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ABSTRACT
Designing reusable software modules can be extremely
difficult.  The design must be balanced between being gen-
eral enough to address the needs of a wide range of clients
and being focused enough to truly satisfy the requirements
of each specific client.  One area where it can be particu-
larly difficult to strike this balance is in the implementation
strategy of the module.  The problem is that general-
purpose implementation strategies, tuned for a wide range
of clients, aren’t necessarily optimal for each specific cli-
ent—this is especially an issue for modules that are
intended to be reusable and yet provide high-performance.

An examination of existing software systems shows that an
increasingly important technique for handling this problem
is to design the module’s interface in such a way that the
client can assist or participate in the selection of the mod-
ule’s implementation strategy.  We call this approach open
implementation.

When designing the interface to a module that allows its
clients some control over its implementation strategy, it is
important to retain, as much as possible, the advantages of
traditional closed implementation modules.  This paper
explores issues in the design of interfaces to open imple-
mentation modules.  We identify key design choices, and
present guidelines for deciding which choices are likely to
work best in particular situations.
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INTRODUCTION
Software has traditionally been constructed according to
the principle that a module should expose its functionality
but hide its implementation.  This principle, informally
known as black-box abstraction, is a basic tenet of soft-
ware design, underlying our approaches to portability,
reuse, and many other important issues in computing.

Black-box abstraction has many attractive qualities—
amortized development costs, localization of change, etc.
Exposing only the functionality of a module in its inter-
face, however, can sometimes lead to performance
difficulties when the module gets reused.  It has been ob-
served that in such cases, clients “code around” the
problem either by re-implementing an appropriate version
of the module or by using existing modules in contorted
ways  [5,  6].  In either case, many of the goals that moti-
vated creating the module in the first place are not actually
realized.

Many recent systems address this problem by having mod-
ules that allow client control of their implementation
strategy [7, 8, 9, 10, 11,  12,].  We say that these modules
have open implementations.

The open implementation approach works by somewhat
shifting the black-box guidelines for module design.
Whereas black-box modules hide all aspects of their im-
plementation, open implementation modules allow clients
some control over selection of their implementation strat-
egy, while still hiding many true details of their
implementation.  In doing this, open implementation mod-
ule designs strive for an appropriate balance between
preserving the kind of opacity black-box modules have,
and providing the kind of performance tailorability some
clients require.
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A number of existing systems have open implementation
style interfaces, but thus far, there has been no systematic
study of open implementation design, and as a result, de-
signers of these systems have had little or no general
guidance to assist them.  This paper addresses this need by
examining a series of specific modules with open imple-
mentations, including designs taken from published
systems and toy designs that illustrate specific issues. The
designs serve to illustrate important concepts, guidelines,
and tradeoffs.  They also provide concrete instances to
study and use as idioms in future designs.

This paper is specifically focused on the design of inter-
faces to modules with an open implementation. While the
implementation techniques that support these interfaces are
crucial, they are beyond the scope of this paper.1  Neither
does this paper focus on the general motivation for open
implementation—that can be found in [13, 14, 6, 15, 16]—
instead we operate from the premise that some modules
can benefit from the open implementation approach, and
focus on issues in the design of their interfaces.

A BASE CASE
Before we begin an exploration of open implementation
interface designs, it is necessary to provide a basis for the
terms module and interface. We use these terms in a simi-
lar fashion to [17] where a module  represents a work
assignment, and an interface is the set of assumptions a
client programmer using the module may make about its
behavior.2 The modules subject to an open implementation
are conceived  in the same manner as any other module,
namely by the application of the information hiding princi-
ple [18].  According to this principle, modules are selected
to localize and hide design decisions.

The following interface design for a simple set module will
be used as an illustrative example throughout the paper.
This black-box interface presents only  the functionality of
the set module and hides all implementation issues behind
the interface. It will serve as a comparison point for subse-
quent open implementation designs for interfaces to set
modules.  We are using the set module throughout to help
make the differences between the designs more clear.  But
not all of the designs we present will be appropriate for a
module as simple as this.  These will noted explicitly.

