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Abstract 
One of the primary challenges in building and evolving large 
object-oriented systems is understanding aliasing between objects.  
Unexpected aliasing can lead to broken invariants, mistaken 
assumptions, security holes, and surprising side effects, all of 
which may lead to software defects and complicate software 
evolution. 

This paper presents AliasJava, a capability-based alias annotation 
system for Java that makes alias patterns explicit in the source 
code, enabling developers to reason more effectively about the 
interactions in a complex system.  We describe our 
implementation, prove the soundness of the annotation system, 
and give an algorithm for automatically inferring alias 
annotations.  Our experience suggests that the annotation system 
is practical, that annotation inference is efficient and yields 
appropriate annotations, and that the annotations can express 
important invariants of data structures and of software 
architectures. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features 
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Experimentation, Languages, Theory 

Keywords 
AliasJava, Java, ownership types, encapsulation, uniqueness, 
aliasing, type inference 

1. Introduction 
Understanding and evolving large software systems is one of the 
most pressing challenges confronting software engineers today.  
When evolving a complex system in the face of changing 
requirements, developers need to understand how the system is 
organized in order to work effectively.  For example, to avoid 
introducing program defects, programmers need to be able to 
predict the effect of making a software change.  Also, while fixing 

defects, programmers need to be able to track value flow within a 
program in order to understand how an erroneous value was 
produced.  In an object-oriented program, all of these tasks 
require understanding the data sharing relationships within the 
program.  These relationships may be very complex—at worst, a 
reference could point to any object of compatible type—and 
current languages do not provide much help in understanding 
them [HLW+92]. 

Data sharing problems can also compromise the security of a 
system.  For example, in version 1.1 of the Java standard library, 
the security system function Class.getSigners() returned a 
pointer to an internal array, rather than a copy.  Clients could then 
modify the array, compromising the security of the “sandbox” that 
isolates Java applets and potentially allowing malicious applets to 
pose as trusted code.  Existing languages provide poor support for 
preventing security problems that arise from improper data 
sharing. 

In this paper, we describe and evaluate AliasJava, a type 
annotation system for specifying data sharing relationships in Java 
programs.  The annotations provide automatically checked 
documentation about data sharing within a program, while 
allowing software engineers to program in much the same style as 
before.  We have also applied AliasJava to specify the data 
sharing relationships within a software architecture, as expressed 
in the architecture description language ArchJava [ACN02a]. 

AliasJava’s annotations capture several common forms of sharing 
in object-oriented systems.  First, objects are often shared in a 
structurally bounded way: an object might be shared within the 
implementation of a subsystem, but not beyond it.  In AliasJava, 
objects that are part of a subsystem’s representation are specified 
with an owned type annotation; the subsystem can grant trusted 
external objects the capability to access its owned state using a 
simple form of ownership parameterization.  Second, objects are 
sometimes shared in a time-bounded way: an object may be 
passed as a parameter to a method, which uses the object for the 
duration of the call, but does not store a persistent reference to the 
object.  AliasJava specifies this kind of time-bounded access 
capability with a lent type annotation.  Finally, our type system 
also includes the best-case unique annotation for unshared objects 
and the worst-case shared annotation for objects that have no 
owning subsystem. 

The contributions of this paper are the following: 

• a capability-based type annotation system that combines 
uniqueness and ownership-style encapsulation; 

• an implementation in Java and a discussion of issues 
including concurrency, inner classes, iterators, and casts; 
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• a formalization of our type annotation system for a subset of 
Java and a proof outline of several key invariants; 

• a novel algorithm for inferring alias annotations; and 

• an empirical evaluation of AliasJava on a non-trivial program 
and on part of the Java collection class library. 

The rest of this paper is organized as follows.  The next section 
introduces AliasJava with a series of examples.  Section 3 
formalizes our type system and outlines proofs of key properties.  
Section 4 describes our annotation inference algorithm.  We 
evaluate our system in section 5 on a realistic program and on the 
Java collection libraries.  Section 6 discusses related work, and we 
conclude in section 7. 

2. AliasJava 
Our type annotation system is motivated by the desire to 
understand the data sharing patterns in very large software 
systems.  AliasJava annotates all reference types, describing the 
extent to which that reference is shared.  The annotations bound 
aliasing on the heap structurally: unique describes an unshared 
reference, owned objects are assigned an owner that controls who 
may access that object, and shared indicates the worst case of a 
globally-aliased reference.  We also provide a lent annotation 
expressing sharing that is temporally bounded by the length of a 
method call. 

In this section, we present our annotations as a type system for 
Java programs that provides global guarantees about aliasing.  
However, adding alias annotations to a large legacy program may 
require significant effort.  Our annotations can also be applied to 
verify local properties within a subsystem, treating the annotations 
at the edge of the subsystem as unchecked assertions.  We use this 
methodology in our case studies in Section 5.  A promising 
alternative is inferring alias annotations for a closed subset of the 
program automatically.  Section 4 presents an annotation 
inference algorithm, and we present early results from a prototype 
implementation. 

Subsection 2.1 describes the AliasJava language through a series 
of examples.  A more precise description of the core annotation 
system is provided by the formal semantics in section 3.  The 
following two subsections describe the properties guaranteed by 
AliasJava, and how AliasJava’s design works with the features of 
the full Java language.  Subsection 2.4 shows more examples of 
the language in order to illustrate its expressiveness.  We discuss 
some of the reasoning benefits provided by our annotation system 
in subsection 2.5. 

2.1. Annotations for Data Sharing 
Unique.  When an object is first created, it is unique—that is, 
there is only one reference to the object.  We annotate a type with 
unique to describe a reference that does not have persistent 
aliases.  Figure 1 illustrates uniqueness through a linked list class 
where all of the elements and all of the links are unique. 

In general, after a unique variable or field is read, the source 
location must be dead (that is, unused by subsequent code)—
otherwise the read reference would be an alias of the supposedly 
unique source.  A standard intraprocedural live variable analysis 
is used to verify this criterion for unique local variables.  When 
a unique field is read by a method, that method must set the 
field to another value before executing any statement (such as a 
method call or exception-throwing expression) that could result in 
reading the original value of the field a second time.  For example, 
in Figure 1, the getItem method sets the item field to null so 
that no aliases are created to the unique value when the item is 
returned. 

In AliasJava, unique can be considered a universal source: 
unique values can be assigned to a location with any other data 
sharing annotation.  The converse is not true, as the other data 
sharing annotations do not guarantee that a value is unique.  In 
our capability model, unique is the strongest capability, since 
unique objects can be assigned to a variable with any other alias 
annotation. 

Owned.  Figure 2 shows two classes modeling points and 
rectangles.  The rectangle class represents its shape using two 

class LinkedList { 
  private unique Object item; 
  private unique LinkedList next; 
 
  public LinkedList(unique Object o, 
       unique LinkedList n) { 
    item = o; next = n; 
  } 
  public unique Object getItem() { 
    unique Object temp = item; 
    item = null; 
    return temp; 
  } 
  public unique LinkedList getNext() { 
    unique LinkedList tempNext = next; 
    next = null; 
    return tempNext; 
  } 
} 
 
unique LinkedList list = 
     new LinkedList(new Object(), null); 
list=new LinkedList(new Object(), list); 
unique Object o = list.getItem(); 
list = list.getNext(); 
 

Figure 1.   A linked list class with unique links and items 

class Point { 
  int x; int y; 
  Point(int x, int y) { this.x = x; this.y = y; } 
} 
 
class Rectangle { 
  private owned Point upperLeft; 
  private owned Point lowerRight; 
 
  public Rectangle(unique Point ul, 
                   unique Point lr) { 
    // ensure Rectangle has non-negative area 
    if (ul.x > lr.x || ul.y > lr.y) 
      throw new IllegalArgumentException(); 
    upperLeft = ul; 
    lowerRight = lr; 
  } 
  public unique Point getUpperLeft() { 
    return new Point(upperLeft.x, upperLeft.y); 
  } 
} 
 

Figure 2.   A Point class and a Rectangle class that stores 
its size as a pair of points. 

312



points, one for the upper-left corner of the rectangle and one for 
the lower-right corner. 

A class like Rectangle may need to maintain invariants over its 
state; for example, the code in Figure 2 ensures that the rectangle 
does not have a negative size, i.e. the upper left-hand point is not 
below or to the right of the other point. 

Maintaining these invariants depends on the lack of external 
aliases to the Point objects that are part of the rectangle’s 
representation.  It is not sufficient to make the Point fields 
private, because aliases to the internal representation could 
still be exposed.  For example, a naïve implementation of the 
getUpperLeft method could expose Rectangle’s 
representation by returning the internal Point object rather than 
a copy.  The invariants of Rectangle could also be violated if 
two rectangles accidentally shared the same Point objects. 

Our owned annotation describes a reference that is confined to 
the scope of the enclosing object, unless that object explicitly 
gives another object permission to access it.  This allows the 
implementer of Rectangle to rely on the fact that external 
objects can only change or see changes to its representation 

through the rectangle’s interface.  Owned references may only 
flow to owned variables within the scope of the owning object.  
If, for example, the getUpperLeft method returned an alias to 
the internal point, the compiler would flag the error as a violation 
of encapsulation. 

Ownership parameters.  In our capability model, owned 
represents a capability that every object has to access its own 
representation.  However, an object may need to structure its 
representation by putting some of its objects into a container that 
is also part of its representation.  In this case, we can pass owned 
as an alias parameter to the container class, granting that class the 
capability to reference the element data that are owned by another 
object.  Our system also includes ownership parameterization for 
methods; an example is shown in section 5.1. 

For example, Figure 3 shows a StackClient class that uses a 
Stack to hold integers that are part of its representation.  When 
the StackClient creates a Stack, it passes the owned 
capability as the Stack’s parameter to give the Stack 
permission to access the objects owned by StackClient.  The 
code in run shows that Integers owned by the 
StackClient can be pushed onto and popped off the stack. 

The stack uses a linked list to store its elements.  References to the 
links in the list should be confined to enclosing Stack object, 
and so the head of the list (that is, the top of the stack) is 
annotated owned.  Since the linked list is a recursive data 
structure, each link is parameterized with a capability to access 
not only the elements of the list (owned by the StackClient in 
this example), but also the other links in the list (owned by the 
Stack).  Therefore, the Stack passes the owned capability as 
the second parameter of the links in the linked list. 

