
The Role of Reective Middleware in Supporting

the Engineering of Dynamic Applications

F�abio M. Costa, Hector A. Duran, Nikos Parlavantzas, Katia B. Saikoski,
Gordon Blair, and Geo� Coulson

Distributed Multimedia Research Group,
Department of Computing, Lancaster University,

Lancaster, LA1 4YR, U.K.
ffmc, duranlim, parlavan, saikoski, gordon, geoffg@comp.lancs.ac.uk

http://www.comp.lancs.ac.uk

Abstract. The increasing complexity of building distributed applica-
tions has positioned middleware as a critical part of complex systems.
However, current middleware standards do not address properly the
highly dynamic and diverse set of requirements posed by important
classes of applications, such as those involving multimedia and mobil-
ity. It is clear that middleware platforms need to be more exible and
adaptable and we believe that an open engineering approach is an essen-
tial requirement. More speci�cally, we propose the use of object oriented
reection based on a multi-model reection framework as a principled
way to achieve such openness. This leads to middleware that is exible,
adaptable and extensible, and, in consequence, capable of supporting
applications with dynamic requirements.

1 Introduction

Engineering distributed applications is inherently more complex than non-
distributed ones due to problems of heterogeneity and distribution. Middleware
platforms aim to isolate developers from this extra complexity and have recently
emerged as a critical part of distributed software systems. CORBA, DCOM and
Enterprise Java Beans represent a few of the many competing technologies. The
basic role of middleware is to present a uni�ed programming model to developers
that masks out distribution concerns and allows them to concentrate mainly on
the application semantics.

The rapidly expanding visibility and role of middleware in recent years has
emphasised the following problem. Traditional middleware is monolithic and in-
exible and, thus, it cannot cope with the wide range of requirements imposed
by applications and underlying environments. This is especially evident in the
case of new application areas, such as multimedia, real-time, CSCW (Computer
Supported Cooperative Work) and mobile applications, which have specialised
and dynamically changing requirements. The problem has already been recog-
nized and all current middleware architectures o�er some form of con�gurability.
However, this is typically piecemeal, ad-hoc and only involves selection between



a �xed number of options. Clearly, a more systematic and principled solution to
the problem is needed.

We believe that an open implementation approach is essential for develop-
ing exible and adaptable middleware platforms. More speci�cally, the solution
we propose adopts object-oriented reection as a principled way to inspect and
adapt the underlying open implementation. While reection has principally been
applied to languages and operating systems, we are convinced that middleware
is the most natural level for reective facilities. Our object-oriented meta-level
architecture is based on the idea of structuring the meta-space in terms of orthog-
onal meta-models. Each of these meta-models provides dynamic adaptability of
an independent set of middleware implementation aspects. In addition, reective
computation is performed under strictly controlled scope, since each meta-level
entity acts upon a limited set of base-level entities.

This paper is structured as follows. Section 2 explores current distributed
object platforms. Section 3 presents our arguments towards the need for the open
engineering of middleware. Section 4 briey describes computational reection,
which is the basis for our proposal. In section 5 we explain our approach to
providing a reective architecture for middleware, while in section 6 we present
some early implementation results, notably a prototype meta-object protocol.
In section 7 we present some examples of how recon�guration takes place in our
approach. Finally, section 8 discusses related work, and section 9 presents some
concluding remarks.

2 Distributed Object Technologies

Object oriented technology has been combined with distributed computing to
create a new generation of client/server technology: distributed object computing.
The central idea of distributed objects is to have servers that expose objects,
and clients that invoke methods on these objects locally or remotely. Such an
environment is normally realised by providing an infrastructure that allows ob-
jects to interact transparently, independent of being in the same or in di�erent
address spaces.

Three main technologies are widely used as distributed object infrastructures:
CORBA[9], Java RMI[20] and DCOM[4]. CORBA (Common Object Request
Broker Architecture) is the distributed object platform proposed by the OMG
(Object Management Group) which contains an open bus { the ORB (Object
Request Broker) { on which objects can interoperate. Sun Microsystems devel-
oped its own Java ORB, called Java RMI (Remote Method Invocation). RMI
provides a way for clients and servers running the Java Virtual Machine to inter-
operate. Microsoft also proposed its own solution for distributed object comput-
ing: DCOM (Distributed Component Object Model). DCOM architecture is an
extension to Microsoft's component model (COM). While COM de�nes compo-
nents and the way they are handled, DCOM extends this technology to support
components distributed across many computers.



EJB (Enterprise Java Beans)[19], COM+[5] and CORBA Components[11]
represent the latest trend in middleware platforms, which simplify even more
the development of distributed component-based applications. The signi�cance
of these architectures lies in that they achieve a separation of concerns between
the functional aspects of the application and the non-functional aspects such
as distribution, resource management, concurrency and transactions. The latter
aspects are managed by a container and the developers are freed from writing
system code that deals with them.

As regards to exibility and adaptability, we can see a clear trend towards
opening up the implementation of middleware. For example, the CORBA spec-
i�cation de�nes interceptors as a way to open up internal aspects of the invo-
cation path, allowing the injection of additional behaviour. Similarly, DCOM
o�ers custom marshalling, which enables developers to bypass the standard re-
moting architecture to create customised connections. Moreover, EJB, COM+
and CORBA Components support declarative con�gurability of non-functional
system aspects (e.g. transaction policies) using attributes. In all these cases, we
can observe that the con�gurability is piecemeal and done using ad hoc and
static (compile or deployment time) mechanisms. The implementation of the
platform is mostly hidden and out of the control of the application developer.