                                                          
1 Many of the implementation techniques are straightfor-
ward, and will be apparent simply from looking at the
interface design.  Others are more subtle, and involve re-
cently developed techniques in language and system
implementation [1, 2, 4]. There is, as yet, no unified pres-
entation of these techniques; a separate paper describing
this is in preparation.
2 In this paper, we are concerned with guidelines on the
selection and form of the interface to an open implementa-
tion module. Issues related to the specification of an
interface  are outside the scope of this work.

Set Module Interface Design A
This is the simple “black-box” design.  It has the usual procedures
for creating sets, adding and removing  elements from sets, and
mapping over the elements of a set.   The calling interface to the
module might look something like:

makeSet()
insert(item, set)
delete(item, set)
isIn(item, set)
map(function, state, set)3

Interface design A is attractive in its simplicity. In addition,
it adheres to the five characteristics of quality interface
designs outlined in [19]. That is, the interface is consistent
(e.g., the set parameter is consistently passed as the last
argument), essential (e.g., each service is offered in only
one way), general (e.g., a set may be used for only inser-
tions, or both insertions and deletions), minimal (e.g., each
function provides one operation), and opaque (e.g., the
interface hides the “secret” around which the module has
been defined).

It is, however, inherently difficult to develop an imple-
mentation of this interface that will please a large range of
prospective clients.  This difficulty arises because deter-
mining the best implementation strategy for a set depends
on knowing what is going to be done with it.  How many
elements will it have?  How often will new elements be
inserted?  Will existing elements be deleted?  How often?
How often will the other set operations be called?  All of
these factors are important in determining how to imple-
ment a set.  This is why there are so many different
implementation strategies for sets. The libg++ library
[20], for example,  has eleven variants of set, including
linked lists, B-trees and hash tables, to name a few.  But
with design A, the set module implementor has little basis
for selecting which implementation strategy to use—the
interface makes it difficult for the set module to know what
a specific client’s usage pattern will be.  This is, in short,
an appropriate case for an open implementation design.

SEPARATION OF USE FROM IMPLEMENTATION
STRATEGY CONTROL
The following design addresses the difficulty of developing
a reusable implementation of design A by providing clients
limited control over the selection of the module’s imple-
mentation strategy.

Set Module Interface Design B
In this design, the interface is the same as in design A, except that
now makeSet can optionally be called with an argument that
describes the client’s pattern of use.  The intent is that the set
                                                          
3 The map procedure calls the function on every element
of the set, passing it both the element and the state block.
This design makes it possible to “simulate a closure.”



module implementation can examine this description and select an
appropriate specialized implementation strategy tuned for that
pattern of use. The optional usage parameter is a string in a simple
declarative language that supports the encoding of information
such as the size of the set and the relative frequency with which
the various operations are called.

makeSet(usage)
makeSet()
insert(item, set)
delete(item, set)
isIn(item, set)
map(function, state, set)

The following example calls to makeSet show how the usage
parameter works:

makeSet(“n=10000,
            insert=lo,
            delete=lo,
            isIn=hi”)

makeSet(“n=5,
            insert=hi,
            delete=hi”)

In this design, the opacity criteria have been relaxed
somewhat from design A. Whereas design A kept the im-
plementation entirely “secret,” design B admits to clients
that selecting the implementation strategy is an important
issue, and that understanding how the set will be used can
help in that selection.  But note that most of the secrets
remain hidden.  The client does not know what the actual
implementation strategies are, and they certainly do not
know any of the details about how those strategies are im-
plemented.

We begin with a few simple observations about this new
interface design:

• It is only a small change from interface design A.  The
makeSet procedure now accepts an optional argu-
ment; all the other procedures are unchanged.

• The client’s use of the new functionality is optional.  It
is still possible to call makeSet with no arguments,
which will leave the set module free to choose a de-
fault general-purpose implementation strategy, much
as it would have in design A.

• The client’s use of the new functionality has an inher-
ently well-bounded effect. The implementation
strategy control associated with a given call to make-
Set affects only the sets created by that call.  This
makes it  possible for some sets to use the new func-
tionality and others not, and for different sets that use
the new  functionality to do so in different ways to get
different implementation strategies.

• The new part of the interface can be seen as being
relatively orthogonal to the original interface.  The
new part supports client control of implementation

strategy,  whereas the old part supports actually using
sets.

The last observation means that set module interface de-
sign B effectively splits client code into two kinds: most of
the client code simply uses the set module’s functionality,
while the parameter to makeSet is involved in controlling
the set module’s implementation strategy.