Shared.  Figure 4 illustrates the Singleton design pattern 
[GHJ+94], used to create a single instance of an object that is 
used throughout an application.  Singleton objects are intended to 
be shared throughout a program, and thus cannot be confined by 
an owning object.  We give references to such objects a shared 
annotation, representing the fact that these objects may be shared 
globally.  Unfortunately, little reasoning can be done about 
shared references, except that they may not alias non-shared 
references.  However, shared references are essential for 
interoperating with existing run-time libraries, legacy code, and 
static fields, all of which may refer to aliases that are not confined 
to the scope of any object instance. 

public class StackClient { 
  unique Stack<owned> st=new Stack<owned>(); 
 
  public void run() { 
    owned Integer i = new Integer(5); 
    st.push(i); 
    owned Integer i2 = (Integer) st.pop(); 
  } 
} 
 
public class Stack<element> { 
  private owned Link<element, owned> top; 
 
  public element Object pop() { 
    if (top == null) 
      return null; 
    owned Link<element, owned> temp = top; 
    top = top.next(); 
    return temp.member(); 
  } 
  public void push(element Object o) { 
    top = new Link<element, owned>(o,top); 
  } 
} 
 
public class Link<element, link> { 
  private link Link<element, link> nxt; 
  private element Object obj; 
 
  public Link(element Object _obj, 
              link Link<element, link> _nxt) { 
    obj = _obj; nxt = _nxt; 
  } 
  public element Object member() { 
    return obj; 
  } 
  public link Link<element, link> next() { 
    return nxt; 
  } 
} 
 

Figure 3.   A Stack class parameterized by the owner of its 
elements, a Link class used in the stack’s representation, and 
a client of the stack. 

class Singleton { 
  private static shared Singleton val 

= new Singleton(); 
 
  public static shared Singleton get() { 
    return val; 
  } 
  public void doSomething() { 
    // application specific code 
  } 
} 
 
shared Singleton s = Singleton.get(); 
s.doSomething(); 
 

Figure 4.   A shared Singleton object 
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Lent.  Figure 5 shows a method that could be part of the 
LinkedList class from Figure 1.  This method checks if an 
integer is stored in a linked list that is made up of unique 
LinkedList and Integer objects.  This would be difficult to 
express with the annotations presented so far, because 
contains would have to destroy the linked list while traversing 
it in order to avoid creating aliases to the links and elements in the 
list.  Instead, the method uses the lent annotation to create 
temporary aliases to the unique objects in the list.  These aliases 
must be destroyed when the contains method returns, so that 
the uniqueness of the linked list is preserved across calls to 
contains. 

As shown in this example, unique objects can be passed as 
lent parameters to methods; the called method can pass on the 
object as a lent parameter to other methods, but cannot return it 
or store it in any field.  Thus, the lent annotation preserves all 
the reasoning about the unique object, but adds a large measure of 
practical expressiveness.  The lent type can also be used to 
temporarily pass an owned object to an external method for the 
duration of a method call, without any risk that the outside 
component might keep a reference to that object.  Therefore, 
lent can be considered a universal sink: values with any alias 
type annotation may be assigned to a lent location.  The 
converse is prohibited: lent values may only be assigned to 
other lent locations.  Lent can be thought of a restricted 
capability that can be used to access an object, but cannot be used 
to store the object in a field.  Lent is the default annotation for 
method arguments and local variables, and may be omitted. 

Other annotations.  In designing our annotation system, we 
chose to focus on precisely specifying the aliasing relationships 
between objects in the system.  Using this criterion, we decided 
not to include a few annotations that are used in some of the 
related work.  Although package-based confinement [BV99] 
provides a middle ground between our shared and owned 
annotations, we chose not to include it because object ownership 
is a stronger property and we wanted to keep the system simple.  
Read-only annotations [NVP98,MP99,BNR01,BR01] can also 
express useful invariants about a system, but they are not aliasing 
properties and so were not included in our design.  These 
annotations could probably be added to our system in a natural 
and orthogonal way. 

Summary.  Table 1 shows the constraints that our type 
annotations place on value flow.  The various annotations are 
listed along the left side and the top of the table.  An X indicates 
that data can flow from a location with the annotation on the left 
to a location with an annotation above.  The table shows clearly 
that unique is a universal source (any variable can be assigned a 

unique value), and that lent is a universal sink (lent 
variables can be assigned a value with any type annotation).  The 
other type annotations must be kept separate from each other. 

2.2. Properties 
AliasJava ensures uniqueness and ownership invariants that 
restrict the aliasing patterns that can occur during program 
execution.  Section 3 proves these invariants for a subset of 
AliasJava.  Our uniqueness invariant states the obvious fact that 
variables and fields with the unique annotation hold unique 
references. 

Uniqueness Invariant:  At a particular point in dynamic 
program execution, if a variable or field that refers to an 
object o is annotated unique, then no other field in the 
program refers to o, and all other local variables that 
refer to o are annotated lent. 

Our ownership invariant states that ownership annotations are 
consistent across program variables and across program 
execution. 

Ownership Invariant:  At a particular point in dynamic 
program execution, if a variable or field referring to 
object o has an ownership annotation denoting object 
o’, then all other variables or fields that refer to o at any 
subsequent point in dynamic program execution, are 
either annotated lent or have an ownership annotation 
denoting the same owner o’. 

Another way to state the ownership invariant is that each non-
unique, non-shared object is owned by exactly one other 
object.  Only an object’s owner, and the objects that the owner has 
delegated a capability to, may store a reference to that object.  An 
object delegates a capability to access its owned representation 
by creating a new object and passing owned as one of the new 
object’s alias parameters, or by calling a method and passing 
owned as an alias parameter.  Because capabilities can only be 
transferred using the static type parameterization mechanism, 
AliasJava supports static, source-level human and automated 
reasoning about which references might alias an owned object. 

2.3. Java Integration 
The Java language has several features that present challenges for 
an alias control system.  We discuss how AliasJava handles of a 
number of these features below. 

Subtyping.  We extend Java’s declared subtyping relation with 
our type annotations.  When a class is defined, it must provide 
values for the alias parameters of the classes and interfaces it 
extends and implements; these values can be any of the alias 
parameters of the subclass.  For example, a class declaration 

Table 1.   Value flow between alias annotations 

To  

unique owned  shared lent 

unique X X X X X 

owned  X   X 

   X   

shared    X X 

F
r
o
m
 

lent     X 

 

boolean contains(lent LinkedList head, int i) { 
  for (lent LinkedList list = head; list != null; 
       list = list.next) { 
    lent Integer item = (Integer) list.item; 
    if (item.intValue() == i) 
      return true; 
  } 
  return false; 
} 
 

Figure 5.   A method that uses a lent reference to traverse a 
linked list looking for an integer 
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might look like: ������ �� � � 	� 
��
��� �� � 	�
����
�
����� 	.  When a method or field is overridden, the 
overriding member must declare its parameters and return value 
with annotations that exactly match the overridden member, under 
the alias parameter mapping induced by the inheritance 
declarations. 

This.  Since the current object this is an implicit argument to all 
instance methods, its type annotation must be specified.  This is 
done with an annotation that comes immediately after the 
argument list.  This type may be one of shared, unique, 
lent, or an ownership parameter.  Use of this within the 
method must be consistent with its annotation, and at method 
calls, the receiver is treated as another parameter that must follow 
the rules for the this alias annotation.  Because the vast majority 
of methods and constructors have a lent annotation for this, 
lent is the default in our system and need not be explicitly 
specified. 

Constructors.  Like methods, constructors must specify an alias 
annotation for this.  Semantically, we treat a new statement as 
an allocation of a unique object followed by a method call to 
the constructor for initialization.  If the constructor’s this 
annotation is lent, the allocated object will remain unique; if 
the constructor’s this annotation is shared, the allocated 
object will be shared, etc.  Thus, the alias annotation of a newly 
allocated and constructed object will only be unique in the 
common case where the constructor’s this annotation is lent. 

Inner Classes.  Inner classes implicitly import the parameters of 
their surrounding class.  The inner class can have its own 
additional parameters, if necessary.  Thus, the qualified type of an 
inner class is of the form 
������
�������������� �	��
������� �	.  An 
inner class can refer to the owned references of the enclosing 
class.  These values have the type annotation 
EnclosingClassName.owned, while the owned values of 
the inner class have the annotation owned.  Anonymous classes 
defined within a function may not access unique or lent local 
variables from the function’s scope, because such accesses could 
create internal persistent references stored in the inner class 
object, which may violate the type system’s invariants. 

These special rules do not apply to static classes defined 
within another class.  Such classes do not have an implicit pointer 
to an object of the enclosing class, and so they follow the same 
rules as ordinary classes, with no special access to their enclosing 
class. 

Static Fields.  Static fields are not associated with any particular 
object instance, and so they cannot be declared with an owned or 

 type annotation (also recall that no field may have a lent 
annotation).  Static fields can be unique if they are read and 
written in a way consistent with the unique annotation. 

Arrays.  An array must be given an alias type for each array 
dimension.  The alias type of the array itself is given by the 
overall modifier for the array type, while the modifier for each 
dimension of the array is nested in the corresponding brackets.  
For example, the variable declaration unique 
������ 	�owned�� ������� refers to a unique array of 
owned arrays of  stacks that hold objects of alias type .  An 

array dereference of the form array[0] would have type 
owned������� 	� �. 

Concurrency.  Concurrency is largely orthogonal to this work.  
However, in the presence of concurrency, access to unique fields 
must be synchronized to prevent two threads from reading a 
unique variable simultaneously, creating two aliases of a 
supposedly unique value.  We can guarantee uniqueness in the 
presence of concurrency by ensuring that a unique value can 
flow from an object field into another non-lent location only 
within a block of code synchronized on the object whose field is 
being dereferenced (or the field’s declaring class, in the case of 
static fields).  The field that was read must also be set to another 
value before the end of the synchronization block. 

Casts. Because a class may extend a class that has fewer 
parameters, alias parameters may be hidden by subsumption.  
Thus the programmer may have a variable o of type Object, 
which has no alias parameters, but may want to cast it down to a 
List type that does have parameters with the expression 
(List<owned>)o.  In order to preserve soundness, the runtime 
system must check both that object o is of type List, and also 
that the List’s alias parameter is owned. 

In our implementation, each parameterized class stores the actual 
owner object for each of its parameters.  Note that we do not need 
to store the owner of each object in the system; our system incurs 
a small space overhead only for objects that are parameterized.  
This run-time information is assigned at object-creation time.  
When a parameter is bound to owned, the creating object this 
is recorded to show which object corresponds to the formal 
parameter.  When a class is created with a parameter , the run-
time owner for the corresponding parameter of the creating object 
is used to discover which object corresponds to the parameter.  
This run-time parameter information is also passed to methods 
that have alias parameters. 

When an object is cast to a parameterized type, the run-time 
owner for each of its parameters is checked against the 
corresponding owner specified in the cast, and an 
AliasCastException is thrown if the check does not 
succeed.  In this way, AliasJava supports upcasts and downcasts 
in a way that does not violate the semantics of the type 
annotations. 