3 The Case for Open Engineering of Middleware

While some business applications are based on the interaction of objects to
exchange text (database query/update, etc.), others have more general require-
ments such as the exchange of multimedia data or need for run-time adaptation.
For example, a company may be selling video on-demand services to clients
whose connections to the network may vary signi�cantly. Some clients may have
high speed network connection, while others have more limited ones. Moreover,
during the provision of services, some clients may face network congestion prob-
lems that may lead to the need for some kind of adaptation. This means that, in
this example, the network conditions play important role in the provision of the
service. The price a client pays for the service and the service itself are di�erent
for di�erent clients.

These kind of applications require some exibility from the underlying sys-
tem. This is not provided by current middleware platforms in a principled way.
This happens because the approach taken emphasises transparency, meaning
that application developers do not need to know any details about the object
from which the service is being required. But it also means that the developers
do not get to know the details about the platform that supports the interaction
as well. Therefore, it is not possible to provide the exibility required.

This black-box approach is not suitable for developing exible applications.
Thus, it is necessary to design a distributed object platform that exposes its in-
ternal details and allows modi�cations to the way the infrastructure handles the
interactions, for example, the way middleware deals with resource reservation.



Based on these observations we claim that middleware should provide several
extra features in terms of adaptability, that is, con�guration as a means of se-
lecting speci�c operation at initialization time and recon�guration as a means of
changing the behaviour at run time. This can be done by inspecting the internal
details of a system and changing them. Another important feature is extension.
This allows new components to be introduced in the middleware in order to
handle situations not already encountered.

For example, consider the transmission of audio over a channel whose
throughput may change over time. Firstly, a con�guration can be applied to
establish the communication according to the channel (quality of audio is pro-
portional to the throughput). Secondly, once the transmission is already running,
recon�guration will allow a �lter to be introduced in order to reduce the audio
quality due to a network congestion. Recon�guration can happen again in case
the network recovers its normal operation.

One can claim that adaptation could be performed at the operating sys-
tem or application levels. However, adaptation at the operating system level is
platform-dependent and requires a deep knowledge of the internals of the oper-
ating system. In addition, unwanted changes at this level could be catastrophic
as every single application running in a node could be a�ected. Furthermore,
some research in operating systems [7] and networking [8] has advocated leaving
as much exibility and functionality to applications as possible in order to sat-
isfy the large variety of application requirements. On the other side, adaptation
at the application level imposes an extra-burden to the application developer.
Besides, the adaptation mechanisms developed at this level cannot be reused
since they are application speci�c.

This leads us to emphasise that adaptations should be handled at the middle-
ware level which ensures at the same time platform independence and isolation
from the implementation details.

Based on these issues, we can say that traditional middleware platforms
such as presented in section 2 are not suitable for exible applications. An open

engineering of middleware platforms would be a proper way to overcome this
problem. In the next section we briey review the concept of computational
reection, which is the basis for our approach.

4 Computational Reection

A reective system, as de�ned by Maes [17], is one that is capable of reasoning
about itself (besides reasoning about the application domain). This de�nition
implies that the system has some representation of itself in terms of programming
structures available at run time. The process of creating this self-representation
is known as rei�cation. In addition, this self-representation needs to be causally
connected with the aspects of the system it represents, in such a way that, if the
self-representation changes, the system changes accordingly, and vice-versa.

In a reective system, we call the base-level the part of the system that
performs processing about the application domain as in conventional systems,



whereas the meta-level is the term used to refer to the part of the system whose
subject of computation is the system's self-representation. In an object-oriented
environment the entities that populate the meta-level are called meta-objects,
which are the units for encapsulation of the self-representation and the associated
reective computations. Thus the process of rei�cation of some aspect of the
system normally results in a meta-object being created. A further consequence
of object-orientation is that rei�cation can be applied recursively, such that
meta-objects, as normal objects, can have associated meta-meta-objects and so
on, opening the possibility for a tower of meta-objects, where each meta-object
allows reection on the meta-object below it. In practice, however, only a few
levels are necessary and the topmost level can be hard-coded in the execution
environment.

5 Our approach

5.1 Applying Reection to Middleware

As middleware platforms are just another kind of software platforms (such as
programming languages and operating systems), applying reection to them may
follow the same principles. One has to identify the concepts and structures that
compose the base-level, as well as the way they are going to be represented at
the meta-level.

The base-level of a middleware platform can be considered as the services
it provides, either implicitly or explicitly through its interfaces. Examples of
such services are the communication of interactions among objects (with all the
implicit activities it involves, such as marshalling, dispatching and resource man-
agement), the supporting services (e.g. name resolution and location, manage-
ment of interface references, distributed object life cycle, relocation, migration,
etc.), and other common services (e.g. security, transactions, fault tolerance and
trading). Such services are usually modelled and implemented as cooperating
objects, and the platform takes the form of a con�guration of objects (although
such a con�guration is not normally visible at the base-level).

The meta-level consists of programming structures that reify such con�gura-
tions of services and allow reective computation to take place. It must cover the
di�erent aspects that are involved in middleware, such as the topology of con-
�gurations, the interfaces of the objects providing services, and the behaviour
of such objects. The meta-level makes it possible to inspect the internals of
the middleware and to alter its implementation, by means of well known meta-
interfaces. For example, a new service can be added to the platform or an existing
one can be recon�gured by appropriately using operations available at the meta-
interfaces. The sources or invokers of such reective computations may be the
application which is running on top of the platform, or the platform itself, which
may have mechanisms for quality of service monitoring that can trigger control
actions involving reection.