This important property is in fact the subject of the first
design guidelineopen implementation module inter-
faces should support a clear separation between client
code that uses the  module’s functionality (use code) and
client code that controls the module’s implementation
strategy (ISC code) .

A clear separation between client use code and ISC code is
important because it helps to preserve the advantages of
black-box modules. It helps the client programmer selec-
tively focus their attention on either the way their code
uses the module’s functionality, or the way their code con-
trols the module’s implementation strategy.  When
focusing on the use code, the client programmer is effec-
tively working with a black-box interface to the module.

Design B does a good job in this respect; the client pro-
grammer simply has to selectively ignore the paramater
passed to makeSet in order to focus on use code.  It
would even be easy to build an automatic tool that could
hide the ISC code when the programmer wanted to ignore
it.

In working with this guideline, what is most important is
the effective separation the client programmer has to work
with, as manifested in their code.  This goal can be sup-
ported by use/ISC separation in the interface, but it is
separation in the client code that is the real benefit.

In addition to having a clear separation between client use
and ISC code, open implementation module interfaces
should be designed to  make the ISC code optional, make
the ISC code easy to disable, and support alternative ISC
codes for one piece of use code.  These additional guide-
lines provide further support for the development of clients
of open implementation modules.   They enable clients to
first be developed with a focus on getting the functionality
right, by leaving out ISC code.  They assist performance
debugging, by selectively turning parts of the ISC code on
and off.  They facilitate porting, by allowing different ISC
code for different environments. They support division of
expertise, since use code can be written by a person (or
group) with one expertise and ISC code can later be writ-
ten by a person (or group) with another expertise.

One example of a system with clear use/ISC code separa-
tion is High-Performance Fortran (HPF) [21], a Fortran
extension intended to support efficient data parallel pro-
gramming.  One of HPF’s principal components is a set of
declarations that allows programmers to assist the compiler



(and the runtime system) in determining strategies for dis-
tributing arrays across multiple processors. In our
terminology, these declarations are ISC code. Clear
use/ISC separation is achieved by embedding the declara-
tions into what would be comments in a Fortran-90
program. An example of the use of this mechanism is:

REAL A(1000,1000), B(998,998)
!HPF$ ALIGN B(I,J) WITH A(I+1,J+1)

where the first line is use code that declares two large ar-
rays and the second line is ISC code saying how to lay out
the elements of the arrays with respect to each other.

Scoring the HPF interface design against the use/ISC sepa-
ration guidelines:

• The use/ISC code separation is clear—the ISC code
can easily be ignored by the client programmer or hid-
den by a tool.

• The ISC code is optional—either HPF or Fortran-90
compilers will compile an HPF program without the
ISC code.

• The ISC code is easy to disable—a very simple tool
can strip it out of a program before passing that pro-
gram on to the compiler.

• HPF doesn’t directly support multiple ISC codes for
one use code, but it is easy to build a tool that does do
so, for example by further extending the syntax to
mark each line of ISC code with the platform for
which it is intended, and then using a pre-processor to
strip out inappropriate lines before passing the code
off to the HPF compiler.

These properties translate into direct benefits to HPF pro-
grammers.  Programs can be developed focusing on just
the use code.  The ISC code can be added later during
tuning, possibly by different programmers.  Even after the
ISC code has been added, the use code is internally com-
plete and executable on its own, so that evolution can be
accomplished by first adjusting and testing the use code,
and then making any needed adjustments to the ISC code.

An example that doesn’t do quite as good a job on use/ISC
separation is the libg++ library  [20], a large library of C++
classes and other building blocks, that includes a set mod-
ule with an open implementation.  But in this design, ISC
code is mandatory at set construction, requiring client pro-
grammers to always think about the set module’s
implementation strategy, even in the many cases where a
general-purpose strategy would be sufficient.  The result is
that too many of the benefits of the black-box interface are
lost.  This also means there is no way to tell from reading
the client code whether a particular piece of ISC code was
well thought out, or was merely intended to be a default.
This makes the code harder to reason about and maintain.

The work described in [10] improves on the libg++ design
in several ways, one of which is to provide a more clear
use/ISC separation.