The Java Standard Library.  We have chosen to implement our 
system on top of the standard Java Virtual Machine (JVM), and so 
we did not modify the bytecode of the Java standard library.  
Unfortunately, this means that Java’s reflection interfaces provide 
a way to get around the alias type system.  This could be remedied 
by replacing the existing reflection library with one that 
dynamically checks for violations of our alias type system. 

Another issue is that since we did not modify the standard library 
bytecode, our runtime system does not record run-time alias 
parameter information for parameterized classes and methods 
created and called by the standard library code.  Thus, the 
parameter information for some methods and objects will be 
missing at some run-time casts.  In our implementation, we always 
allow these casts to succeed, but a number of other choices are 
possible in principle. 

Implementation.  We have added support for AliasJava to the 
ArchJava compiler, which is publicly available at the ArchJava 

315



website [Arc02].  Our implementation is based on the Barat 
compiler infrastructure [BS98]. 

2.4. Examples 
In this subsection, we present a number of examples that 
demonstrate the expressiveness of our annotation system. 

2.4.1. Iterators 
Iterators are a challenge to many alias control systems.  Figure 6 
shows how a List class can be defined to return an Iterator 
object that can access its internal representation (the links in the 
list) without exposing that representation to clients.  When the 
List class creates a ListIter, it instantiates the second alias 
parameter of ListIter with owned, thereby delegating a 
capability to access the list’s representation.  The ListIter is 
then returned as an object of type Iterator, which hides access 
to the links in the list.  Clients of the Iterator cannot access 
these links through the Iterator interface, nor can they cast the 
Iterator to ListIter, because the List has not given them 
a capability to access its representation. 

2.4.2. Uniqueness and Ownership 
The combination of the unique annotation with ownership 
annotations is crucial to the expressiveness of our annotation 
system; it allows us to express important idioms that neither class 
of annotation system could alone.  For example, the Lexer class 
in Figure 7 accepts an input stream that becomes part of its 
representation.  The implementation of the Lexer relies on the 
state of the InputStream, and therefore the specification of 
Lexer should require that external clients do not modify the state 
of the stream after passing it to the lexer. 

In AliasJava, the InputStream argument to Lexer’s 
constructor is unique, forcing the client to give up its other non-
lent references to the stream.  The InputStream is then 
captured into the lexer as an owned reference, ensuring that 
persistent aliases to the stream cannot escape the lexer’s scope. 

2.4.3. Architectural Styles 
We have developed ArchJava, an extension to Java that enables 
developers to express the software architecture of large object-

oriented software systems [ACN02a].  The initial version of 
ArchJava specified only control flow between architectural 
components; communication though data sharing remained 
unspecified, reducing the value of the architectural specifications.  
Our alias annotation system allows us to extend ArchJava 
architectures to include a specification of data sharing between 
components.  In this subsection, we show how alias annotations 
can express important invariants of two common architectural 
styles discussed by Garlan and Shaw [GS93]. 

Pipe and Filter Architectures.  Figure 8 shows a pipe and filter 
architecture, in which the architectural components are filters that 
accept a stream of data along an input pipe and produce a new 
stream of data along an output pipe.  The example shows two 
component classes, which are used to define architectural 
structure in the ArchJava language.  The components 
communicate with each other through ports.  For example, the 
Filter component below accepts data on its input port, 
processes the data, and sends the new data out its output port.  In 
addition to ordinary methods, ports may have requires methods 
that represent the interface of a connected component. 

In this example, the Filter invokes the accept method on its 
output port, which will result in invoking the accept method of 
the filter at the other end of the pipe.  The PipeAndFilter 
component class defines an architecture by declaring a set of final 
fields that hold its subcomponents, and connecting the ports of 
these components with connections.  Connections bind the 
requires methods in the port of one component to the methods of 
the same name implemented in the port of another component. 

An important invariant of this architectural style is that the filters 
do not share state; they communicate only through the pipes 
connecting them.  The alias annotations in the system express and 
enforce this invariant.  Because the Source, Filter, and Sink 
components have no alias parameters, they cannot directly share 
any data.1  The unique annotations in the ports express the 
invariant that when a data structure is passed from one filter to 
another, the first filter gives up all references to the data. 

This example also shows the practical importance of combining 
uniqueness and ownership in our annotation system.  The data 

                                                                 
1 We are ignoring shared annotations, but widespread use of 

these is poor practice and could be flagged by the compiler. 

public class Lexer { 
  owned InputStream stream; 
  Lexer(unique InputStream s) { 
    stream = s; 
  } 
  unique Token getToken() { ... } 
} 
 
void lexerClient() { 
  unique InputStream stream = 
                  new FileInputStream(file); 
  unique Lexer l = new Lexer(stream); 
  l.getToken(); 
} 
 

Figure 7.   A Lexer class that uses an InputStream as part 
of its representation.  The InputStream is passed to the 
constructor as a unique reference. 

 

interface Iterator<element> { 
  element Object next(); 
} 
 
public class List<element> { 
  private owned Link<element, owned> front; 
  void add(element Object e) { ... } 
  unique Iterator<element> iterator() { 
    return new ListIter<element,owned>(front); 
  } 
} 
 
class ListIter<element, link> 
      implements Iterator<element> { 
  private link Link<element, link> cur; 
  public element Object next() { 
    element Object e = cur.o; 
    cur = cur.next; 
    return e; 
  } 
} 
 

Figure 6.   A List class and an iterator over the list 
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passed between components might not be a simple object, but 
could be a complex data structure that includes multiple internal 
objects with nontrivial internal aliasing patterns.  A type system 
with only uniqueness could express passing a unique reference to 
a data structure between components, but could not express the 
constraint that aliasing is allowed within the data structure but not 
beyond it.  Similarly, a system with only object ownership could 
express the limited scope of aliasing within the passed data 
structure, but could not express the architectural invariant that the 
first component does not retain any references to the data 
structure. 

Blackboard Architectures.  Figure 9 shows a blackboard 
architectural style, where computational components surround a 
central data store.  The components in a blackboard architecture 
communicate exclusively by modifying shared state in the data 
store.  Component actions are triggered by changes to the data 
store made by other components. 

In the Architecture component class, the connections show 
the control flow between the computational components and the 
data store.  These control-flow connections specify that 
components m1 and m2 do not call each other’s methods directly, 
but instead communicate only through method calls to the store—
and this specification is verified by ArchJava’s type system 
[ACN02b].  The alias annotations, in turn, describe the data 
sharing relationships between the components.  A glance at the 
Architecture code shows that the store, m1, and m2 
components all share the same alias parameter. 

The interface of the data store shows in more detail how data 
structures are shared between different parts of the architecture.  
In its data port, the data store defines a requires method that 
it calls to notify clients whenever data has changed.  This method 
passes a change message to the computational components; this 
message is lent, indicating that the clients may not store 
persistent references to it. 

The data store also implements two methods allowing clients to 
get data and to update the store.  Here, the specification of what 
data is requested is a lent parameter of getData, but the 
returned data is annotated with the data_owner parameter, 

indicating that it is shared persistently between different 
components in the architecture. 

2.5. Reasoning about Data Sharing 
One criterion for evaluating the alias annotation system is, does it 
help in reasoning about data sharing?  In this subsection, we 
consider the reasoning benefits of our alias annotation system by 
discussing how the annotations can help programmers answer 
software maintenance questions that are difficult to answer in 
existing Java programs. 

What parts of the program might be affected by a change to a 
data structure?  This question often comes up when the system 
must be evolved to meet changing requirements.  In general, 
answering it requires identifying all parts of the program that 
could refer to the changed data.  Confronting this task by tracing 
through the program manually is tedious and error-prone. 

Our alias annotations can give concrete aid in answering this 
question.  If the reference to the modified data is unique, only 
the parts of the program to which the unique reference flows can 
be affected.  If the reference to the modified data is owned, the 
scope of the change is limited to the current object and its 
delegates, while a reference annotated with an alias parameter 
indicates the need to look in the enclosing object to understand 
sharing patterns.  A lent reference indicates that the current data 
structure is part of a different object’s representation, and it 
suggests that the caller and callee need to agree on a contract that 
specifies any intended modifications to the data.  References with 
a shared annotation are as challenging to reason about as 
ordinary Java references, but we hope these references will be rare 
in practice. 

What components might this component communicate with?  It is 
important to answer this question when making changes to a large 
software system.  The earlier ArchJava language design makes 
control flow communication between components explicit in the 
connections between components.  AliasJava’s annotations 
complement ArchJava by making communication through shared 
data explicit, as shown in Figures 8 and 9. 

How difficult would it be to distribute a system across two 
machines?  This question might be important if a system must be 
scaled beyond the resources of a single machine.  Unfortunately, 
data sharing between components poses challenges for effectively 
distributing legacy applications.  Alias annotations in the system’s 

component class Filter { 
 public port in { 
   void accept(unique Data d) { 
     // process data and send out 
     out.accept(process(d)); 
   } 
 } 
 public port out { 
   requires void accept(unique Data d); 
 } 
 private unique Data process(unique Data d) {...} 
} 
 
public component class PipeAndFilter { 
  private final owned Source source = ...; 
  private final owned Filter filter = ...; 
  private final owned Sink sink = ...; 
  connect source.out, filter.in; 
  connect filter.out, sink.in; 
} 
 
Figure 8.   A pipe and filter architecture implemented in 
ArchJava with alias annotations. 

 

public component class Architecture { 
  private final owned Blackboard<owned>store=...; 
  private final owned Module1<owned> m1 = ...; 
  private final owned Module2<owned> m2 = ...; 
  connect m1.data, store.data; 
  connect m2.data, store.data; 
} 
 
public component class Blackboard<data_owner> { 
  public port data { 
    requires void notify(lent Message change); 
 
    data_owner Data getData(lent Spec spec); 
    void update(data_owner Data d); 
  } 
} 
 

Figure 9.   A blackboard architecture expressed in ArchJava 
with alias annotations. 
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architecture can help programmers to anticipate the issues likely 
to come up when distributing a program across multiple machines.  
For example, if objects annotated lent or unique are passed 
between components that will be distributed across a network, the 
objects can probably be passed by value between the two 
distributed components.  On the other hand, if the alias 
annotations in the architecture indicate persistent sharing between 
components that will be distributed, either a solution using remote 
object references or extensive refactoring of the source code will 
be necessary. 

3. Formalization 
We would like to use formal techniques to prove that the type 
system is safe, and preserves the intended aliasing invariants.  A 
standard technique, exemplified by Featherweight Java [IPW99], 
is to formalize a core language that captures the key typing issues 
while ignoring complicating language details.  We have 
formalized AliasJava as AliasFJ, a core language based on 
Featherweight Java (FJ). 