5.2 The Underlying Object Model

Both base- and meta-level of our reective architecture for middleware are mod-
elled and programmed according to a uniform object model. In what follows, we
present the main concepts of this object model.

The basic constructs of the model are objects, which are also the units of
distribution. Objects may have one or more interfaces, through which they in-
teract with other objects, and each individual interface is identi�ed by a unique
interface reference, which contains enough information to allow the location of
the implementation object and to get a description of the services it provides
through the interface.

The programming model supports three kinds of interfaces in order to model
the di�erent styles of interactions an object may provide:

{ Operational interfaces are meant to enable client-server style interactions,
based on method invocation semantics. They consist of the signatures of the
methods provided by the interface and (optionally) the methods required
from other bound interfaces.

{ Stream interfaces allow interactions by means of continuous ows of data,
usually with temporal properties. Such a style of interactions is usually found
in multimedia applications that involve the communication of audio and
video data.

{ Signal interfaces are meant to support one-way interactions that may have
temporal (i.e. real-time) properties. The signal interaction style is more prim-
itive than the other two, and may be used to model or implement them.

Objects may only interact through their interfaces, and such communication
is achieved, primarily, by means of explicit bindings, which are �rst class objects
in the model and encapsulate the services related to communications. Explicit
bindings may be local (between objects in the same address space) or distributed
(spanning di�erent address spaces or machines) and their establishment may be
requested either by a third party or by one of the objects to be bound.

The use of explicit binding objects is essential in order to provide a level
of control over continuous media communications. This is due to the fact that
a binding object is normally identi�ed with an established connection among
two or more parties. Explicit bindings allow, therefore, the exposure and manip-
ulation of the mechanisms and properties involved in multimedia interactions,
setting the context for their monitoring and adaptation.

However, for interactions with a transient nature, where the overheads or the
programming e�ort involved in explicit binding establishment are often inconve-
nient, the model also supports implicit bindings. At the level of the programming
model, an implicit binding is transparently created when an object gets an ac-
tive interface reference of another object and uses it as a pointer to access its
functionality (similarly to the way CORBA objects interact). As a consequence,
implicit bindings provide no control over their internal implementation and are
therefore unsuitable for applications requiring guaranteed levels of service [2].



Finally, quality of service (QoS) properties can be associated with the inter-
actions among objects. This is supported by QoS annotations on the interacting
interfaces and by the negotiation of contracts as part of the establishment of
bindings. A complementary QoS management mechanism may then be used to
carry out monitoring and control tasks based on such contracts.

5.3 Structure of the Meta-level

Basic Principles. As a consequence of the programming model introduced
above, the basic constructs for reective computation are meta-objects. The col-
lection of the interfaces provided by the meta-objects are then referred to as the
meta-object protocol, or simply MOP. In addition, as meta-objects themselves
are objects, they can be rei�ed as well (in terms of meta-meta-objects).

Procedural reection is used, meaning that the rei�ed aspects of the platform
are actually implemented by the meta-objects. This is a somewhat primitive but
powerful approach since it allows the introduction of completely new behaviour
or functionality to the platform. Additionally, more elaborate declarative meta-
interfaces can be built on top of the procedural meta-interfaces.

Another principle of our approach is the association of meta-objects with
individual base-level objects (or set of objects) of the platform, with the purpose
of limiting the scope of reective computation. In this way, the e�ects of reective
computation are restricted to the rei�ed objects, avoiding side-e�ects on other
parts of the platform. Access to the meta-objects is dynamically obtained using
a basic part of the meta-object protocol provided by the infrastructure, and
making reference to the interface of the object being rei�ed. If a requested meta-
object does not exist yet, it is instantly created, which means that meta-objects
are created on demand. Therefore, not necessarily all base-level objects have to
have the overheads associated with reection.

Finally, a crucial design principle is the adoption of a multi-model reection

framework, by applying separation of concerns to the meta-level itself. Several
orthogonal aspects of the meta-level are identi�ed and modelled by means of
distinct meta-objects. This was motivated by the great complexity involved in
a meta-level for middleware. By modelling (and implementing) each aspect as
an independent meta-model, both the meta-level design and the use of reective
computation are made simpler. The concept of multi-model reection was �rst
introduced in AL-1/D [21], which de�nes a set of meta-models to deal with the
di�erent aspects normally found in distributed systems. AL-1/D, however, does
not stress the importance of orthogonality between the meta-models, a feature
which greatly improves their manageability. Currently, in our architecture, we
have de�ned four meta-models, which are the subject of the next section: encap-
sulation, compositional, environment, and resource management. However, the
framework is open, in the sense that other meta-models can be de�ned in order
to model other aspects of middleware that may be identi�ed in the future.

Meta-models. As discussed above, the meta-level is divided into independent
and orthogonal meta-models, each one representing a di�erent aspect of the plat-



form. We categorise these meta-models according to the two well-know forms of
reection: structural and behavioural (also know as computational) [24]. In our
architecture, structural reection deals with the con�guration of the platform,
in terms of which service components it has (compositional meta-model), as
well as the interfaces through which the services are provided (encapsulation
meta-model). Behavioural reection, on the other hand, deals with how services
are provided, in terms of the implicit mechanisms that are used to execute in-
vocations (environment meta-model) and the association of resources with the
di�erent parts of the platform (resources meta-model). The structure of the
meta-space is illustrated by �gure 1. In what follows, we analyse each of the
meta-models in detail.

threads buffers

threads
buffers

m2

m1
v1

v3

v2
D

Selector

m3

Selector
D

m4

m5v5

v4
v6

v7

Encapsulation Resources

Encapsulation Resources

EnvironmentComposition

Composition Environment

Fig. 1. Overall structure of meta-space.

