
Alias Annotations for Program Understanding
Jonathan Aldrich Valentin Kostadinov Craig Chambers

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195-2350 USA

+1 206 616-1846

{jonal, valmk, chambers}@cs.washington.edu
Abstract
One of the primary challenges in building and evolving large
object-oriented systems is understanding aliasing between objects.
Unexpected aliasing can lead to broken invariants, mistaken
assumptions, security holes, and surprising side effects, all of
which may lead to software defects and complicate software
evolution.

This paper presents AliasJava, a capability-based alias annotation
system for Java that makes alias patterns explicit in the source
code, enabling developers to reason more effectively about the
interactions in a complex system. We describe our
implementation, prove the soundness of the annotation system,
and give an algorithm for automatically inferring alias
annotations. Our experience suggests that the annotation system
is practical, that annotation inference is efficient and yields
appropriate annotations, and that the annotations can express
important invariants of data structures and of software
architectures.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features

General Terms
Experimentation, Languages, Theory

Keywords
AliasJava, Java, ownership types, encapsulation, uniqueness,
aliasing, type inference

1. Introduction
Understanding and evolving large software systems is one of the
most pressing challenges confronting software engineers today.
When evolving a complex system in the face of changing
requirements, developers need to understand how the system is
organized in order to work effectively. For example, to avoid
introducing program defects, programmers need to be able to
predict the effect of making a software change. Also, while fixing

defects, programmers need to be able to track value flow within a
program in order to understand how an erroneous value was
produced. In an object-oriented program, all of these tasks
require understanding the data sharing relationships within the
program. These relationships may be very complex—at worst, a
reference could point to any object of compatible type—and
current languages do not provide much help in understanding
them [HLW+92].

Data sharing problems can also compromise the security of a
system. For example, in version 1.1 of the Java standard library,
the security system function Class.getSigners() returned a
pointer to an internal array, rather than a copy. Clients could then
modify the array, compromising the security of the “sandbox” that
isolates Java applets and potentially allowing malicious applets to
pose as trusted code. Existing languages provide poor support for
preventing security problems that arise from improper data
sharing.

In this paper, we describe and evaluate AliasJava, a type
annotation system for specifying data sharing relationships in Java
programs. The annotations provide automatically checked
documentation about data sharing within a program, while
allowing software engineers to program in much the same style as
before. We have also applied AliasJava to specify the data
sharing relationships within a software architecture, as expressed
in the architecture description language ArchJava [ACN02a].

AliasJava’s annotations capture several common forms of sharing
in object-oriented systems. First, objects are often shared in a
structurally bounded way: an object might be shared within the
implementation of a subsystem, but not beyond it. In AliasJava,
objects that are part of a subsystem’s representation are specified
with an owned type annotation; the subsystem can grant trusted
external objects the capability to access its owned state using a
simple form of ownership parameterization. Second, objects are
sometimes shared in a time-bounded way: an object may be
passed as a parameter to a method, which uses the object for the
duration of the call, but does not store a persistent reference to the
object. AliasJava specifies this kind of time-bounded access
capability with a lent type annotation. Finally, our type system
also includes the best-case unique annotation for unshared objects
and the worst-case shared annotation for objects that have no
owning subsystem.

The contributions of this paper are the following:

• a capability-based type annotation system that combines
uniqueness and ownership-style encapsulation;

• an implementation in Java and a discussion of issues
including concurrency, inner classes, iterators, and casts;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-471-1/02/0011…$5.00.

311

• a formalization of our type annotation system for a subset of
Java and a proof outline of several key invariants;

• a novel algorithm for inferring alias annotations; and

• an empirical evaluation of AliasJava on a non-trivial program
and on part of the Java collection class library.

The rest of this paper is organized as follows. The next section
introduces AliasJava with a series of examples. Section 3
formalizes our type system and outlines proofs of key properties.
Section 4 describes our annotation inference algorithm. We
evaluate our system in section 5 on a realistic program and on the
Java collection libraries. Section 6 discusses related work, and we
conclude in section 7.