SCOPE CONTROL
An important observation about design B is that any given
piece of ISC code affects the implementation of only some
setsjust those sets created by the makeSet the ISC
code appears in.  This important point is the focus of the
next design guidelineopen implementation module in-
terfaces should be designed to allow the scope of
influence of ISC code to be controlled in a way that is
both natural and sufficiently fine-grained.

Like use/ISC separation, the motivation for this guideline
is to help the client programmer understand their program,
in this case by making it easier for them to reason about
the effect of the ISC code they write.  The programmer’s
reasoning is directly facilitated when the scope of influence
of ISC code is natural and fine-grained.

Design B does a good job of meeting this guideline. The
ISC code on a specific call to makeSet affects only those
sets returned from that call (and all the set operations on
them).  It is natural for the client programmer to think in
terms of sets created by a given call to makeSet. This
granularity is sufficiently fine grained for the programmer
to reason easily about the effect of any piece of ISC code.

Figure 1 shows the effect of design B’s scope control from
the client programmer’s perspective.  It shows a number of
lines of use code, and two pieces of ISC code, the strings
“n=1000” and “n=5”.  The dashed lines indicate what
parts of the use code are in the scope of influence of each
piece of ISC code.  Note that the count function, and the
call to map inside it are in both scopes, since it can be
passed sets with either kind of implementation.

Choosing the Scope  Control
While the importance of natural and fine-grained ISC code
scope control is easy to state, designing an appropriate
scope control for an interface can be a subtle problem.

        s1=makeSet(“n=1000”)
        for i = 1 to 700 do
           insert(s1, i+i)
           count(s1)

        s2=makeSet(“n=5”)
        insert(s2, 5)
        insert(s2, 6)
        count(s2)

        function count(s) {
           map(.., .., s)
        }

Figure 1: Scope control in Design B



Coming up with the design involves considering how and
why the client is going to want to control the implementa-
tion strategy, and making sure that the design gives clients
a fine-enough granularity to work with, without being
overly difficult to implement or use.  This section presents
some alternative scope controls, to illustrate some of the
considerations that come into play.

As an alternative scope control for design B, consider a
design where the client could only control the implementa-
tion strategy on a per-application basis.  This might be
done with a declaration associated with the makefile for
the application, that affected all the sets used by that appli-
cation.   This scope control would not be fine-enough
grained, because it is reasonable to expect that an applica-
tion will want to use sets more than once, and do so in
different ways, and thus want different implementations
strategies.  This alternative design would thus be not much
more useful than a closed implementation of sets.

As another example consider file systems that allow the
client to control their pre-fetching and caching strategy
[22]. These systems tend to provide this control on a per
stream basis.4  A per-file basis would be too coarse a
granularity, because it would cause problems if two differ-
ent clients opened the same file but wanted different
implementation strategies. Similarly, ISC scope control on
a per-process basis would be too coarse, since it is reason-
able to expect that a system running in one process might
want to open different streams with different implementa-
tion  strategies.

While it is important to have sufficiently fine-grained
scope control, there is a tension in that the more fine-
grained it gets, the harder it can be both to use and to im-
plement.  For example, if a file system allowed the client to
control the pre-fetching strategy on a per-byte basis—
every call to readByte could control the pre-fetching
that happened with that call—it would undoubtedly be
more powerful than on a per-stream basis, but it could be
more cumbersome to use and difficult to implement.
(Implementation technology capable of supporting such a
design does exist however [3].)

There are, however, cases where very coarse ISC scope
control has proven useful.  Consider for example the BLAS
libraries [23] for matrix routines.  There are different li-
brary implementations customized for different hardware
architectures. The library is linked in when execution
starts, and affects all the matrix arithmetic in the applica-
tion, but in this case that is an appropriate granularity.

In summary, natural and fine-grained scope control com-
plements clear use/ISC separation.  A clear use/ISC
separation divides the client code into use code and ISC

                                                          
4 By stream we mean the result of opening the file, that is a
handle to the file that can be used to read/or write bytes.

code.  Natural and fine-grained ISC code scope control
partitions the client code into parts depending on what ISC
code affects them.

SUBJECT MATTER
While design B does address the original need for client
control of implementation strategy, the way in which it
does so has a few potential weaknesses:

• If a client programmer mis-describes the behavior of
their program they may wind up with an implementa-
tion strategy that is worse than the default.