Encapsulation. The encapsulation meta-model provides access to the represen-
tation of a particular interface in terms of its set of methods, ows or signals, as
well as the interface attributes. It also represents key properties of the interface
including its inheritance structure.

The level of access provided by a particular implementation of the encap-
sulation meta-model is dependent on the dynamic facilities that are present in
the programming environment. For example, with compiled languages such as C
access may be limited to inspection of the associated IDL interface. With more
open languages, such as Java or Python, more complete access is possible, such
as being able to add or delete elements (methods, ows, signals, and attributes)
to or from an interface. This level of heterogeneity is supported by having a type
hierarchy of meta-interfaces ranging from minimal access to full reective access
to interfaces. Note, however, that it is important that this type hierarchy is open
and extensible to accommodate unanticipated levels of access.



Compositional. The compositional meta-model provides access to a compound
object in terms of its con�guration of components. The composition of an ob-
ject is represented as an object graph [14], in which the constituent objects are
connected together by edges representing local bindings. Importantly, some ob-
jects in this graph can be (distributed) binding objects, allowing distributed
con�gurations to be created.

The compositional meta-model provides facilities for inspecting and manip-
ulating the structure of the object graph, allowing access to individual compo-
nents, as well as to insert or remove components. This meta-model is of crucial
importance since it allows one to reify the con�guration of the middleware plat-
form and adapt it dynamically (such as to add new services). In particular, it
allows one to reify the con�guration of distributed binding objects, making it
possible to inspect and change the internal binding components that implement
the interaction mechanisms.

Environment. The environment meta-model represents the execution environ-
ment for the interfaces of objects in the platform. In such a distributed environ-
ment, this corresponds to functions such as message arrival, message queueing,
selection, dispatching, and priority mechanisms (plus the equivalent on the send-
ing side). In a similar design, the ABCL/R reective language [24], collectively
refers to these functions as the computational aspect of the base-level object.

Di�erent levels of access are supported by environment meta-objects, de-
pending on the dynamic capabilities of the execution environment. For example,
a simple meta-model would only deal with the con�guration of parameters of
the existing mechanisms in the environment, such as the sizes and priority levels
of the queues of arriving messages. More complex meta-models, however, would
allow the insertion of additional levels of transparency or control over the actual
implementation of such mechanisms. As with the encapsulation meta-model,
this level of heterogeneity is accommodated within an open and extensible type
hierarchy.

A further and crucial characteristic of the environment meta-model is that
it is represented as a composite object. Hence, the environment aspect of the
meta-space may be inspected and adapted at the meta-meta-level using the
compositional meta-model. An example of such kind of adaptation would be to
insert a QoS monitor at the required point in the corresponding object graph.

Resource Management. Finally, the resource meta-model is concerned with both
the resource awareness and resource management of objects in the platform. Re-
sources provide an operating system independent view of threads, bu�ers, etc.
Resources are managed by resource managers, which map higher level abstrac-
tions of resources onto lower level ones.

Crucially, we introduce tasks as a logical activity that a system performs, e.g.
transmitting audio over the network or compressing a video image. Importantly,
tasks can span both object and address space boundaries. Each task in the
system has a representation in the resource meta-space in terms of a virtual task

machine (VTM). There is a one-to-one mapping between tasks and VTMs. Thus,



a VTM represents all the abstract resources that a task uses for execution, such
as threads and memory bu�ers. In addition, VTMs represent a unit of resource
management, and may be seen as virtual machines in charge of executing their
associated tasks.

The resources meta-space can therefore be viewed as three complementary
hierarchies representing respectively resources, resource factories and resource
managers at di�erent levels of abstraction. The �rst one is the abstract resource
hierarchy. VTMs are at the top of this hierarchy with raw resources at the
bottom. Resource factories provide a second type of hierarchy. VTM factories
are represented at the top of the hierarchy, whereas factories for lower level
abstract resources lie at the levels below. Thirdly, we have a manager hierarchy.
Managers de�ned at the top of the hierarchy are in charge of managing higher-
level resources, e.g. VTMs, whereas managers next to the bottom manage lower-
level resources, e.g. processors.

As an example, consider a particular instantiation of the resource framework
shown in �gure 2 below.

memory
factory

VTM

team

thread k physical

VP i VP j

CPU

thread

team

(a) A hierarchy of abstract resources (b) A factory hierarchy

VP

VTM

memory

memory

factory

factory

factory

factory

thread i

Fig. 2. Structure of the resources meta-space.

Firstly, the VTM has a hierarchy of processing resources, as shown in �g-
ure 2(a), where user-level threads run on top of virtual processors (kernel-level
threads). At a higher level, a team abstraction represents two or more user-level
threads within the VTM. Finally, at the bottom of this hierarchy we have a
representation of a physical processor. Secondly, the VTM also has an abstract
resource representing a memory bu�er pool (mem), which in turn is a higher
abstraction of physical memory. In a similar way, there is a hierarchy of abstract
resource factories, as shown in �gure 2(b). The VTM factory is composed by
both the team factory and the memory factory. The team factory uses a thread
factory, which in turn is supported by a virtual processor factory.

A complete description of the resource management entities that populate
this meta-model can be found in [1] and [6].