2. AliasJava
Our type annotation system is motivated by the desire to
understand the data sharing patterns in very large software
systems. AliasJava annotates all reference types, describing the
extent to which that reference is shared. The annotations bound
aliasing on the heap structurally: unique describes an unshared
reference, owned objects are assigned an owner that controls who
may access that object, and shared indicates the worst case of a
globally-aliased reference. We also provide a lent annotation
expressing sharing that is temporally bounded by the length of a
method call.

In this section, we present our annotations as a type system for
Java programs that provides global guarantees about aliasing.
However, adding alias annotations to a large legacy program may
require significant effort. Our annotations can also be applied to
verify local properties within a subsystem, treating the annotations
at the edge of the subsystem as unchecked assertions. We use this
methodology in our case studies in Section 5. A promising
alternative is inferring alias annotations for a closed subset of the
program automatically. Section 4 presents an annotation
inference algorithm, and we present early results from a prototype
implementation.

Subsection 2.1 describes the AliasJava language through a series
of examples. A more precise description of the core annotation
system is provided by the formal semantics in section 3. The
following two subsections describe the properties guaranteed by
AliasJava, and how AliasJava’s design works with the features of
the full Java language. Subsection 2.4 shows more examples of
the language in order to illustrate its expressiveness. We discuss
some of the reasoning benefits provided by our annotation system
in subsection 2.5.

2.1. Annotations for Data Sharing
Unique. When an object is first created, it is unique—that is,
there is only one reference to the object. We annotate a type with
unique to describe a reference that does not have persistent
aliases. Figure 1 illustrates uniqueness through a linked list class
where all of the elements and all of the links are unique.

In general, after a unique variable or field is read, the source
location must be dead (that is, unused by subsequent code)—
otherwise the read reference would be an alias of the supposedly
unique source. A standard intraprocedural live variable analysis
is used to verify this criterion for unique local variables. When
a unique field is read by a method, that method must set the
field to another value before executing any statement (such as a
method call or exception-throwing expression) that could result in
reading the original value of the field a second time. For example,
in Figure 1, the getItem method sets the item field to null so
that no aliases are created to the unique value when the item is
returned.

In AliasJava, unique can be considered a universal source:
unique values can be assigned to a location with any other data
sharing annotation. The converse is not true, as the other data
sharing annotations do not guarantee that a value is unique. In
our capability model, unique is the strongest capability, since
unique objects can be assigned to a variable with any other alias
annotation.

Owned. Figure 2 shows two classes modeling points and
rectangles. The rectangle class represents its shape using two

class LinkedList {
 private unique Object item;
 private unique LinkedList next;

 public LinkedList(unique Object o,
 unique LinkedList n) {
 item = o; next = n;
 }
 public unique Object getItem() {
 unique Object temp = item;
 item = null;
 return temp;
 }
 public unique LinkedList getNext() {
 unique LinkedList tempNext = next;
 next = null;
 return tempNext;
 }
}

unique LinkedList list =
 new LinkedList(new Object(), null);
list=new LinkedList(new Object(), list);
unique Object o = list.getItem();
list = list.getNext();

Figure 1. A linked list class with unique links and items

class Point {
 int x; int y;
 Point(int x, int y) { this.x = x; this.y = y; }
}

class Rectangle {
 private owned Point upperLeft;
 private owned Point lowerRight;

 public Rectangle(unique Point ul,
 unique Point lr) {
 // ensure Rectangle has non-negative area
 if (ul.x > lr.x || ul.y > lr.y)
 throw new IllegalArgumentException();
 upperLeft = ul;
 lowerRight = lr;
 }
 public unique Point getUpperLeft() {
 return new Point(upperLeft.x, upperLeft.y);
 }
}

Figure 2. A Point class and a Rectangle class that stores
its size as a pair of points.

312

points, one for the upper-left corner of the rectangle and one for
the lower-right corner.

A class like Rectangle may need to maintain invariants over its
state; for example, the code in Figure 2 ensures that the rectangle
does not have a negative size, i.e. the upper left-hand point is not
below or to the right of the other point.