• Even if the client programmer properly describes the
behavior of their program, they have no guarantee that
they will get an implementation strategy that is optimal
for their purposes. An implementation of design B
might not include an implementation strategy that is
optimal for every usage profile a client might describe
in a call to makeSet.

In essence, design B allows the client to say more about its
behavior, but leaves the client unsure about the effect this
will have on the module’s implementation strategy.  Ad-
dressing this uncertainty is the motivation for the next
design.

Set Module Interface Design C
This design for  the set module interface is identical to design B
except for the optional argument to makeSet. In this design the
client programmer has the option to explicitly specify one of a
fixed list of implementation strategies for the new set.   The fixed
list  is: BTree, LinkedList, HashTable �

makeSet(strategy)
makeSet()
insert(item, set)
delete(item, set)
isIn(item, set)
map(function, state, set)

 Two example calls to makeSet are:

makeSet(“LinkedList”)

makeSet(“HashTable”)

First we note some of the ways that design C is similar to
design B:

• It has similar use/ISC separation, i.e. a parameter of a
procedure in the use interface.

• It has  similar scope control, i.e. a given piece of ISC
code affects only operations on sets returned by that
call to makeSet.

But designs B and C differ in an important respect, having
to do with the nature of the ISC code in clients of each.  To
capture this difference, we introduce a concept called the
ISC code subject matter of an open implementation mod-



ule’s interface design.  We use this term to refer to the ex-
plicit subject of the ISC code.

In design B, the ISC code subject matter is the client pro-
gram’s behavior.  In design C it is the module’s
implementation strategy.  This distinction may appear
somewhat subtle, since, after all, both designs allow the
client to affect the module’s implementation strategy.  And
pieces of ISC code from designs B and C can have the
same intent, even though they have different subject mat-
ter, i.e. "n=1000, insert=lo, delete=lo,
isIn=hi" and “HashTable”. The difference is in
what the ISC code is explicitly about: the client program’s
behavior in design B vs. is the module’s implementation
strategy in design C.

There is a third important possibility for ISC code subject
matter—performance requirements the module must meet
at its interface.  While this subject matter may not be ap-
propriate for the interface to a set module, it is useful in
other cases.5 One example of open implementation mod-
ules with this ISC code subject matter is network protocol
interfaces that allow clients to request a particular quality
of service [24].  Such guarantees are critical for applica-
tions, such as audio- and video-conferencing, that send
real-time data streams over a network.

The three possibilities for ISC code subject matter are
summarized in Table 1.

Tradeoffs
Choosing the ISC code subject matter is a key decision in
the design of the interface to an open implementation
module. The ISC code subject matter has a significant ef-

                                                          
5 The libg++ set library uses the module’s implementation
strategy as its ISC code subject matter.  (It is like design C
in that sense.)  But, the documentation of the different
strategies (XPSets, OXPSets, SLSets etc.) itself in-
cludes a description of each strategy’s order of complexity
(i.e. [a O(n)], [f O(n)], [d O(n)]… for XPSets), so it de-
scribes itself in terms of performance properties at the
module’s interface.

fect on how easy the module will be to design, specify and
implement, as well as how well it will work for its clients.

Making the ISC code subject matter be the client’s behav-
ior feels like it should be easier for the client programmer,
since all they have to do is figure out the behavior of their
program and let the module do the rest.  But this isn’t al-
ways the case.  It can often be easier for a client
programmer to simply name a well-known implementation
strategy that they know will be appropriate.  Further, this
can give the client programmer more certainty that their
ISC code will have the effect they desire.  This is why the
libg++ set library has module implementation strategy as
its subject matter, not client program behavior.  (It is more
like design C than design B.)

On the other hand, having the ISC code subject matter be
the module’s implementation strategy opens the door to
potential problems if the client programmer chooses an
inappropriate strategy.  We are all familiar with the fact
that good C compilers ignore register declarations because
programmers almost always use them incorrectly.  So the
interface designer should only make this choice for ISC
code subject matter when there is a reasonable chance that
the client programmer will be able to choose correctly.

And, while having the subject matter be the performance
requirements at the interface seems like a happy compro-
mise, it is not always the best choice either.  There are
many cases where it is easier for the client programmer to
speak in terms of one of the other subject matters.