6 Prototype Meta-object Protocol

We have implemented a signi�cant subset of the architecture in order to allow the
use and demonstration of its reective features. The prototype consists of a base
platform, which o�ers services for creating distributed bindings objects in order
to support the communication between user entities. In addition, it provides
meta-objects that implement each of the four meta-models described above, al-
lowing dynamic adaptation of the platform. The implementation environment
was based on Python, an interpreted object-oriented language that o�ers a pow-
erful and exible programming model which facilitates the implementation of
the reective features.

The prototype implements a simple meta-object protocol with enough ex-
pressiveness to illustrate the use of the meta-objects in meaningful scenarios.
The prototype MOP consists of a basic part, which provides access to the meta-
objects, and four other parts, which are speci�c to each of the meta-models
respectively. We see this as an initial MOP, from which more elaborated ones
can be devised following the idea of the hierarchy of meta-object protocols men-
tioned above. In what follows we present each of these parts of the MOP.1

Basic MOP. The basic part of the meta-object protocol, presented in table 1,
consists of methods which are directly provided by the infrastructure.

Table 1. Meta-object protocol { basic part

Method Description

encapsulation(interface) return a reference to the encapsulation meta-object
that rei�es the given interface

composition(interface) return a reference to the compositional meta-object
that rei�es the given interface

environment(interface) return a reference to the environment meta-object that
rei�es the given interface

resources() provide access to the resource meta-space correspond-
ing to the current address space; the operation returns
a reference to the top-level abstract resource factory,
i.e. the VTM factory.

As the table shows, the basic MOP has one method for each of the four
meta-models, which returns an interface reference to the appropriate meta-object
corresponding to a speci�c base-level entity. Note that in the case of the �rst
three meta-models, the base-level entity corresponds to an interface, whereas
for the resource meta-model, an address space is the base-level concept that is
rei�ed. Also note that if the meta-object does not exist, it is created.

1 Note that all excerpts of code that appear hereafter, including the method signatures
in the MOPs, are presented in Python syntax.



Encapsulation MOP. The encapsulation part of the meta-object protocol (de-
scribed in table 2) consists of methods to access and manipulate the rei�ed
features of an interface's encapsulation. These methods are all provided at the
interface of the encapsulation meta-object.

Table 2. Meta-object protocol - encapsulation part

Method Description

inspect() return a description of the methods and attributes of
the base interface

addAttribute(attr_name, add a new attribute to the base interface,
type, mode) with type and mode as given

delAttribute(attr_name) remove the attribute from the base interface

getAttribute(attr_name) return the value of an attribute

setAttribute(attr_name, set the value of an attribute
value)

addProvMethod(method_sig, add a new method (of signature method sig) to
function) the row of methods provided by the interface

delProvMethod(method_name) remove a provided method from the interface

addReqMethod(method_sig) add a new method to the list of methods required (i.e.
imported) by the interface

delReqMethod(method_name) remove a required method from the interface

addPreMethod(method_name, register the function as a pre-method for the
function) named method

delPreMethod(method_name) remove the pre-method of the named method

addPostMethod(method_name, register the function as a post-method for the
function) named method

delPostMethod(method_name) remove the post-method of the named method

Composition MOP. The compositional meta-object o�ers a meta-object protocol
composed by the methods described in table 3. These methods are used for
inspecting and manipulating the object graphs that represent the con�guration
of base-level compound objects.

Environment MOP. The meta-object protocol provided by the environment
meta-object is as described in table 4. This is a fairly primitive MOP, in the
sense that it does not o�er a high level of structuring of the rei�ed mechanisms
in an interface's environment. Further extensions will, for example, allow the
rei�cation of particular mechanisms of the environment, such as queues of mes-
sages and dispatching mechanisms.

The current environment MOP is based on the concept of before and after

computations, which consist of arbitrary processing that wraps the execution
of every message received by a given interface. (Note that this is di�erent from
pre- and post-methods, which are assigned to particular methods, not to the



Table 3. Meta-object protocol { compositional part

Method Description

getComponents() return a list with the description of the components
in the object graph; this description contains the
component name, its type, and its kind (stub, �lter,
binding, etc.)

getComponentsByKind(kind) return the components that conform to the given
kind

getBoundInterface(interface) return the interface that is locally bound to the
given interface, if any.

getLocalBind(obj1, obj2) return the names of the interfaces by which the two
objects are locally bound (if there is a local binding
between them)

addComponent(comp_descr, add a new component to the object graph; the
position) description of the new component consists of its

name, type, kind, and any initialisation arguments;
the position for its insertion is given by the names
of the two adjacent interfaces between which the
component is to be inserted (note that a new com-
ponent can only be inserted between two existing
interfaces; if there are any other interfaces to which
it needs to be bound, the current MOP requires the
corresponding local bindings to be explicitly estab-
lished afterwards)

delComponent(comp_name) remove the named component from the con�gura-
tion (note that any broken local bindings need to
be subsequently repaired)

replaceComponent(comp_name, replace the named component with a new one
comp_descr) (described in comp descr as above); this equals to

deleting the old component, adding the new one,
as well handling any extra local bindings

localBind(interf1, interf2) establish a local binding between the two named
interfaces, if they are compatible (this is simply
another way of accessing the local binding service
provided by the infrastructure)

Table 4. Meta-object protocol { environment part

Method Description

addBefore(name,function) add the function as a before computation in the envi-
ronment of the base interface

delBefore(name) remove the named before computation

addAfter(name, function) add the function as an after computation in the envi-
ronment of the base interface

delAfter(name) remove the named after computation



whole interface.) The before computation can apply any sort of treatment to
the message prior to delivering it to the interface's implementation object. Such
treatment could be, for example, the delay of the message for a certain amount
of time in order to smooth delay variations. Similar considerations apply to after
computations. In addition, there can be a chain of before and after computations,
where each individual one is identi�ed by its own name. This functionality is
similar to the idea of interceptors in CORBA.