3.1. AliasFJ 
Syntax.  Figure 10 presents the syntax of AliasFJ.  The 
metavariables C, D and E range over class names; A ranges over 
alias annotations; p and q range over actual alias parameters;  
and  range over formal alias parameters; T and U range over 
types; f and g range over fields; v ranges over values; e ranges 
over expressions; � ranges over locations; S ranges over stores; 
and M ranges over methods.  As a shorthand, we use an overbar to 
represent a sequence.  We assume a fixed class table CT mapping 

classes to their definitions.  A program, then, is a pair (CT, e) of 
a class table and an expression. 

As in Featherweight Java, AliasFJ omits interfaces, inner classes, 
and some statement and expression forms.  AliasFJ does not have 
static fields, so we omit the shared alias type, which can be 
considered a special case of parameterization where the owning 
object is the entire program.  These changes make our type 
soundness proof shorter, but do not materially affect it otherwise. 

AliasFJ extends Featherweight Java in several ways.  Classes are 
parameterized by a list of alias annotations, and extend another 
class that has a subsequence of its alias parameters.  Because we 
want to reason about aliasing, we add mutable fields and field 
assignment to FJ.  Therefore, a store S maps locations � to their 
contents: the class of the object and the values stored in its fields.  
We will write S[�] to denote the store entry for �, and S[�,i] to 
denote the value in the ith field of S[�].  Functional store updates 
are abbreviated S[�→C< l >( v )].  The store also holds the 
actual alias parameters for each location, in order to check run-
time casts properly. 

Classes define a set of fields f and methods M .  Expressions 
include variables, object creation expressions, field reads and 
writes, casts, and method calls.  We also include an error 
expression, representing failed casts and null dereferences. 

In the compiler for the full language, a live variable analysis 
identifies the last use of unique variables automatically.  AliasFJ 
models the results of this analysis explicitly by marking a single 
unique read of a variable with a unique tag.  Similarly, the 
compiler for the full language performs an analysis to determine 
that unique fields are overwritten immediately after being read.  
Instead of modeling this analysis formally, AliasFJ provides a 
destructive read operation (again, identified by the unique tag) 
that overwrites the field with null after every read. 

Values represent irreducible computational results, and include 
locations in the store and a distinguished null location.  
Different references to the same location in the program may have 
different alias annotations; for example, there might be some 
references to a location annotated lent and others annotated 
unique.  Therefore, values within expressions are tagged with an 
alias annotation A. 

Types.  Ordinary types consist of an alias annotation A and a class 
name parameterized with annotations p.  We also include types 
representing NULL and ERROR.  Annotations may be lent, 
unique, owned, or a parameter p.  Actual alias parameters in 
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Figure 11.  Subtyping Rules 

CL ::= class C< , β > extends D< > { T  f ; M } 
 
M ::= T m( T  x ) T { return e; } 
 
e ::= x 
 |   new C< >() 
 |   e.f 
 |   e.f = e, e 
 |   (T)e 
 |   e.m(e ) 
 |   error 
 |   unique(x) 
 |   unique(e.f) 

|   A(v) 
 

v ::= null 
 |   l 
 
T ::= A C< p > 
 |   NULL 
 |   ERROR 
 
A, B ::= lent | unique | p 
p, q ::= owned | �_�l 
 
S ::= l Å C< l >( v ) 
 ::= x Å T 

Σ ::= l Å T 
 
l ∈ Locations 
�  ∈ Parameters 
 

Figure 10.  AliasFJ Syntax 
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the source text must be parameters  of the enclosing class, or 
owned.  However, during reduction, these parameters may be 
replaced with locations �, indicating the object that corresponds to 
that actual alias parameter.  Thus, we include locations in the type 
syntax so that we can give alias types to expressions in an 
executing program. 

Subtyping Rules.  AliasFJ’s subtyping rules are given in Figure 
11.  Class subtyping is defined by the reflexive, transitive closure 
of the immediate subclass relation given by the extends clauses 
in CT.  We require that there are no cycles in the induced subtype 
relation.  The subtyping relationship between ordinary types 
follows that of classes.  The rule encodes the alias annotation 
semantics where unique is a subtype of any other annotation, 
lent is a supertype of any other annotation, and all other 
annotations must match exactly.  Also, the alias parameters of the 
supertype must be a subsequence of the subtype’s parameters.  
Finally, any expression can have an error or null 
subexpression, and so ERROR and NULL are subtypes of all other 
types.   

Evaluation Rules.  The evaluation relation, defined by the 
reduction rules in Figure 12, has the form S � e → e’,S’, read 
“In the context of store S, expression e reduces to expression e’ 
in one step, producing the new store S’.”  We write →* for the 
reflexive, transitive closure of →.  Most of the rules are standard; 
the interesting features are how they manipulate the alias type 
system.  The R-NEW rule reduces a new expression into a unique 
reference to a fresh location.  The store is extended at that location 

to refer to a class with the same type and alias parameters, with all 
null fields. 

There are two rules for field reads.  The R-READ rule applies to 
normal reads of a field fi; it looks up the receiver in the store, 
identifies the ith field.  The result is the value at field position i in 
the store.  The rule derives the annotation for the resulting value 
from the alias annotation from the type of the ith field of the 
receiver.  Because this is not a unique field read, if the field was 
annotated with unique then the resulting value will be annotated 
with lent.  We denote this substitution with 
[lent/unique]A, meaning that all occurrences of unique in 
A are replaced with lent.  Similarly, if the field was annotated 
with owned, the dynamic owner of that field is the actual receiver 
�, and so we replace any owned annotations with �. 

The R-UNIQUEREAD rule is similar, but applies to unique reads.  
Here, the result is always a value with a unique annotation, but 
the value of the field that was read is updated to null in the 
store.  This reflects the “destructive read” semantics, which 
models our user-level language’s requirement that unique fields 
be updated after unique reads. 

The R-WRITE rule is straightforward, updating the ith field of the 
receiver object with the value written to field fi.  As in Java, the 
R-CAST rule checks that the cast expression is a subtype of the 
cast type.  Note, however, that in AliasFJ this check also verifies 
that the alias parameters match, doing an extra run-time check that 
is not present in Java. 

The invocation rule uses the mbody helper function (defined in 
Figure 15) to determine the correct method body to invoke.  The 
method invocation is replaced with the appropriate method body.  
Several substitutions are made into the body to reflect the method 
argument and receiver values.  First of all, any occurrences of 
formal alias parameters  of the enclosing class are replaced with 
the actual alias parameters � of the receiver value.  Second, the 
formal parameters of the method x as well as the variable this 
are replaced with the actual values passed in.  This substitution 
involves some subtlety, however, because if one of the parameters 
is annotated unique, it would not be sound to replace all 
occurrences of that parameter with the unique value.  Instead, 
only the unique read of the parameter is replaced with the 
unchanged argument value; the other non-unique reads are 
replaced with a modified argument value where unique 
annotations have been replaced with lent. 

The full semantics of the language include error rules representing 
casts that fail and null pointer dereferences.  A set of congruence 
rules (such as if e�e’ then e.f�e’.f) allows reduction to 
proceed in the order of evaluation defined by Java.  We omit the 
congruence and error rules here, but they can be found in a 
companion technical report [AKC02]. 

Typing Rules.  Typing judgments, shown in Figure 13, are of the 
form Te :,  --lΣΓ , ����� ���� 	
�� 	���� ���������	� � ���� �	����
typing Σ, expression e has type T.”  The T-VAR and T-UVAR 

������ ����� ��� 	
�� 	���� ��� �� �������� ��� �� ���������� unique 
annotations with lent if the expression is not a unique variable 
read.  Similarly, the T-LOC rule looks up the type of a location in 
Σ, leaving its annotation as expressed in the source text. 

There are also two typing rules for field reads—the normal rule, 
which replaces unique annotations with lent, and the unique 
read rule, which leaves unique annotations unchanged.  The 
rules for field read, field write, and method invocation verify that 
an owned value can only be accessed through the receiver this 
in the source text (naturally, reduction can replace this with a 
location). 
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Several of the typing rules use the auxiliary function inst (defined 
in Figure 15), which uses the type of the receiver of a method 
invocation or field access to convert the formal annotation 
variables referenced in the method or field type to the actual 
annotation variables used at the call site. 

We have made one significant simplification relative to FJ.  We 
do not distinguish between upcasts, downcasts, and so-called 
“stupid casts” which cast one type to an unrelated one.  This 
means that our type system does not check for “stupid casts” in 
the original typing derivation, as Java’s type system does.  
However, the change shortens our presentation and proofs 
considerably, and the stupid casts technique from FJ can be easily 
applied to our system to get the same checks that are present in 
Java. 

Store Typing.  Figure 14 shows the rules for well-formed classes, 
methods, and stores in AliasFJ.  Class and method typing rules 
check for well-formed class definitions, and have the form “class 
declaration E is OK,” and “method m is OK in E.”  The rules for 
class and method typing are similar to those in FJ.  Rule T-CLASS 

ensures that subclasses can only extend the list of annotation 
parameters from their superclasses, and verifies that lent does 
not appear in field types.  Rule T-METH performs several checks.  
It ensures that the body is well typed in the environment that 
assumes the method arguments have their declared types, and an 
empty store.  The rule also verifies that there is at most one unique 
read of each method argument (including this).  Finally, the 
override auxiliary function verifies that each overriding method 
have the same type signature as the overridden method. 

The store typing rules ensure that the form of the store is 
consistent with the Java’s typing rules.  The two clauses of the 
store typing rule are the usual well-formedness rules, requiring the 
store type Σ to type every location in S, and verifying that the 
types of objects in a field are compatible with the field’s type 
using the auxiliary rule T-STORELOC.  The last rule defines the 
annotation convenience function, which is used in stating the 
properties of the alias annotation system. 

Auxiliary Definitions.  Most of the auxiliary definitions shown in 
Figure 15 are straightforward and are derived from FJ.  The field 
lookup rule returns the list of fields in a given class, along with 
their types.  AliasFJ follows Java’s lookup rules for method types 
and method bodies.  The inst function accepts a type in a method 
or field signature as well as the type of the receiver of a method or 
field access, and converts the first type from its original scope to 
the scope of the method or field access.  It does this by simply 
replacing the formal alias parameters in the signature type with 
the corresponding actual alias parameters in the receiver type.  
Finally, the last rule checks that overriding methods have the 
same type signatures as the methods they override, except that the 
class of this may differ. 
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3.2. Type Soundness 
We can show the type soundness of AliasFJ through two standard 
theorems, subject reduction and progress.  Type soundness 
implies that the language’s type system is well behaved.  In a 
type-safe language like Java, well-typed programs won’t halt with 
errors other than failed casts and null-pointer exceptions.  We 
state the theorems here, leaving the proofs to a companion 
technical report [AKC02]. 

