-
sponse. The purpose of the added continue is to reduce
network communication [15]. If the server will reject an
HTTP request, it can do so before receiving the body of
the request. In this case, the header and body are in the
same packet, and so the reason for the continue status is
unclear. The server doesn’t send the SOAP response until
after the client has acknowledged the HTTP continuation
packet. In our tests, the client has no more data to send,
and so the TCP delayed ACK algorithm applies.

The getString() results in Tables III and IV pro-
vide additional support for this analysis. Since a larger
string adds little more XML overhead to a message,
the getString() results should be very similar to the
doNothing() results.

When the client and server are run on the same host,
the network delays are not significant. Under these condi-
tions, XML parsing and formatting is the largest factor of
the latency performance. Table I presents the results when
the doNothing() call is made from a client to a server on
the same host. For those results, the client and server are
separate processes, and a loop-back socket is used rather
than an in-memory call. Since Apache SOAP is imple-
mented as a Tomcat servlet, the No-op Servlet results show

TABLE V

getIntegers() with client and server on same host

System int[200]
Latency
(ms)

int[400]
Latency
(ms)

int[800]
Latency
(ms)

JavaRMI 0.8 1.1 1.3
CORBA 0.6 1.5 1.1
Apache SOAP 2.2 46.2 82.1 147.5
SOAP::Lite 222.6 433.1 989.0
MS SOAP Toolkit 28.1 44.8 76.7
SoapRMI/Java 1.1 13.0 19.2 26.9

what portion of the time for Apache SOAP is due to HTTP
processing. Excluding the TCP setup time and HTTP pro-
cessing, SOAP and XML processing represents 9.2 millisec-
onds, 75% of the time, in an Apache SOAP call that does
nothing. Similarly, the Microsoft IIS results in Table II
show that Microsoft SOAP Toolkit takes 15.4 milliseconds,
92% of the time, for SOAP and XML processing.

SOAP is also orders of magnitude slower than JavaRMI
and CORBA. In Table I, The performance of JavaRMI and
CORBA are comparable, but SoapRMI, Apache SOAP,
SOAP::Lite, and Microsoft SOAP Toolkit latency are much
worse.

There are surprises when we compare the getIntegers()
performance of the different implementations. Microsoft
SOAP Toolkit’s performance is exceptionally good when
the client and server are on different hosts. In Table V, Mi-
crosoft SOAP Toolkit scales well, but is not far out of line
with other results. In Table VI, Microsoft SOAP Toolkit is
much better than we’d expect based on the network delays
due to the Nagle algorithm.

The network delays we analyzed for the doNothing()
call don’t apply to Microsoft SOAP Toolkit’s getIntegers()
performance. While Microsoft SOAP Toolkit may benefit
because there is no translation from an XML node list to
an integer array representation, this hardly explains the
differences seen in Table VI. An analysis of the network
communication shows that the delays mentioned above are
missing between packets. If this is due to network buffer
usage, then the performance should degrade for a small ar-
ray. Suppose 200 integers writes enough data into the TCP
connection’s send buffer to override the Nagle algorithm. If
this is so, then the performance should degrade for a small
array. A simple experiment with a 20 integer array con-
firms that the latency per call is roughly 200 milliseconds
for a 20 integer array. So, if the messages are large enough,
the network delay is removed. Since an 800 integer array
is roughly 30 KB for both Apache SOAP and Microsoft
SOAP Toolkit, why doesn’t this apply to Apache SOAP?
The For Apache SOAP, the Nagle algorithm applies to the
HTTP POST request containing the SOAP call.

The other surprise with the getIntegers() results is
the poor performance of the SOAP::Lite Perl module. The
network packets generated by Perl show that Perl’s integer
array representation is much larger than that of Apache

UNPUBLISHED 6

TABLE VI

getIntegers() with separate client and server

System int[200]
Latency
(ms)

int[400]
Latency
(ms)

int[800]
Latency
(ms)

JavaRMI 1.8 2.4 4.0
CORBA 1.8 2.5 4.0
Apache SOAP 2.2 210.8 219.1 332.4
SOAP::Lite 400.4 609.9 1285.6
MS SOAP Toolkit 33.3 55.8 104.1
SoapRMI/Java 1.1 30.1 30.3 42.6

SOAP or Microsoft SOAP Toolkit. This may be due to the
test environment. Since SOAP::Lite is interoperable other
implementations, we expected the XML for the SOAP re-
sponse would be similar between SOAP::Lite and Apache
SOAP. Another thing to remember is that Perl is a purely
interpreted language. In contrast, Java’s hotspot virtual
machine may optimize the tight loops that perform our
tests during the warming period. Additional work is re-
quired to better determine the cause of the poor perfor-
mance of the SOAP::Lite Perl module.