Resource Management MOP. The meta-object protocol for the resources meta-
model is described in table 5.

Table 5. Meta-object protocol { resources part

Meta Method Description

-object

Factory newResource(size, create an abstract resource of a given size
mgntPolicy, and associate a management policy with
schedParam) it; scheduling parameters are passed in case

of the creation of processing resources

Scheduler suspend(abstResource_id) suspend an abstr. processing resource
resume(abstResource_id) resume an abstr. processing resource

Abstract getLLRs() /setLLRs(llrs) get/set lower level resources
resource getHLR() / setHLR(hlr) get/set the higher level resource

getManager() / get/set the manager of this resource
setManager(newMgr,param)

getFactory() / get/set the factory of this resource
setFactory(f)

As the table shows, the resources meta-space is composed by three kinds
of meta-objects, according to the three complementary hierarchies of resource
management discussed in section 5.3. Together, the meta-interfaces of these three
kinds of meta-objects constitute the resources part of the MOP.

At each level of the resource management hierarchy, meta-objects implement
these MOP meta-interfaces in a di�erent way, depending on the abstraction level
and on the type of the resources being managed. For instance, a team factory
provides a di�erent implementation for the operation newResource() than that
provided by a thread factory or by a memory bu�er factory. However, the overall
meaning of this operation is consistent in all three cases.

7 Examples

In this section some example scenarios are presented to illustrate the use of
the di�erent meta-models to dynamically adapt the services provided by the
platform.



Compositional Meta-model. Figure 3 shows a two-level binding object which
provides the simple service of connecting the interfaces of two application ob-
jects. The purpose of such a binding may be, for example, to transfer a contin-
uous stream of media from one object to the other. At run-time, some external
monitoring mechanism notices a drop in the network throughput, demanding a
recon�guration of the binding object in order to support the negotiated quality
of service. This recon�guration may be in terms of inserting compression and
decompression �lters at both sides of the binding, hence reducing the actual
amount of data to be transfered.

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����

�
�
�
�

��
��
��
��

�� ��
��
��
��

�
�
�
�

��
��
��
�� ��

��
��

��
��
��

���
���
���
���

���
���
���
���

��

�
�
�
�

�
�
�
�

Stub2

Filter2

Stub1

Filter1

Manager Interface
Meta-

Manager
CapsuleCapsule

(2) Start
(1)Stop

Control
Interface

Binding
Primitive

Object
Application

Object
Application

Fig. 3. Adaptation using the compositional meta-model

As the picture shows, the compositional meta-object (meta_obj) maintains
a representation of the binding con�guration (the object graph). The compo-
sitional MOP provides operations to manipulate this representation, and any
results are reected in the actual con�guration of components in the binding ob-
ject. In this particular case, the following two calls are made to the meta-object:

meta_obj.addComponent(filter1, (stub1.interf2, prim_binding.interf1))

meta_obj.addComponent(filter2, (stub2.interf2, prim_binding.interf2))

By having a QoS control mechanism to call the above methods, the following
e�ect is produced (for each call):

1. the previously existing local bindings between the stub and the primitive
binding is broken;

2. the new �lter object is created;
3. new local bindings are established to connect the interfaces of the �lter to

the interfaces of the stub and the primitive binding.



Note that the meta-object does the remote operations by calling special sup-
porting services on the interface of the capsule manager at each side of the
binding (i.e. operations create_component and local_bind).

Environment Meta-model. As another example of adaptation, consider a binding
object used for the transfer of audio between two stream interfaces. In order to
provide a better control of the jitter in the ow of audio data, the interface of the
binding connected to the sink object can be rei�ed according to the environment
meta-model. The environment meta-object can then be used to introduce a before
computation that implements a queue and a dispatching mechanism in order to
bu�er audio frames and deliver them at the appropriate time, respecting the
jitter requirement.

Resources Meta-model. As a further example, we show how resource management
adaptations can be achieved in our architecture by using the resources MOP
(with the assistance of the encapsulation MOP). For this example, consider an
application that transmits audio over the network, from an audio source to an
audio sink object. For this purpose, we set up a stream binding as depicted in
�gure 4. Task 1 regards the activity of transmitting audio over the network. This
(distributed) task is subdivided into two lower level tasks, task 2 and task3, for
sending and receiving audio respectively.

Task 1

Task 2 Task 3

OUT IN IN OUT IN OUT IN OUT OUT

Source
Audio

Compressor

Audio Binding

Primitive Binding Decompressor

Audio
Sink

IN

Fig. 4. A stream binding and its associated tasks

As an example of �ne-grained resource recon�guration consider that the au-
dio binding is initially using a rate monotonic scheduling strategy. However, over
time some changes are introduced to the system, e.g. another similar audio bind-
ing is introduced. In this case, there might be a need to change the scheduling
policy for a dynamic scheduling policy such as EDF. Consider that the new bind-
ing has been established from another site than the initial local site. As soon
as the QoS mechanism detects a lack of processing resources in the remote site,
the QoS manager performs the following operations, considering that the task
dictionary vtmDict was obtained from the meta-space:

VTM3 = vtmDict.getVtm('receive')



team = VTM3.getLLRs()['TEAM']

thread = team.getLLRs()['THREADS'][0]

thread.setManager(EDFscheduler, schedParam)