Theorem [Subject Reduction]:  If Te :,  --lΣΓ , S , --lΣΓ  and 
S,ee S ′′→--l , then T:T <′Σ⊇Σ′∃ ,  such that Te ′′Σ′Γ :,  --l  and 

S , ′Σ′Γ --l . 

Subject reduction is proved by induction on the derivation of 
S,ee S ′′→--l , with a case analysis on the last reduction rule 

used.  A term substitution lemma is useful for the method 

invocation case.  This lemma states that substituting terms in a 
well-typed expression preserves the typing. � 

Theorem [Progress]:  If Te :,  --lΣ∅ , then either e is an 
irreducible value, contains an error subexpression, or else ∀S 
such that S , --lΣ∅ , S,ee S ′′→--l . 

The proof is by induction on the derivation of Te ∈Σ∅  --l, , with 
a case analysis on the last typing rule used. � 

3.3. Properties 
Type soundness is important, but we would also like to show that 
our system has well-defined properties that allow programmers to 
reason effectively about aliasing relationships.  The first theorem 
gives the meaning of uniqueness: a unique annotation on a 
reference implies that no other heap references refer to that 
location. 

Theorem [Uniqueness]:  If Te :,  --l∅∅  and S,ee ′′→∅ *--l , 
then for all � such that � occurs in S’ or e’ with annotation 
unique, all other occurrences of � in S’ or e’ have annotation 
lent. 

Formally, we say that � occurs in S with annotation A if there 
exists some �’, i such that S[�’,i] = � and annotation(S,�’,i)=A.  
We say that � occurs in e with annotation A if A(�) is a 
subexpression of e.  Different occurrences are distinguished in the 
obvious way—by a pair (�’,i) for stores, and by textual location 
for expressions. 

The proof is by induction on the derivation of S,ee ′′→∅ *--l , 
with a case analysis on the last reduction rule used.  The crux of 
the proof is showing that the reduction rules obey three local 
properties: no duplication of unique references except with lent 
annotations, no flow from lent references to references with other 
annotations, and that whenever a unique reference flows to a 
reference with an ownership annotation, the original reference is 
dead.  The most interesting cases in the proof are method 
invocation, where the method typing rule ensures that unique 
arguments are not duplicated during method substitution, and 
unique field read, where the semantics of the rule assigns null to 
the read field. � 

We have argued in section 2.2 that ownership annotations are 
useful because they organize aliased objects into a hierarchical 
tree, and a group of objects can be persistently shared only if the 
group owner uses parameterization to delegate a capability to 
access the group.  Intuitively, an object can only refer to an object 
if it has a capability to access that object.  In order to allow this 
kind of reasoning about object ownership, we need the ownership 
annotations for an object to be consistent across the program’s 
store and execution: 

Theorem [Ownership Consistency]:  If Te :,  --l∅∅  and 

S,ee ′′→∅ *--l , then for all �,�’ such that � occurs in S’ or e’ 
with annotation �’, all other occurrences of � in S’ or e’ have 
either annotation lent or annotation �’. 

The proof is by induction on the derivation of S,ee ′′→∅ *--l , 
with a case analysis on the last reduction rule used.  The proof 
relies on the uniqueness property to show the base case: when a 
location is first given an owner, there is only one reference to that 
location.  Once this is established, it is easy to show that the rules 
preserve ownership consistency. � 

Corollary [Ownership Soundness]: If Te :,  --l∅∅ , 
S,ee ′′→∅ *--l  and S,ee S ′′′′→′′ *--l , then for all �,�’ such that � 

occurs in S’ or e’ with annotation �’, all occurrences of � in S” 
or e” have either annotation lent or annotation �’. 

The proof is similar. � 
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4. Annotation Inference 
Although AliasJava is intended to give programmers the 
flexibility to express a wide variety of data sharing idioms, there 
are practical issues that may limit its adoption.  In particular, 
adding alias annotations to existing programs and libraries may 
require significant work. 

We have addressed this issue by developing a technique for 
inferring the annotations in AliasJava.  The inference algorithm 
allows developers to easily infer the sharing relationships in 
library code or in legacy systems.  If desired, programmers can 
refine the inferred declarations in order to enforce additional 
restrictions on aliasing. 

Our inference algorithm begins by inferring lent annotations, 
since this annotation is the most general (a value with any other 
annotation can be assigned to lent) and since it can be inferred 
independently from other annotations.  We next infer unique 
annotations using an algorithm that depends only on the inferred 
lent annotations.  We infer the remaining annotations in a final 
pass. 

4.1. Inferring Lent 
We infer lent annotations with a constraint-based algorithm.  
Our algorithm assigns either lent or non-lent to each local 
variable, expression, and method parameter of reference type, and 
to the this reference for each method.  Initially, we 
optimistically assume that all annotations are lent.  We then 
assign non-lent annotations the base-case expressions that may 
not be lent: values that are returned from a method or assigned 
to a field.  We also conservatively assume that the arguments of 
native methods are non-lent. 

Next, our algorithm constructs a directed graph capturing the 
value flow between the variables and expressions in the program.  
The final annotations can be computed by traversing this graph 
backwards from all non-lent nodes, so that if an expression a 
flows to expression b, and b is non-lent, then a must be non-
lent as well.  Intuitively, this represents the constraint that a 
lent value may not be assigned to a non-lent variable.  All 
nodes in the graph that are not backwards reachable from non-
lent nodes can safely be annotated lent. 

4.2. Inferring Unique 
Our algorithm for inferring unique annotations is similar to the 
lent algorithm above.  The algorithm assigns either unique or 
non-unique to each program variable and expression.  As 
before, we optimistically assume that all annotations are unique, 
except for the arguments and results of native methods. 

We divide value flow into two cases: ordinary assignments (x = 
y), where both x and y are live after the assignment, and last 
assignments (x =last y), where y is dead after the assignment.  
We assume that live variable analysis has already annotated all 
value flows as ordinary assignment or last assignments. 

For each ordinary assignment x = y we require that x is non-
unique, since it must alias the value y that is not dead.  In 

addition, if x is not lent, then y must also be non-unique, 
since it must alias x after the assignment. 

The rule for last assignments x =last y is simple: if y is non-
unique, then x must be non-unique also.  Since y is dead 
after the assignment, if we can prove that y was unaliased before 
the assignment, we know that x is unaliased after the assignment.  
Thus, starting from the non-unique base cases generated from 
ordinary assignments and native methods, we can propagate 
non-unique forward along the directed graph formed by last 
assignments.  All remaining variables and expressions are 
unique. 

The graphs generated for both lent and unique inference are linear 
in the size of the source text, and traversing them touches each 
edge in the graph at most once.  Therefore, our algorithm for 
inferring these alias types is linear in the size of the program. 

4.3. Inferring Other Annotations 
In order to infer the remaining alias annotations, we adapt a 
constraint-based alias analysis that solves equality, component, 
and instantiation constraints over type variables.  Type inference 
with instantiation constraints was first described in an abstract 
form by Henglein [Hen93].  More recent papers describe concrete 
worklist-based algorithms, which we have adopted in our work 
[FRD00,OCa00].  The underlying problem of finding an optimal 
solution for a set of component and instantiation constraints is 
undecidable [KTU93], and we have no proof that our inference 
algorithm terminates.  However, in practice our algorithm works 
well; neither we nor others working on similar algorithms have 
ever encountered an example that causes the algorithm to loop 
[Hen93,FRD00,OCa00]. 

Our analysis is most similar to that used by O’Callahan in the 
Ajax system [OCa00].  O’Callahan’s analysis can infer 
polymorphic types for static methods only.  While our current 
analysis does not infer polymorphic types for methods, the type 
system supports them and we believe our analysis could be 
extended to infer these types for both static and instance methods.  
O’Callahan distinguishes different instances of a class based on 
their creation site, while our analysis distinguishes instances based 
on how they are used in the system.  Thus, we are able to 
distinguish different objects that are created at the same place but 
are used in different ways, but we don’t waste effort tracking 
objects that are created in different places but are used in the same 
way. 

Due to space constraints, we cannot present the full details of the 
inference algorithm, which is described in a companion technical 
report [AKC02].  Instead, we present a high-level overview of the 
algorithm in parallel with an example that illustrates many of the 
key issues.  We choose as our running example the Stack code 
in Figure 3, assuming initially that none of the alias annotations in 
that figure is present.  Our goal will be to infer the alias 
annotations given in Figure 3.  The discussion below focuses on 
the core of the inference algorithm, which infers the alias 
parameters for each class.  Later, we will describe how to 
integrate the other annotations into the constraint-based 
framework. 
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Analysis Setup.  We begin our analysis by creating a unique node 
for every variable, method argument or result, class, field, and 
expression in the program text.  This node is a type variable 
representing the alias annotation for the corresponding declaration 
or expression.  Distinct type variables indicate distinct alias 
parameters of the enclosing class. 

Figure 16(a) shows the type variables generated from Figure 3.  
For example, the code in the Stack class includes the type 
variables Stack, top, pop, temp, and o (we abbreviate the type 
variable for a method result by the method name).  To simplify the 
presentation, we ignore certain anonymous type variables 
generated from program expressions. 

Our analysis solves three different forms of constraints: equality, 
component, and instantiation, which are described in turn below. 

Equality Constraints.  When a value flows from one variable to 
another within a class, we generate an equality constraint a = b, 
indicating that the two corresponding type variables must 
represent the same alias annotation.  For example, our analysis 
generates the equality constraint top = temp due to the assignment 
temp = top in line 6 of the definition of Stack.  However, we 
do not generate equality constraints for value flow between 
variables in different classes.  For example, even though the 
method pop returns the result of calling member, we don’t 
equate the corresponding pop and member variables, because that 
would place unnecessary constraints on other parts of the program 
that use Link.member.  We use instantiation constraints 
(discussed below) to reason about value flow between classes in a 
way that treats different Link objects differently.  Figure 16(b) 
shows the equality constraints generated from Figure 3. 

In our implementation, equality constraints are solved via 
unification using a union-find data structure.  Thus, for the 
equality constraint top = temp, we choose top arbitrarily as the 
equivalence class representative, and update all references to temp 
to refer to top instead.  ≤ 

The initial equality constraints shown at the top of Figure 16 are 
clearly not sufficient for inferring correct alias types.  For 
example, the argument o of push and the return value of pop 
should have the same alias type, yet just looking at the Stack 
class is insufficient to discover this information.  Only by 
reasoning about how objects are stored within the Link class can 
we infer the correct alias types for Stack.  In our system, this 
reasoning is done with component and instantiation constraints. 