One rule of thumb for selecting ISC code subject matter is
based on seeing the process of selecting implementation
strategy as a series of analysis steps: Given the client use
code, how does it use the interface?  Given a client with
that usage pattern, what performance properties does it
require?  Given those performance requirements, what
implementation strategy will best satisfy them? This proc-
ess is illustrated in Figure 2.

                                                          
6 If there is one implementation strategy that is appropriate
for all clients, there is no need for an open implementation.

Subject Matter Client ISC Code Example

client program’s behavior n=10000,insert=hi,delete=lo,isIn=h
i

Design B

performance requirements
the module must meet  at
its interface

bandwith=10000 Network Quality of
Service [24]

module implementation
strategy

HashTable Design C

Table 1: Subject matter and Style of ISC Code



Seeing the process that way, the guideline is: Pick the first
subject matter along the process of Figure 2 for which
all of the following criteria hold:

• It is possible to build an automatic mechanism that
completes the chain of reasoning from that point
onwards to get an optimal implementation strategy.

• It is easy to design an interface to express the subject
matter at that point.

• It would be easy for the client programmer to use
that interface to express that subject matter.  This
includes both figuring out what to say and how to
say it.

Note that this guideline also provides a way of knowing
when not to use an open implementation.  An open imple-
mentation is not needed when all of the steps of the above
inference process can be handled automatically to arrive at
an optimal implementation strategy.

One example of an appropriate choice of ISC code subject
matter is the inline declaration found in many pro-
gramming languages, including C and Common Lisp.  This
declaration allows the programmer to name an implemen-
tation strategy for procedure calling.  It comes at the end of
the inference process above, and so the programmer has a
clear sense of what its effect will be.

A corresponding example of inappropriate choice of ISC
code subject matter is the speed/space/safety declarations
found in Common Lisp [25].  These declarations don’t
have a clear subject matter; it isn’t clear where they fall in
the inference process above, and programmers don’t have
a clear sense of what their effect will be.

Implementation Details Must be Hidden
Design C further relaxes the original secrets around which
Design A was defined.  Now, the existence of a fixed set of
implementation strategies is no longer secret.  But notice
that the true details of each strategies implementation is
still hidden.  There is still plenty of information hiding
across the interface between the client and the implemen-
tation.  This can be stated in a design guideline: Open
omplementation module interfaces should be designed to
pass only essential implementation strategy information.
The three subject matters are different ways of encoding
the essential information.

STYLE OF THE ISC CODE
While design C addresses the lack of guarantees in design
B, both designs are limited to whatever set of implementa-
tion strategies is provided by the module.  This makes
them both vulnerable to the implementation not being
flexible enough for a wider range of clients.  This moti-
vates yet another design.

Set Module Interface Design D
In this design, the use interface is exactly the same as in design C.
But this design not only allows client programmers to choose from
a fixed set of default implementation strategy, but also allows them
to provide entirely new implementation strategies for the set mod-
ule. The client provides these strategies in the form of an entirely
new implementation of the set functionality, packaged up as a
subclass of the class Set.  (In this paper we use the mechanism of
object-oriented programming to capture this kind of design, but
other mechanisms like callbacks or dispatching procedures could
be used just as well.)

The following example illustrates the use of interface design D:

In use file

      makeSet(“mySet”)

 In ISC file

class mySet (Set) {
  method insert…
  method delete…
  method isIn…
  method map…}

Design D is similar to design C in many ways:

• It  has the same scope control.

• It has similar use/ISC code separation.  The key dif-
ference in design D is that client ISC code includes not
only the code inside the arguments to makeSet, but
also the code that defines any new implementation
strategies for sets.

• The ISC code subject matter in this design is the im-
plementation strategy of the module.  But in this
design, the ISC code takes two different forms.  The
part inside the arguments to makeSet is just like in
design C, but the part that defines new subclasses of
Set is different.

client
use

code

client
usage
profile

client
performance
requirements

module
implementation

strategy

analysis analysisanalysis

Figure 2: Analysis steps in the process of selecting implementation strategy



To capture this difference between the declarative ISC
code in designs B and C and the programmatic ISC code
that in design D, we introduce a new concept, the style of
the ISC code.   