SoapRMI was written to improve the performance for
tests such as getIntegers(). So, it isn’t surprising how
well SoapRMI scales. SoapRMI scales well because it
was designed to scale to large structures. SoapRMI also
avoids the network delays that we see for other implemen-
tations. However, SoapRMI’s performance is comparable
with Apache SOAP in Table I, and both Apache SOAP and
SoapRMI are orders of magnitude slower than JavaRMI. As
discussed earlier, this is due to the overhead of SOAP and
not due to the use of HTTP.

VI. Discussion

SOAP shows great potential for simplifying web service
composition and the distribution of software using the In-
ternet. Within Corporate Intranets, consolidated web ap-
plications and services also require fast, convenient proto-
cols. Business and system management concerns may make
SOAP attractive for these applications. However, if no fire-
wall prevents communication using faster protocols, these
faster protocols would be preferred.

For web applications operating in both WAN and LAN
environments, there’s no silver bullet. Web applications
operating over a WAN would benefit from a limited number
of larger messages, as long as code download doesn’t take
too long. For web applications operating over a LAN, many
small messages would lead to smaller client applications.

For web services, JavaRMI may be encapsulated within
HTTP or routed through firewalls using protocols like
SOCKS. Since SOAP’s overhead is greater than JavaRMI
even discounting HTTP overhead, we expect that JavaRMI
or CORBA will be faster over HTTP as well.

If a faster RMI system can provide the system manage-
ment and programming benefits of SOAP, including inter-
operability, the ability to transfer XML DOM data, and the

ability to call through firewalls, then such an RMI system
should be preferred.

VII. Conclusions

Our analysis points to areas where SOAP performance
can be improved without changing the HTTP protocol.
One large source of inefficiency in SOAP is the use of multi-
ple system calls to send one logical message. Several ways
to prevent this are discussed in the experimental results.
Another source of inefficiency in SOAP is the XML pars-
ing and formatting time. Even for a SOAP call that does
nothing, XML processing accounts for about 75% of the
processing time when network delays are discounted.

References

[1] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Lay-
man, Noah Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte,
and Dave Winer, “Simple Object Access Protocol (SOAP)
1.1,” World Wide Web Consortium (W3C), May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, visited
Feb. 2001.

[2] Erik Christensen, Francisco Curbera, Greg Meredith, and
Sanjiva Weerawarana, “Web Services Description Language
(WSDL) 1.1,” World Wide Web Consortium (W3C), Mar.
2001, http://www.w3.org/TR/2001/NOTE-wsdl-20010315, vis-
ited Sep. 2001.

[3] Madhusudhan Govindaraju, Aleksander Slominski, Venkatesh
Choppella, Randall Bramley, and Dennis Gannon, “Require-
ments for and Evaluation of RMI Protocols for Scientific Com-
puting,” in Supercomputing. 2000, IEEE.

[4] Williams Bordes and Johann Dumser, “SOAP:
Simple Object Access Protocol,” TechMetrix
Research-Trendmarkers e-Newsletter, Dec. 2000,
http://www.techmetrix.com/trendmarkers/tmk1200/tmk1200-
3.php3, visited Jan. 2001.

[5] Theodore Hong, ed. Andy Oram, Peer-To-Peer: Harnessing the
Power of Disruptive Technologies, ch. 14, OReilly and Asso-
ciates, Inc., 2001.

[6] “A Quick-Start Guide for Installing
Apache SOAP,” XMethods, Feb. 2001,
http://www.xmethods.com/gettingstarted/apache.html, visited
Feb. 2001.

[7] James Snell, “Exposing Application Ser-
vices with SOAP,” XML.COM, July 2000,
http://www.xml.com/pub/a/2000/07/12/soap/mssoaptutorial.html,
visited Nov. 2000.

[8] Apache Software Foundation, http://xml.apache.org/, visited
Feb. 2001.

[9] University of Indiana, Extreme Lab,
http://www.extreme.indiana.edu/soap, visited Feb. 2001.

[10] Paul Kulchenko, SOAP::Lite Perl module,
http://www.soaplite.com/, visited Feb. 2001.

[11] Rob Caron, “Develop a Web Service: Up and Running with the
SOAP Toolkit for Visual Studio,” MSDN Magazine, Aug. 2000,
http://msdn.microsoft.com/library/, visited Feb. 2001.

[12] “Java Remote Method Invocation (RMI) Specification”, Sun
Microsystems, http://java.sun.com/products/jdk/rmi/, visited
Dec. 2000.

[13] “The Common Object Request Broker: Architecture and spec-
ification” rev 2.0, Object Management Group, Feb. 2000,
http://www.omg.org/, visited Feb. 2001.

[14] W. Richard Stevens, UNIX Network Programming: Networking
APIs (Second Edition), vol. 1, Prentice Hall, 1997.

[15] “Hypertext Transfer Protocol - HTTP/1.1,” RFC 2616, Internet
Engineering Taskforce (IETF), http://www.ietf.com/, visited
Dec. 2000.