The �rst line rei�es the encapsulation meta-object concerning the interface
OUT of the audioBinding object and then a VTM (Virtual Task Machine) dic-
tionary of such interface is obtained. This dictionary maps the interface methods
onto VTMs. The VTM that supports the execution of the operation receive is
then retrieved. The lower-level resources of the VTM are then inspected through
the getLLRs() operation of the resources MOP (this is an example of navigating
the resource management hierarchy using the get operations described in table
5). As a result, the team of threads supporting the receive operation is obtained.
Similarly, the team resource object is inspected and a particular thread is ob-
tained. Finally, the scheduling policy of this processing resource is changed to
an EDF policy by calling the setManager() operation of the resources MOP.
Note that this is equivalent to expelling the thread from the current scheduler
and subsequently admitting it to the EDFscheduler.

As an example of coarse-grained adaptation consider the same audio appli-
cation. In case of a drastic shortage of resources due to dynamic changes to
the environment of the application, one of the existing stream bindings may be
suspended on behalf of the other. The binding associated with the VTM with
lowest priority would be suspended. The QoS control mechanism would proceed
as follows, after �nding out which is the lowest priority distributed VTM, which
happens to be VTM x:

vtmSched = VTM_x.getManager()

vtmSched.suspend(VTM_x)

As a result, the VTM scheduler will suspend the corresponding VTM. The
operation of suspending this VTM encompasses the suspension of the local and
remote VTMs concerning the transmission and reception of audio streams re-
spectively. This in turn involves the suspension of their corresponding underlying
processing resources, e.g. threads.

8 Related Work

There has been a growing interest in using reection to achieve adaptation at
the middleware level. A pioneering piece of work in this area was the CodA
meta-level architecture[18]. CodA decomposes the meta-level in to a set of �ne-
grained components that reify aspects such as message sending, acceptance and
execution. However, it is di�cult to support unanticipated changes in the meta-
level due to the tight coupling of components.

In the FlexiNet [13] project, researchers at APM have experimented with a
reective middleware architecture that provides a means to dynamically mod-
ify the underlying protocol stack of the communication system. However, their
solution is language speci�c as applications must be written in Java.



Researchers at Illinois [23] have developed a reective ORB that provides
facilities to dynamically modify the invocation, marshalling and dispatching of
the ORB. However, the level of reection is coarse-grained since only these el-
ements of the ORB are rei�ed. Further research at this institution has lead to
the development of dynamicTAO [22], which is a CORBA-compliant reective
ORB supporting run-time distributed recon�guration. One di�erence from our
work is that this system do not make use of explicit meta-objects for reifying the
ORB. Instead they use a collection of entities known as component con�gura-
tors. These components are in charge of both maintaining dependencies among
system components and providing hooks for speci�c strategy implementations
of the ORB (e.g. marshalling, scheduling, concurrency, etc). However, the focus
is still very much on large-grained platform-wide con�guration.

The work done in OpenCorba [15] follows a meta-class approach. In this sys-
tem meta-classes allow reective computation in order to control the behaviour
and structure of all instances of a base-level class. In contrast, our work fol-
lows a meta-object principle, which allows a �ner-grained (per-object) means
to achieve adaptation. That is, changes to a meta-object are only spread to its
corresponding base-level object.

Finally, note that OMG has standardised MOF (Meta Object Facility)[12] as
a way of representing and managing meta information and XMI (XML Metadata
Interchange) [10] as way for interchanging it. This e�ort is essentially di�erent
from our approach in the sense that it involves managing static meta-level de-
scriptions of type systems rather than dynamic adaptation. However, the MOF
can be used to represent the types of the meta-information that is used by meta-
objects to perform reection and dynamic adaptation. We are currently investi-
gating this use of the MOF by implementing a second version of the reective
platform, which integrates the MOF concepts into our multi-model reection
framework.

9 Final Considerations

In this paper we have presented an approach for the open engineering of mid-
dleware. This leads to middleware that is exible, adaptable and extensible and,
in consequence, suitable to support applications with dynamic requirements.

Our approach applies reection as a principled way of opening up the middle-
ware implementation. The main points of our approach are: (1) multiple meta-

models, which give us a means to separate di�erent aspects of middleware im-
plementation; (2) the use of object graphs as a uniform way to reify the platform
con�guration; and, (3) the use of independent meta-spaces for individual compo-
nents of the platform which limits the scope of adaptation and provides a means
for �ne grained adaptation.

We have implemented a prototype in Python to demonstrate the main ideas.
Notably, this implementation provides an initial meta-object protocol, which
illustrates how reective computation can be performed using the four meta-
models. Although the prototype itself was limited to a single language envi-



ronment, it has shown the feasibility of the general approach. Ongoing work
is looking at lightweight component architectures as an e�cient and language
independent way to structure the implementation.

Our experience so far has shown that the approach is generic and powerful
enough to cover a wide range of aspects of middleware. Moreover, the use of
a uniform interface for adaptation contributes to reducing the complexity of
developing dynamic and complex applications. On the other hand, the intrinsic
openness of the approach might compromise the integrity of the platform (by
unexpected or undesired adaptations). This was expected since we focused on
the provision of exibility. Further work will look at ways of alleviating this
problem. For instance, we can bene�t from experiences such as those presented
in [3] and [16], which use software architecture principles to represent the static
and dynamic properties of con�gurations. This would allow us to extend our
compositional meta-model in order to use the rules of the architectural style for
constraining and managing con�guration adaptations.