Declarative style ISC code is simple, but its power is lim-
ited to the forms of declarations supported by the interface.
This limitation can be problematic when a client has needs
that fall out of the purview of these declarations. An inter-
face that supports programmatic ISC code addresses this
limitation by allowing the client to write ISC code in the
form of a small program.

In design D, the set primitives insert, delete, isIn
etc. will invoke the client’s programmatic ISC code when
one of the client-defined implementations is requested.
Errors in this ISC code will cause errors seen by the use
code. So, unlike the situation in the earlier designs, ISC
code has the potential of breaking the use functionality of
the interface.

The programmatic style of interface thus can lead to less
robust designs. For this reason, it should only be used in
cases, such as this one, where otherwise the client would
be forced to “code around” the performance deficiency of
the module.  The use of programmatic ISC code puts a
premium on having the right scope control, so as to restrict
the consequences of bad programmatic ISC code to those
places where it is requested. So, for example, if a buggy
backing store is given to the Mach external pager, the
whole operating system does not come crashing down.
Only the process requesting that backing store is affected.

THE DESIGN SPACE
Figure 4, on the next page, summarizes these four design
approaches.  It illustrates the progressively deeper in-
volvement of the client in the implementation in the
successive styles.  The right style to use for a particular
module is the one that lets client get as involved in imple-
mentation strategy as they need to, without having to get
more involved.
Layering
Not only can different clients of a module need different
implementation strategies, different clients of a module
may also be better served by different interface design
styles.  Fortunately, this can be accommodated.
Notice that interface design D subsumes both design C and
design A.  That is, a client of design D has three choices
regarding control of the set module’s implementation strat-
egy:

1. They can specify no ISC code and get the default im-
plementation strategy.

2. They can choose from the list of the built-in strategies.

3. They can provide a new strategy.

We say that design D is a layered interface design.7   In
this design the client can get into the implementation strat-
egy selection process at three different levels.  In fact, the
first two levels of the above layering have been implicitly
present since design B, stemming from the guideline that
ISC code should be optional.

Many existing open implementation modules have layering
in this sense. The file system mentioned above is one ex-
ample, that closely parallels design D.  The client can do
nothing, in which case they get a default pre-fetching pol-
icy, or they can choose from a small set of built-in policies,
or they can write programmatic ISC code to define a new
policy.

A layered interface design aims at exploiting a version of
the 90/10 rule.  The idea is that 90% of the clients can use
the default strategy, the remaining 10% will need to write
some ISC code.  90% of that 10% can select from among
the built-in strategies, and only the final 1% (but probably
a very important 1%) have to provide an entirely new strat-
egy.

Layering is not an end in itself, but a technique to address
what might otherwise seem like an irresolvable trade-off.
In particular, layering is a way to design an interface that
has the robustness and ease of use of declarative ISC code,
while at the same time having the power of programmatic
ISC code.  The guideline is: When there is a simple inter-
face that can describe strategies that will satisfy a
significant fraction of  clients, but it is impractical to
accommodate all important strategies in that interface,
then the interfaces should be layered.

                                                          
7 Layered interface designs refer to the structure of the
interface, not to the underlying software structure. A lay-
ered interface design might or might not be implemented
by a layered software architecture.
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Figure 3: Effects of ISC code in design D.



OTHER DESIGNS
The range of design approaches presented here are suitable
for a large class of open implementations.  But there is no
room here to cover all the approaches.  Two notable omis-
sions are: an approach, particularly used in some open
operating systems, that allows incremental definition of
new strategies; approaches for allocating shared resources.
These other approaches will be explored in future work.
CONCLUSION
Open implementation is appropriate for reusable modules
that have clients with a wide range of different perform-
ance requirements. Open implementation is based on
reworking the opacity guidelines for traditional black-box
modules. In open implementation, modules allow their
clients to participate in their implementation strategy, but
still hide many aspects of their implementation details.
Open implementation requires new design guidelines to
augment the existing ones for black-box modules. This
paper provides an initial set of such guidelines and issues
having to do with:

• Clear use/ISC client code separation

• Natural and fine-grained ISC code scope control

• Selection of appropriate ISC code subject matter

• Selection of appropriate ISC code style

• Incrementality in the ISC interface

• Use of layering to balance ease of use and power
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