Component Constraints.  A component constraint (o �m v), read 
“v is a component of o with index m,” means that the type variable 
v represents member m of object o.  Component constraints allow 
us to keep track of the relationship between a particular stack and 
the objects and links within that stack, for example.  For each 
member m of a class C, we generate a component constraint C �m 
m.  We generalize the notion of member to any type variable 
within a class, so that component constraints are also generated 
for method arguments, results, and local variables.  Figure 16(b) 
shows the component constraints generated from Figure 3. 

Instantiation Constraints.  If C is a class, an instantiation 
constraint (C �v o), read “o is an instance of C with index v,” 
means that type variable o represents an object that is an instance 
of C that is stored in the local variable or field v.  Instantiation 
constraints allow us to treat different instances of a class 
separately; we group instances by the local variable or field that 

the instance is stored in.  Each instance will have its own copy of 
its local variables and fields in our representation—these are 
generated by the propagation rules discussed below.  For example, 
different instances of Stack can have different actual alias 
parameters, so that different stacks can hold objects with different 
owners.  For each class member m that has declared type C, we 
generate an instantiation constraint C �m m. 

Instantiation constraints are also used to reason about the 
relationship between type variables in two different classes.  For 

(a) Initial variables: 
class StackClient: StackClient, st, i, i2 
class Stack:   Stack, top, pop, temp, o 
class Link:   Link, obj, nxt, _obj, _nxt, member, next 

 
(b) Initial constraints: 

Equality: 
top = temp  obj = _obj  nxt = _nxt 
obj = member  next = nxt 
 

Component: 
StackClient �i i StackClient �i2 i2 StackClient �st st 
Stack �top top  Stack �pop pop  Stack �temp temp 
Stack �o o  Link �obj obj  Link �nxt nxt 
Link �_obj _obj Link �_nxt _nxt  Link �member member 
Link �next next 
 

Instantiation: 
Stack �st st  Link �top top  Link �temp temp 
Link �nxt nxt  Link ��nxt _nxt  Link �next next 
o �st i   pop �st i2   next �top top 
member �temp pop _obj �top o  _nxt �top top 
 

(c) After solving initial equality & uniqueness constraints: 

StackClient 

i 

st 

Stack 

top 

o 

Link 

next 

obj 

Component Constraint a > b Instantiation Constraint b ≤ a 
a b a b 

 
 
(d) Final constraint system: 

StackClient 

i 

st 

Stack 

top 

o 

Link 

obj 

st_top 

Component Constraint a > b Instantiation Constraint b ≤ a 
a b a b 

 
 
Figure 16.  Constraints generated and solved during inference 
of the alias types given in Figure 3. 
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example, the argument o of push is assigned to the _obj 
argument of the constructor of the link represented by the type 
variable top.  We encode this relationship with the instantiation 
constraint _obj �top o, indicating that o is the instance of _obj 
inside the top link.  Here, the index on the instantiation constraint 
shows how the instance is related to its parent.  Thus, for each 
member m that flows to or from a member n of another class at a 
method call or field dereference with receiver r, we generate an 
instantiation constraint n �r m.  Figure 16(b) shows the 
instantiation constraints generated from Figure 3. 

Component and Instance Uniqueness.  In the example program, 
values flow from the argument o of push to the obj field of 
top, and from the obj field of top to the result of pop.  This is 
represented by the two instantiation constraints obj �top pop and 
obj �top o (here we assume that _obj and member have already 
been unified into obj).  The index top common to both these 
constraints indicates that pop and o are the same instance of obj.  
Intuitively, pop and o should be unified, because program values 
can flow from o into obj and then back into pop.  We formalize 
this intuition with an instance uniqueness rule: 

a �b c ∧ a �b d  ⇒  c = d 

This rule ensures that two instances of the same type variable that 
have the same index will be unified.  Once pop and o are unified 
into o, i and i2 will both be instances of o with the same index st, 
and so they will be unified as well.  An analogous rule is used to 
ensure that two components of the same type variable with the 
same index are also unified: 

a �b c ∧ a �b d  ⇒  c = d 

Figure 16(c) shows the example system after solving the initial 
equality constraints and applying the uniqueness rules. 

Constraint Propagation.  If top is an instance of Link, as 
shown in Figure 16(c), then it ought to have next and obj 
components.  Furthermore, these components ought to be fresh, 
distinct from the next and obj components of any other Link.  
This motivates the component propagation rule: 

a �b c ∧ a �I d  ⇒  ∃ e . d �b e 

Applied to top, this rule states that since Link has a component 
next (Link �next next) and top is an instance of Link (Link �top top), 
then there must exist some variable top_next such that top_next is 
a component of top at index next (top �next top_next).  Intuitively, 
this new variable represents the particular “next” link in the top 
field of Stack, potentially distinct from the next link of any 
other Link. 

Now, anything we infer about next (for example, if we discover it 
is equal to some other type variable) must also apply to top_next, 
since top_next is just a specialization of next that is a component 
of the top instance of Link.  We encode this intuition with the 
constraint that top_next is an instance of next.  Then top_next will 
be a transitive instance of Link, ensuring that it will gain its own 
next and obj components.  These constraints are generated with 
the instance propagation rule: 

a �b c ∧ a �I  d ∧ d �b e  ⇒  c �I e 

The precondition for this rule is the conjunction of the 
precondition and the conclusion of the component propagation 
rule. Thus, this rule applies whenever a new component constraint 
is generated.  In the case of top_next, the rule’s conclusion simply 
states that next �top top_next. 

Avoiding Infinite Propagation.  The discussion above suggests 
that constraint propagation as presented above may never 
terminate.  For example, top is a Link, so it must have a next 
component top_next.  But, top_next is transitively a Link also, so 
with a couple of instantiation constraint propagations we discover 
that we need to create top_next_next, a next component of 
top_next.  There must be a way to stop this expansion if the 
algorithm is to terminate. 

Like O’Callahan and others, we apply the extended occurs check 
to avoid infinite constraint propagation.  The extended occurs 
check rule can be stated as follows: 

If ∃ L �i1 a1 �i2 … �iN R and ∃ L �c1 b1 �c2 … �cM R 

 then L = R 

Intuitively, this rule states that if one type variable R is both a 
transitive instance and a transitive component of another type 
variable L, then we should unify L and R to avoid infinite 
constraint propagation.  In the example, the extended occurs 
check would discover that Link �next next ∧ Link �next next.  Thus, 
our implementation generates the equality constraint next=Link, 
which eliminates the source of the loop. 

Figure 16(d) shows the final results of the constraint-based 
algorithm.  As described above, next has been unified into Link.  
Also, component propagation has resulted in two components 
each for top and st.  Due to application of the component and 
instance uniqueness rules, the components of top are itself (just as 
Link is its own component) and o, while the components of st are i 
and a new node, st_top.  Like top, of which it is an instance, 
st_top has two components, itself and i. 

The example constraint system has now reached fixpoint with 
respect to the constraint propagation and uniqueness rules.  Link 
has two components, one of which refers to another Link instance; 
these represent the alias parameters used in Figure 3.  Stack also 
has two components; one of these will turn into Stack’s alias 
parameter, and the other will turn into an owned annotation, as 
discussed below.  Finally, StackClient’s two components will 
eventually turn into owned and unique annotations. 

Integration With Other Alias Annotations.  The algorithm 
described above can infer alias parameters for each class in the 
system.  However, some of the type variables in the example 
should actually be given a non-parameter alias type.  For example, 
temp and i2 could be annotated lent, and st and i could be 
annotated unique. 

We integrate alias parameter inference with inference of other 
alias annotations by storing a boolean flag in each node for each 
possible non-parameter annotation: lent, unique, owned, and 
shared.  Below, we discuss how each flag is initialized and 
propagated as type inference proceeds, and how a final alias 
annotation is computed from the flags at the end. 

The owned flag is initialized to true for each variable that is non-
public and is never accessed on a receiver other than this.  
These constraints are the two base-case semantic requirements for 
owned methods and fields.  When two nodes are merged, the 
resulting node is owned only if both of the merged nodes were 
owned. 

The shared flag is initialized to true for each static field and 
each argument and result of a static or native method, as 
these are the base cases for shared annotations.  Whenever a 
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shared node is merged with an unshared one, the resulting node is 
shared.  Furthermore, whenever a component constraint is 
introduced, if the parent node is shared, then the component node 
must be marked shared as well—otherwise, there would be no 
way to express its alias annotation in the final system.  

The lent and unique flags are initialized with the result of lent and 
unique inference, as described above.  Lent and unique flags are 
not modified or propagated during constraint solution. 

Final Alias Annotations.  The final alias annotations are assigned 
from the constraint graph so as to make the annotations as precise 
and flexible as possible.  Since lent is the most general 
annotation, all declarations whose node has a lent flag equal to 
true are given a lent annotation.  Unique is the most precise 
possible annotation for the remaining declarations, so every 
remaining declaration whose node has a true unique flag is 
annotated unique.  In order to be sound, we must next make 
every unmarked declaration whose equivalence class 
representative (ECR) node has a true shared flag shared.  Next, 
we mark the remaining declarations as owned based on their 
ECR nodes’ owned flags.  All remaining declarations must be 
marked with an alias parameter of the enclosing class; for each 
class, the different ECR nodes that are components of that class 
are given letter names a, b, c, and so forth. 

In the stack example, the nodes i2 and temp have true lent flags, 
and so these variables are marked lent (note that this is a more 
optimistic annotation than the one given in Figure 3). The variable 
i is marked unique on a basis of node i’s flags.  In class 
Stack, the ECR node for top has a true owned flag, while the 
ECR node o representing members pop and o is not owned.  
Thus, top is annotated owned, while pop and o are annotated 
with a fresh alias parameter a.  Likewise, member and next are 
given fresh alias parameters a and b in class Link. 

Declarations that have a class type which is parameterized must be 
given actual alias parameters that correspond to the formal alias 
parameters of the class.  Because of the way the constraints were 
set up, the declaration’s node will have a component node that is 
an instance of each formal parameter of the class, and the 
corresponding actual parameter can be computed from this node: 
either owned, shared, or a formal alias parameter of the 
enclosing class.  For example, in class Stack, we need to assign 
actual alias parameters to top, temp, and the new expression.  
These all share the same ECR node, top.  But node top has two 
component nodes: itself and o.  Node o corresponds to parameter 
a of Stack, and o is an instance of obj (which is parameter a of 
Link), so the a is used as an actual of top corresponding to the 
formal parameter a of Link.  Node top is owned, and is an 
instance of Link (which is parameter b of Link), so owned is 
used as an actual of top corresponding to the formal parameter b 
of Link.  Thus the inferred type of top is owned 
Link<a,owned>, and similar types are inferred for temp and 
the new expression. 