Finally, several case studies are under development in order to evaluate the
architecture in more realistic application scenarios.

Acknowledgments

F�abio Costa would like to thank his sponsors CNPq, the Brazilian National Council for

Scienti�c and Technological Development and the Federal University of Goi�as (UFG),

Brazil. Katia Barbosa Saikoski would like to thank her sponsors, Federal Agency for

Post-Graduate Education (CAPES), Brazil and Ponti�cal Catholic University of Rio

Grande do Sul (PUCRS), Brazil. Hector A. Duran would like to thank his sponsor, the

Autonomous National University of Mexico (UNAM).

References

1. G. Blair, F. Costa, G. Coulson, F. Delpiano, H. Duran, B. Dumant, F. Horn,
N. Parlavantzas, and J-B. Stefani. The Design of a Resource-Aware Reective
Middleware Architecture. In Second International Conference on Reection and
Meta-level architectures (Reection'99), St. Malo, France, July 1999.

2. G. Blair and J-B. Stefani. Open Distributed Processing and Multimedia. Addison-
Wesley, 1997.

3. G. S. Blair, L. Blair, V. Issarny, and A. Zarras P. Tuma. The Role of Software
Architecture in Constraining Adaptation in Component-based Middleware Plat-
forms. In IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware2000), IBM Palisades Executive Con-
ference Center, Hudson River Valley, New York, USA, 4th - 8th April 2000.

4. Microsoft Corporation. Microsoft COM Technologies - DCOM. Internet Publica-
tion - http://www.microsoft.com/com/tech/dcom.asp, March 1998.

5. Microsoft Corporation. Microsoft COM Technologies - COM+. Internet Publica-
tion - http://www.microsoft.com/com/tech/complus.asp, May 1999.

6. H. Duran and G. Blair. A Resource Management Framework for Adaptive Mid-
dleware. In 3th IEEE International Symposium on Object-oriented Real-time Dis-
tributed Computing (ISORC'2K), Newport Beach, California, USA, March 2000.



7. D. Engler, M. Kaashoek, and J. O'Toole. Exokernel: An Operating System Archi-
tecture for Application-Level Resource Management. In 15th ACM Symposium on
Operating System Principles, pages 251{266, December 1995.

8. S. Floyd, V. Jacobson, C-G. Liu, S. McCanne, and L. Zhang. A Reliable Multicast
Framework for Light-weight Session and Application Level Framing. IEEE/ACM
Transactions on Networking, December 1997.

9. Object Management Group. CORBA Object Request Broker Architecture and
Speci�cation - revision 2.2, February 1998.

10. Object Management Group. XML Metadata Information (XMI), October 1998.
11. Object Management Group. CORBA Components Final Submission. OMG Doc-

ument orbos/99-02-05, February 1999.
12. Object Management Group. Meta Object Facility (MOF) Speci�cation, Version

1.3 RTF, September 1999.
13. R. Hayton. FlexiNet Open ORB Framework. Technical Report 2047.01.00, APM

Ltd., Poseidon House, Castle Park, Cambridge, CB3 ORD, UK, October 1997.
14. A. Hokimoto, K. Kurihara, and T. Nakajima. An Approach for Constructing

Mobile Applications Using Service Proxies. In ICDCS'96; Proceedings of the 16th
International Conference on Distributed Computing Systems; May 27-30, 1996,
Hong Kong, pages 726{733, Washington - Brussels - Tokyo, May 1996. IEEE.

15. T. Ledoux. OpenCorba: a Reective Open Broker. In 2nd International Conference
on Reection and Meta-level Architectures, pages 197{214, St. Malo, France, July
1999.

16. O. Loques, A. Sztajnberg, J. Leite, and M. Lobosco. On the Integration of Con�gu-
ration and Meta-Level Programming Approaches. In R. J. Stroud W. Cazzola and
F. Tisato, editors, Object-Oriented Reection and Software Engineering, volume
1826 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

17. P. Maes. Concepts and Experiments in Computational Reection. In Proceedings
of OOPSLA'87, pages 147{155. ACM, October 1987.

18. J. McA�er. Meta-level Programming with CodA. In Proceedings of 9th European
Conference on Object-Oriented Programming (ECOOP'95), volume 952 of Lecture
Notes in Computer Science, pages 190{214. Springer-Verlag, 1995.

19. Sun Microsystems. Enterprise JavaBeans Speci�cation Version 1.1. Internet Pub-
lication - http://java.sun.com/products/ejb/index.html.

20. SUN Microsystems. Java Remote Method Invocation - Distributed Computing for
Java. Internet Publication - http://www.sun.com, 1998. White Paper.

21. H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A Distributed Programming
System with Multi-Model Reection Framework. In Proceedings of International
Workshop on New Models for Software Architecture (IMSA'92), Tokyo, Japan,
November 1992.

22. M. Rom�an, F. Kon, and R. Campbell. Design and Implementation of Runtime
Reection in Communication Middleware: the dynamicTAO Case. In ICDCS'99
Workshop on Middleware, Austin, Texas, May 31 - June 5 1999.

23. A. Singhai, A. Sane, and R. Campbell. Reective ORBs: Supporting Robust,
Time-critical Distribution. In Proceedings of ECOOP'97 - Workshop on reective
Real-Time Object-Oriented Programming and System, Finland, June 1997.

24. T. Watanabe and A. Yonezawa. Reection in an Object-Oriented Concurrent
Language. In Proceedings of OPSLA'88, pages 306{315. ACM, September 1988.