Maintaining these invariants depends on the lack of external
aliases to the Point objects that are part of the rectangle’s
representation. It is not sufficient to make the Point fields
private, because aliases to the internal representation could
still be exposed. For example, a naïve implementation of the
getUpperLeft method could expose Rectangle’s
representation by returning the internal Point object rather than
a copy. The invariants of Rectangle could also be violated if
two rectangles accidentally shared the same Point objects.

Our owned annotation describes a reference that is confined to
the scope of the enclosing object, unless that object explicitly
gives another object permission to access it. This allows the
implementer of Rectangle to rely on the fact that external
objects can only change or see changes to its representation

through the rectangle’s interface. Owned references may only
flow to owned variables within the scope of the owning object.
If, for example, the getUpperLeft method returned an alias to
the internal point, the compiler would flag the error as a violation
of encapsulation.

Ownership parameters. In our capability model, owned
represents a capability that every object has to access its own
representation. However, an object may need to structure its
representation by putting some of its objects into a container that
is also part of its representation. In this case, we can pass owned
as an alias parameter to the container class, granting that class the
capability to reference the element data that are owned by another
object. Our system also includes ownership parameterization for
methods; an example is shown in section 5.1.

For example, Figure 3 shows a StackClient class that uses a
Stack to hold integers that are part of its representation. When
the StackClient creates a Stack, it passes the owned
capability as the Stack’s parameter to give the Stack
permission to access the objects owned by StackClient. The
code in run shows that Integers owned by the
StackClient can be pushed onto and popped off the stack.

The stack uses a linked list to store its elements. References to the
links in the list should be confined to enclosing Stack object,
and so the head of the list (that is, the top of the stack) is
annotated owned. Since the linked list is a recursive data
structure, each link is parameterized with a capability to access
not only the elements of the list (owned by the StackClient in
this example), but also the other links in the list (owned by the
Stack). Therefore, the Stack passes the owned capability as
the second parameter of the links in the linked list.

Shared. Figure 4 illustrates the Singleton design pattern
[GHJ+94], used to create a single instance of an object that is
used throughout an application. Singleton objects are intended to
be shared throughout a program, and thus cannot be confined by
an owning object. We give references to such objects a shared
annotation, representing the fact that these objects may be shared
globally. Unfortunately, little reasoning can be done about
shared references, except that they may not alias non-shared
references. However, shared references are essential for
interoperating with existing run-time libraries, legacy code, and
static fields, all of which may refer to aliases that are not confined
to the scope of any object instance.

public class StackClient {
 unique Stack<owned> st=new Stack<owned>();

 public void run() {
 owned Integer i = new Integer(5);
 st.push(i);
 owned Integer i2 = (Integer) st.pop();
 }
}

public class Stack<element> {
 private owned Link<element, owned> top;

 public element Object pop() {
 if (top == null)
 return null;
 owned Link<element, owned> temp = top;
 top = top.next();
 return temp.member();
 }
 public void push(element Object o) {
 top = new Link<element, owned>(o,top);
 }
}

public class Link<element, link> {
 private link Link<element, link> nxt;
 private element Object obj;

 public Link(element Object _obj,
 link Link<element, link> _nxt) {
 obj = _obj; nxt = _nxt;
 }
 public element Object member() {
 return obj;
 }
 public link Link<element, link> next() {
 return nxt;
 }
}

Figure 3. A Stack class parameterized by the owner of its
elements, a Link class used in the stack’s representation, and
a client of the stack.

class Singleton {
 private static shared Singleton val

= new Singleton();

 public static shared Singleton get() {
 return val;
 }
 public void doSomething() {
 // application specific code
 }
}

shared Singleton s = Singleton.get();
s.doSomething();

Figure 4. A shared Singleton object

313

Lent. Figure 5 shows a method that could be part of the
LinkedList class from Figure 1. This method checks if an
integer is stored in a linked list that is made up of unique
LinkedList and Integer objects. This would be difficult to
express with the annotations presented so far, because
contains would have to destroy the linked list while traversing
it in order to avoid creating aliases to the links and elements in the
list. Instead, the method uses the lent annotation to create
temporary aliases to the unique objects in the list. These aliases
must be destroyed when the contains method returns, so that
the uniqueness of the linked list is preserved across calls to
contains.