5. Evaluation 
A significant deficiency of previous work on specifying object 
ownership is that no significant experience has been reported 
regarding the usability of these systems in practice.  We have 
evaluated AliasJava with three experiments.  To test our system’s 
flexibility on collection library code, we added alias annotations 
by hand to the Hashtable class from the java.util library.  

To determine if meaningful data-sharing relationships between 
components can be represented in a software architecture, we 
applied our system to Aphyds, the subject of a previous ArchJava 
case study [ACN02a].  Finally, we measured the effectiveness of 
annotation inference by comparing inference results to small 
hand-annotated examples, and measured its scalability by running 
part of it on over 400 classes from the Java standard library. 

5.1. Hashtable 
Motivation.  Collection class code is a challenge for alias 
annotation systems, because collection classes and their iterators 
often store references to data objects that are logically a part of 
application objects.  Collection classes were a significant part of 
the design motivation for Flexible Alias Protection.  Thus, 
collection classes are an important test of any alias annotation 
system. 

We have evaluated AliasJava by annotating Hashtable from 
the java.util collection class library (from the JDK 1.2.1).  
Hashtable is an interesting test case for a number of reasons.  
The class must distinguish different alias types for the keys, 
values, and possibly the entries in the Hashtable.  
Hashtable is also one of the more complex pieces of the 
library, so it is a relatively challenging test case.  Finally, we 
wanted to test our system on an industrial-strength library with 
many features and warts.  The Flexible Alias Protection paper 
used a simplified version of Hashtable as a running example in 
their paper, so this allows a partial comparison to related work 
[NVP98]. 

Goals.  The goals of our study included answering the following 
experimental questions: 

• Can the annotation system effectively express the 
aliasing invariants of collection class code? 

• How much effort is required to annotate existing code? 

• Can annotations be done locally, without annotating all 
transitively reachable code? 

Methodology.  The subject of our study was the source code to 
java.util.Hashtable from the JDK 1.2.1.  The original 
source was 934 lines of code, including comments.  We added 
alias annotations by hand to the Hashtable code, attempting to 
express the aliasing semantics of the code with the simplest and 
most flexible annotations possible. 

In this study, we tested a local annotation technique intended to 
allow us to verify the alias constraints within the Hashtable 
code without annotating the entire Java standard library.  We 
annotated and typechecked Hashtable in its entirety, but added 
only minimal, unchecked annotations to the parts of the standard 
library used by Hashtable.  The annotations added to 
Hashtable are then sound if the annotations we added to the 
standard library are conservative. 

Results.  We were successful at annotating Hashtable with 
alias types after making one change to the source code (discussed 
below).  In addition to modifying the code for Hashtable, 
partial annotations were added to 17 other classes, including 
java.lang.Object, ObjectInputStream and 
ObjectOutputStream from the I/O library, several interfaces 
and abstract classes in java.util, and seven exception classes.  
In most cases we only had to annotate one or two methods from 
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each external class, suggesting that it is practical to annotate only 
a local portion of a large system. 

The study took about 2 hours and 20 minutes of programming 
time, not counting occasional interruptions to fix problems with 
the compiler.  This is a relatively small investment compared to 
the time spent developing this library, suggesting that our 
annotation system is practical for developing new code.  However, 
it would still be time-consuming to add alias annotations to a very 
large system; a better solution is to infer the annotations 
automatically, or add annotations incrementally to just the most 
critical parts of the system. 

Several excerpts from the source code highlight lessons learned 
from the study.  For example, we decided to give Hashtable 
three parameters: one each for keys, values, and entries: 

public class Hashtable<key, value, entry> 
             extends Dictionary<key, value> 
             implements Map <key, value, entry>, 
                        Cloneable, 
                        java.io.Serializable { ... 
 
The choice of three parameters is a balance between flexibility on 
the one hand and simplicity and comprehensibility on the other.  
For example, we could have reduced the number of parameters by 
merging the entry and key parameters.  On the other hand, we 
could have added additional parameters also.  For example, 
Hashtable has methods for returning the sets of keys, values, 
and entries.  We chose to annotate the keySet method’s return 
type as key Set<key>, but we could have added extra alias 
parameters to Hashtable to get a type of keyset 
Set<key>.  However, adding three extra alias parameters to the 
hash table to represent the key, value, and entry sets would make 
the class harder to understand and use.  This example illustrates 
that the best alias annotation for a piece of code is not necessarily 
the most general. 

The private inner Enumerator class below is part of the 
original, unannotated code defining an Iterator over the keys, 
values, and entries of the Hashtable: 

  private class Enumerator implements Iterator { 
    int type; // KEYS or VALUES or ENTRIES 
    public Object nextElement() { 
      Entry e = ...; 
      return type == KEYS ? e.key : 
             (type == VALUES ? e.value : e); 
    } 
  } 
 
The same code is used for keys, values, and entries; the value 
returned by nextElement is determined by the value of the 
type flag.  Because we wanted to use separate alias parameters 
for keys, values, and entries, we could not give this code a static 
type as it was.  Instead, we converted this code to always return an 
entry so that we could give it the alias type entry.  We then 
defined two wrapper classes that implement Iterator and 
extract and return the key and value from the hash table entry 
returned by Enumerator.nextElement. 

The set of Hashtable keys is implemented with a simple 
KeySet class that illustrates how inner classes are handled in our 
system: 

  private class KeySet extends AbstractSet<key> { 
    public unique Iterator<key> iterator() lent { 
      return new KeyEnumerator(true); 
    } 
    // other methods... 
  } 
 
In this code, class Keyset can reference the key parameter of 
the enclosing Hashtable class even though KeySet has no 
alias parameters of its own. 

The class Collections contains a set of static methods that are 
used by many of the classes in java.util: 

public class Collections { 
  public static unique Set<elements> 
    synchronizedSet<elements>( 
                         unique Set<elements> s) { 
      return new SynchronizedSet(s); 
  } 
 
The synchronizedSet method is used by the Hashtable to 
synchronize access to its key, value, and entry sets.  This method 
shows the need for method parameterization in our annotation 
system: synchronizedSet needs to be parameterized by the 
owner of the elements in the collection so that it can be used to 
synchronize sets with any element parameter. 

The comment for the method above states, “In order to guarantee 
serial access, it is critical that all access to the backing set is 
accomplished through the returned set.”  In other words, there 
should be no aliases to the set passed to this method, because 
access through these aliases would not be synchronized.  The 
original library did not enforce this constraint; however, we used 
our alias annotation system to enforce this constraint by 
annotating the set argument with unique. 

Problematic Classes.  As described above, we annotated a 
number of other classes in addition to Hashtable; these 
annotations were not checked by the compiler, but Hashtable 
was checked against the asserted annotations.  In general, the 
annotations we applied to classes other than Hashtable were 
what we would expect to have used if our compiler had been 
checking those annotations as well.  The lone exceptions were 
certain methods of ObjectInputStream and 
ObjectOutputStream.  Our annotation system expressed the 
conceptual semantics of these serialization-related methods (e.g., 
writeObject accepts a lent argument and readObject 
returns a unique object).  However, the actual implementation 
of these methods caches object references in order to save and 
restore object graphs that contain sharing.  Therefore, AliasJava 
would be unable to typecheck the implementations of these 
classes against these alias annotations.  Although it would be nice 
to handle this example in our system, we can easily typecheck 
clients of these classes by asserting an alias annotation interface 
that expresses the desired semantics; we could also provide an 
unsound alias annotation cast to complement our system’s 
existing, sound cast (which checks alias parameters at run time). 

5.2. Aphyds 
We wanted to evaluate AliasJava on application code as well as 
library code, in order to answer the following experimental 
questions: 

• Is the annotation system practical on realistic 
application code? 
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• Does the annotation system help to encode application-
specific architectural constraints? 

Methodology.  We performed a case study, adding alias 
annotations to the architecture of an existing ArchJava 
application.  The subject of our study was Aphyds, a pedagogical 
circuit layout application written by an electrical engineering 
professor for one of his classes.  Students are given the program 
with several key algorithms omitted, and are asked to code the 
algorithms as assignments.  The source code is about 12,500 lines 
long. 

In previous work, we expressed the control-flow architecture of 
Aphyds, as drawn by the developer, using the ArchJava language 
[ACN02a].  The intention of this study is to express the data 
sharing relationships in the architecture using the alias annotation 
system as an addition to ArchJava. 

Aphyds has an architecture that follows the model-view design 
pattern [GHJ+94].  A set of user interface windows forms the 
view, and interacting with the model to execute circuit operations 
and display circuit elements.  The model has an internal 
repository-style architecture, with a set of five computational 
components surrounding and interacting with a central data store 
of circuit elements. 

In this study, we focused on the model part of Aphyds.  Our goal 
was to express the data sharing relationships between the 
components in the architecture.  Thus, we applied AliasJava to the 
AphydsModel class representing the overall model’s 
architecture, as well as the Circuit repository and the five 
computational module classes.  These 7 large classes comprise 
3550 lines of code, as measured by Unix wc (word count).  We 
typechecked the alias annotations in these classes against 
annotations we added to parts of the interfaces of the Java 
standard library and the rest of the Aphyds application. 

Results.  The study took about three hours and 40 minutes—less 
than a quarter of the time that it took the same programmer to 
express the control-flow architecture of the same part of Aphyds.  
The alias annotation system probably required editing more lines 
of source text than the earlier, control-flow architecture 
annotations.  However, the alias annotations did not require 
changing any existing source code, just adding annotations.  In 
contrast, our earlier system required significant source-code 
refactoring to make the code conform to the developer’s intended 
architecture. 

We discovered almost immediately that it was quite tedious to 
annotate the majority of method arguments (including this) and 
local variable declarations that have a lent annotation.  We have 
since made lent the default annotation for method arguments 
and locals. 

The annotations in the architecture show the style of sharing in 
this repository application.  The circuit database has a single alias 
parameter, data, that represents the circuit elements in the 
database.  Since all of the other computational components act on 
these circuit elements, they are also parameterized by the same 
alias parameter.  We did not use the shared annotation except 
for objects of type String.  String objects are immutable in 
Java, so we did not feel that it was important to track their aliasing 
patterns precisely, and making strings shared simplified our 
annotation task. 

The annotations in ports used for communication between 
components also show the semantics of the methods used for 
inter-component communication.  Methods that return computed 
data typically take lent parameters and return results annotated 
either unique or data.  In contrast, methods that set data 
usually take parameters with data annotations.  These 
annotations also showed that the objects shared between 
components came from a small set of classes including circuit 
elements and data structures that reflect their organization into a 
circuit. 