As shown in this example, unique objects can be passed as
lent parameters to methods; the called method can pass on the
object as a lent parameter to other methods, but cannot return it
or store it in any field. Thus, the lent annotation preserves all
the reasoning about the unique object, but adds a large measure of
practical expressiveness. The lent type can also be used to
temporarily pass an owned object to an external method for the
duration of a method call, without any risk that the outside
component might keep a reference to that object. Therefore,
lent can be considered a universal sink: values with any alias
type annotation may be assigned to a lent location. The
converse is prohibited: lent values may only be assigned to
other lent locations. Lent can be thought of a restricted
capability that can be used to access an object, but cannot be used
to store the object in a field. Lent is the default annotation for
method arguments and local variables, and may be omitted.

Other annotations. In designing our annotation system, we
chose to focus on precisely specifying the aliasing relationships
between objects in the system. Using this criterion, we decided
not to include a few annotations that are used in some of the
related work. Although package-based confinement [BV99]
provides a middle ground between our shared and owned
annotations, we chose not to include it because object ownership
is a stronger property and we wanted to keep the system simple.
Read-only annotations [NVP98,MP99,BNR01,BR01] can also
express useful invariants about a system, but they are not aliasing
properties and so were not included in our design. These
annotations could probably be added to our system in a natural
and orthogonal way.

Summary. Table 1 shows the constraints that our type
annotations place on value flow. The various annotations are
listed along the left side and the top of the table. An X indicates
that data can flow from a location with the annotation on the left
to a location with an annotation above. The table shows clearly
that unique is a universal source (any variable can be assigned a

unique value), and that lent is a universal sink (lent
variables can be assigned a value with any type annotation). The
other type annotations must be kept separate from each other.

2.2. Properties
AliasJava ensures uniqueness and ownership invariants that
restrict the aliasing patterns that can occur during program
execution. Section 3 proves these invariants for a subset of
AliasJava. Our uniqueness invariant states the obvious fact that
variables and fields with the unique annotation hold unique
references.

Uniqueness Invariant: At a particular point in dynamic
program execution, if a variable or field that refers to an
object o is annotated unique, then no other field in the
program refers to o, and all other local variables that
refer to o are annotated lent.

Our ownership invariant states that ownership annotations are
consistent across program variables and across program
execution.

Ownership Invariant: At a particular point in dynamic
program execution, if a variable or field referring to
object o has an ownership annotation denoting object
o’, then all other variables or fields that refer to o at any
subsequent point in dynamic program execution, are
either annotated lent or have an ownership annotation
denoting the same owner o’.

Another way to state the ownership invariant is that each non-
unique, non-shared object is owned by exactly one other
object. Only an object’s owner, and the objects that the owner has
delegated a capability to, may store a reference to that object. An
object delegates a capability to access its owned representation
by creating a new object and passing owned as one of the new
object’s alias parameters, or by calling a method and passing
owned as an alias parameter. Because capabilities can only be
transferred using the static type parameterization mechanism,
AliasJava supports static, source-level human and automated
reasoning about which references might alias an owned object.

2.3. Java Integration
The Java language has several features that present challenges for
an alias control system. We discuss how AliasJava handles of a
number of these features below.

Subtyping. We extend Java’s declared subtyping relation with
our type annotations. When a class is defined, it must provide
values for the alias parameters of the classes and interfaces it
extends and implements; these values can be any of the alias
parameters of the subclass. For example, a class declaration

Table 1. Value flow between alias annotations

To

unique owned shared lent

unique X X X X X

owned X X

 X

shared X X

F
r
o
m

lent X

boolean contains(lent LinkedList head, int i) {
 for (lent LinkedList list = head; list != null;
 list = list.next) {
 lent Integer item = (Integer) list.item;
 if (item.intValue() == i)
 return true;
 }
 return false;
}

Figure 5. A method that uses a lent reference to traverse a
linked list looking for an integer

314

might look like: ������ �� � � 	�
��
��� �� � 	�
����
�
����� 	. When a method or field is overridden, the
overriding member must declare its parameters and return value
with annotations that exactly match the overridden member, under
the alias parameter mapping induced by the inheritance
declarations.