5.3. Annotation Inference 
We evaluated our annotation inference algorithm in several ways.  
First, we applied inference to small examples, and compared the 
inferred types with those generated by hand.  We then evaluate the 
scalability of inference in time and space using the Java Standard 
Library.  Finally, we report our observations on the inferred types 
for Java library code. 

Inference Benchmarks.  We chose as our inference benchmarks a 
set of code examples taken from this paper, specifically Figures 1 
through 6.  These examples do not involve ArchJava code (for 
which our annotation inference implementation is not yet 
complete).  We ran the inference algorithm on versions of the 
code that had all annotations stripped out. 

Our implementation of annotation inference inferred exactly the 
same types as are shown in the figures (up to renaming of 
parameters), with the following exceptions.  We inferred lent or 
unique annotations for a few local variables that have owned or 
shared annotations in the figures (for example, temp and i2 in 
Figure 3 and s in Figure 4 were lent, and the points in Figure 2 
were unique).  In this case, the annotations inferred by the 
inference algorithm were in fact more precise than the ones in the 
figures. 

Scalability.  Our inference algorithms for lent and unique 
scale linearly with program size.  We timed the algorithms on the 
408 classes in the JDK 1.2.1 standard library that are reachable 
from java.lang.Object.  As a point of reference, it takes 
about 100 seconds for our compiler to parse and typecheck these 
classes.  Our lent and unique inference analyses took 33 
seconds and 151 seconds, respectively.  Thus inferring these 
annotations takes time comparable to parsing and typechecking. 

Our current constraint solver implementation has been partly 
optimized, but we will continue to improve execution time and 
space using techniques developed by O’Callahan and others 
[OCa00].  The solver infers alias parameters for the 408 Java 
standard library classes in about 30 minutes, using 2 GB of 
memory. 

Standard Library Inference.  We ran our inference algorithm on 
the same 408 classes from the Java Standard Library to determine 
whether the inferred annotations would be both precise and 
understandable. 

Our experiment suggests that the inference algorithm is fairly 
precise, although some improvement is still needed.  Around 50% 
of method and constructor parameters were inferred to be either 
lent or unique, which represent the most precise annotations.  
The other annotations were split about equally between shared 
and alias parameters, with a few owned annotations also. 
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The major symptom of imprecision in the inference results 
appears to be unnecessary shared annotations.  We have found 
that inference results are very sensitive to the way that the type 
system is encoded into constraints, and the way that the extended 
occurs check unifies type variables.  By experimenting with 
different constraint encodings and unification heuristics, we have 
been able to reduce shared annotations considerably, and we 
believe there is still room for improvement.  We hope to eliminate 
another major source of imprecision by implementing inference of 
static method parameters. 

When evaluating the understandability of the inferred annotations, 
we discovered that many classes had dozens if not hundreds of 
inferred parameters.  In a sense, the analysis is too precise, 
making distinctions between different alias parameters that are too 
fine to be useful to the programmer.  Our experience suggests that 
additional tools or heuristics will be needed to reduce the number 
of parameters for each class to a manageable level. 

6. Related Work 
Our work builds on a number of existing type systems for 
describing alias relationships in object-oriented programs.  The 
most closely related work falls into two main categories: 
uniqueness type systems for describing unaliased pointers, and 
ownership type systems for describing pointers that are confined 
to a limited domain.  AliasJava combines these lines of research, 
supporting both unique references and a flexible form of object 
ownership.  The synergy of these features allows AliasJava to 
express important idioms that neither class of annotations can 
express alone, such as those discussed in section 2.4. 

Uniqueness types can be used to declare references that are 
unaliased [Min96, CBS98].  Passing a unique object from one 
method to another avoids all aliasing problems, since the original 
method may not use the object again.  Our lent annotation is 
similar to Wadler’s let! Construct [Wad90].  Boyland’s alias 
burying paper [Boy01] described how to implement unique 
pointers without a special destructive read operation, an 
innovation adopted by AliasJava.  Alias burying uses an effect 
system to enforce a stronger uniqueness invariant than AliasJava 
enforces: namely that when a unique field is read, all previous lent 
aliases to that field are dead. 

Linear type systems [Wad90] guarantee uniqueness and in 
addition can be used to track resource usage.  Linear types have 
been applied to check protocols defining the order in which 
library methods can be called, as in the Vault language [FD02].  
Leino et al. have also used uniqueness to specify and check side 
effects in a modular way [LHZ02].  A number of research efforts 
have used linear types to verify the correctness of explicit memory 
management using the concept of a region 
[TT94,CWM99,FD02,GMJ+02].  A region represents a group of 
objects that are deallocated together.  A region type is similar to 
an ownership type in that all objects must be accessed through 
their region.  Although supporting explicit deallocation is not a 
goal of AliasJava, our system makes two contributions relative to 
region types.  First, regions must be tracked linearly to enable 
explicit deallocation; AliasJava relaxes this constraint on owning 
objects, permitting more flexible aliasing patterns.  Second, region 
types do not have an encapsulation model like AliasJava’s for 
protecting access to the objects in a region; any object that can 
name the region can access the objects inside it. 

Ownership types, which describe a limited static or dynamic 
scope within which sharing can occur, can also be used to control 
aliasing.  Early work such as Islands [Hog91] and Balloons 
[Alm97] imposed strict rules on sharing objects between 
components, significantly limiting expressiveness.  A more recent 
variation, Confined Types [BV99], allows programmers to restrict 
object references to within a particular package; the system has 
been extended to support inference of confined types [GPV01].  
Universes [MP99] provides a combination of ownership and 
confinement, providing additional flexibility using read-only 
references that can cross universe boundaries. More recently, 
Clarke et al. and Banerjee et al. have used ownership types to 
reason about side effects and representation independence as well 
as aliasing [CD02, BN02]. 

The ownership annotations in AliasJava are most closely related 
to Flexible Alias Protection [NVP98] and its successors 
[CPN98,CNP01,Cla01].  Flexible Alias Protection uses 
ownership polymorphism to strike a balance between 
guaranteeing aliasing properties and allowing flexible 
programming idioms.  In Flexible Alias Protection, owned objects 
can only be accessed by their owner and its children.  However, 
this invariant prohibits iterators, which are not owned by a 
collection, yet must access its owned state.  Clarke et al. address 
this issue by introducing a new abstraction called ownership 
contexts: each object has an owning context (the context that 
owns it) and a representation context (the context that owns its 
representation) [CNP01, Cla01].  The key property of their system 
is a containment invariant, which states that if object o1 refers to 
object o2, then the representation context of o1 must be inside the 
owning context of o2. 

The ownership subset of AliasJava is quite similar to that of 
Clarke’s thesis [Cla01] in both expressiveness and the properties 
enforced.  We wanted to enforce an encapsulation property that 
relates objects directly, rather than one that relates abstract 
ownership contexts. Therefore, we chose to phrase the 
encapsulation guarantees of AliasJava in terms of capabilities that 
can be passed from one object to another using ownership 
parameters.  AliasJava’s capability-based encapsulation is slightly 
weaker than Clarke’s containment invariant because we place no 
restrictions on alias parameters, but AliasJava is correspondingly 
more flexible.  Existing implementations of Flexible Alias 
Protection and its successors lack support for language features 
such as inheritance [Bok99, Buc00], and thus there has been no 
significant experimental validation of the design. 

Capabilities for Sharing [BNR01] describes a general capability-
based aliasing model that can encode a number of other alias-
control systems, including ours, as a special case.  The capabilities 
in their system are fine-grained and are dynamically checked; in 
contrast, our type system verifies statically (except for casts) that 
objects are only accessed through appropriate high-level 
capabilities. 

Parameterized Race Free Java (PRFJ) uses the concept of object 
ownership and uniqueness to develop a type system to guarantee 
that a program is free of data races [BR01] and deadlocks [BR02].  
PRFJ was not designed to encapsulate owned objects.  However, a 
variant of PRFJ supports a stronger notion of object encapsulation 
than AliasJava: owned objects are confined within the owner, its 
owned objects, and its inner classes [BR02].  This variant is more 
restrictive than AliasJava: an object can delegate a capability to 
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access its owned state to its other owned objects and to its inner 
classes, but not to trusted external classes and methods, even 
temporarily.  Thus, iterators can only be implemented as inner 
classes of the collection they iterate over.  Also, objects cannot be 
unique if they have non-shared, non-unique ownership 
parameters—prohibiting many uses of unique.  To our knowledge, 
this variant has not been evaluated in practice. 

Systems such as Alias Types [WM00] and Role Analysis 
[KLR02] specify the shape of a local object graph in more detail 
than our system.  The Alias Types proposal uses this information 
to safely deallocate objects, while Role Analysis is used to specify 
and check properties of data structures.  In contrast to these 
detailed specifications of a local alias graph, the goal of AliasJava 
is to provide a lightweight and practical way to constrain global 
aliasing within a program. 

An alternative to using a type system to limit aliases is to use an 
alias analysis-based tool such as Lackwit [OJ97] to visualize the 
aliases within a program.  For answering questions about aliasing, 
AliasJava can be more precise than Lackwit, which does not treat 
data structures polymorphically.  Compared to Lackwit’s 
successor Ajax [OCa00], AliasJava allows more parametric 
polymorphism on methods, but its treatment of subtype 
polymorphism is less precise due to the constraints of AliasJava’s 
type system.  One benefit of expressing alias information in a type 
system is that the information is constantly available and 
constantly checked for consistency, and so there is no need to run 
a tool to take advantage of it. 

A final area of related work is systems that enforce the secure flow 
of information.  A representative system is JFlow [Mye99], which 
annotates each piece of data with a set of principals that own the 
data, and for each owner, a list of principals that are allowed to 
read the data.  The type system verifies that no principal can read 
a piece of data unless all the data’s owners have given read 
permission to that principal.  AliasJava is more lightweight than 
JFlow, because our system labels references with a single owner 
instead of a list of owners and a list of authorized readers for each 
owner.  However, our system only supports reasoning about 
information flow through data sharing, not other forms of 
information flow. 

7. Conclusion 
This paper described AliasJava, an annotation system for Java that 
places structural and temporal bounds on aliases, enabling 
developers to reason more directly about aliasing in object-
oriented systems.  AliasJava is expressive enough to describe a 
wide range of important idioms, including collection classes, 
iterators, and several architectural styles.  Our design extends to 
the full Java language, including arrays, casts, inheritance, and 
inner classes.  We formalized a subset of the system, and proved 
key invariants of the annotations.  Our alias annotations can be 
automatically inferred using a novel variant of an existing 
instantiation constraint-based algorithm.  We have validated the 
design of AliasJava and the inference algorithm on part of the 
Java standard library and on a realistic application.  Our 
experience suggests that AliasJava is flexible enough to use on 
existing code, that annotation overhead is reasonable, and that the 
annotations can express important application constraints. 
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