This. Since the current object this is an implicit argument to all
instance methods, its type annotation must be specified. This is
done with an annotation that comes immediately after the
argument list. This type may be one of shared, unique,
lent, or an ownership parameter. Use of this within the
method must be consistent with its annotation, and at method
calls, the receiver is treated as another parameter that must follow
the rules for the this alias annotation. Because the vast majority
of methods and constructors have a lent annotation for this,
lent is the default in our system and need not be explicitly
specified.

Constructors. Like methods, constructors must specify an alias
annotation for this. Semantically, we treat a new statement as
an allocation of a unique object followed by a method call to
the constructor for initialization. If the constructor’s this
annotation is lent, the allocated object will remain unique; if
the constructor’s this annotation is shared, the allocated
object will be shared, etc. Thus, the alias annotation of a newly
allocated and constructed object will only be unique in the
common case where the constructor’s this annotation is lent.

Inner Classes. Inner classes implicitly import the parameters of
their surrounding class. The inner class can have its own
additional parameters, if necessary. Thus, the qualified type of an
inner class is of the form
������
�������������� �	��
������� �	. An
inner class can refer to the owned references of the enclosing
class. These values have the type annotation
EnclosingClassName.owned, while the owned values of
the inner class have the annotation owned. Anonymous classes
defined within a function may not access unique or lent local
variables from the function’s scope, because such accesses could
create internal persistent references stored in the inner class
object, which may violate the type system’s invariants.

These special rules do not apply to static classes defined
within another class. Such classes do not have an implicit pointer
to an object of the enclosing class, and so they follow the same
rules as ordinary classes, with no special access to their enclosing
class.

Static Fields. Static fields are not associated with any particular
object instance, and so they cannot be declared with an owned or

 type annotation (also recall that no field may have a lent
annotation). Static fields can be unique if they are read and
written in a way consistent with the unique annotation.

Arrays. An array must be given an alias type for each array
dimension. The alias type of the array itself is given by the
overall modifier for the array type, while the modifier for each
dimension of the array is nested in the corresponding brackets.
For example, the variable declaration unique
������ 	�owned�� ������� refers to a unique array of
owned arrays of stacks that hold objects of alias type . An

array dereference of the form array[0] would have type
owned������� 	� �.

Concurrency. Concurrency is largely orthogonal to this work.
However, in the presence of concurrency, access to unique fields
must be synchronized to prevent two threads from reading a
unique variable simultaneously, creating two aliases of a
supposedly unique value. We can guarantee uniqueness in the
presence of concurrency by ensuring that a unique value can
flow from an object field into another non-lent location only
within a block of code synchronized on the object whose field is
being dereferenced (or the field’s declaring class, in the case of
static fields). The field that was read must also be set to another
value before the end of the synchronization block.

Casts. Because a class may extend a class that has fewer
parameters, alias parameters may be hidden by subsumption.
Thus the programmer may have a variable o of type Object,
which has no alias parameters, but may want to cast it down to a
List type that does have parameters with the expression
(List<owned>)o. In order to preserve soundness, the runtime
system must check both that object o is of type List, and also
that the List’s alias parameter is owned.

In our implementation, each parameterized class stores the actual
owner object for each of its parameters. Note that we do not need
to store the owner of each object in the system; our system incurs
a small space overhead only for objects that are parameterized.
This run-time information is assigned at object-creation time.
When a parameter is bound to owned, the creating object this
is recorded to show which object corresponds to the formal
parameter. When a class is created with a parameter , the run-
time owner for the corresponding parameter of the creating object
is used to discover which object corresponds to the parameter.
This run-time parameter information is also passed to methods
that have alias parameters.

When an object is cast to a parameterized type, the run-time
owner for each of its parameters is checked against the
corresponding owner specified in the cast, and an
AliasCastException is thrown if the check does not
succeed. In this way, AliasJava supports upcasts and downcasts
in a way that does not violate the semantics of the type
annotations.

The Java Standard Library. We have chosen to implement our
system on top of the standard Java Virtual Machine (JVM), and so
we did not modify the bytecode of the Java standard library.
Unfortunately, this means that Java’s reflection interfaces provide
a way to get around the alias type system. This could be remedied
by replacing the existing reflection library with one that
dynamically checks for violations of our alias type system.

Another issue is that since we did not modify the standard library
bytecode, our runtime system does not record run-time alias
parameter information for parameterized classes and methods
created and called by the standard library code. Thus, the
parameter information for some methods and objects will be
missing at some run-time casts. In our implementation, we always
allow these casts to succeed, but a number of other choices are
possible in principle.

Implementation. We have added support for AliasJava to the
ArchJava compiler, which is publicly available at the ArchJava

315

website [Arc02]. Our implementation is based on the Barat
compiler infrastructure [BS98].

2.4. Examples
In this subsection, we present a number of examples that
demonstrate the expressiveness of our annotation system.

2.4.1. Iterators
Iterators are a challenge to many alias control systems. Figure 6
shows how a List class can be defined to return an Iterator
object that can access its internal representation (the links in the
list) without exposing that representation to clients. When the
List class creates a ListIter, it instantiates the second alias
parameter of ListIter with owned, thereby delegating a
capability to access the list’s representation. The ListIter is
then returned as an object of type Iterator, which hides access
to the links in the list. Clients of the Iterator cannot access
these links through the Iterator interface, nor can they cast the
Iterator to ListIter, because the List has not given them
a capability to access its representation.

2.4.2. Uniqueness and Ownership
The combination of the unique annotation with ownership
annotations is crucial to the expressiveness of our annotation
system; it allows us to express important idioms that neither class
of annotation system could alone. For example, the Lexer class
in Figure 7 accepts an input stream that becomes part of its
representation. The implementation of the Lexer relies on the
state of the InputStream, and therefore the specification of
Lexer should require that external clients do not modify the state
of the stream after passing it to the lexer.

In AliasJava, the InputStream argument to Lexer’s
constructor is unique, forcing the client to give up its other non-
lent references to the stream. The InputStream is then
captured into the lexer as an owned reference, ensuring that
persistent aliases to the stream cannot escape the lexer’s scope.

2.4.3. Architectural Styles
We have developed ArchJava, an extension to Java that enables
developers to express the software architecture of large object-

oriented software systems [ACN02a]. The initial version of
ArchJava specified only control flow between architectural
components; communication though data sharing remained
unspecified, reducing the value of the architectural specifications.
Our alias annotation system allows us to extend ArchJava
architectures to include a specification of data sharing between
components. In this subsection, we show how alias annotations
can express important invariants of two common architectural
styles discussed by Garlan and Shaw [GS93].

Pipe and Filter Architectures. Figure 8 shows a pipe and filter
architecture, in which the architectural components are filters that
accept a stream of data along an input pipe and produce a new
stream of data along an output pipe. The example shows two
component classes, which are used to define architectural
structure in the ArchJava language. The components
communicate with each other through ports. For example, the
Filter component below accepts data on its input port,
processes the data, and sends the new data out its output port. In
addition to ordinary methods, ports may have requires methods
that represent the interface of a connected component.

In this example, the Filter invokes the accept method on its
output port, which will result in invoking the accept method of
the filter at the other end of the pipe. The PipeAndFilter
component class defines an architecture by declaring a set of final
fields that hold its subcomponents, and connecting the ports of
these components with connections. Connections bind the
requires methods in the port of one component to the methods of
the same name implemented in the port of another component.

An important invariant of this architectural style is that the filters
do not share state; they communicate only through the pipes
connecting them. The alias annotations in the system express and
enforce this invariant. Because the Source, Filter, and Sink
components have no alias parameters, they cannot directly share
any data.1 The unique annotations in the ports express the
invariant that when a data structure is passed from one filter to
another, the first filter gives up all references to the data.

This example also shows the practical importance of combining
uniqueness and ownership in our annotation system. The data

1 We are ignoring shared annotations, but widespread use of

these is poor practice and could be flagged by the compiler.

public class Lexer {
 owned InputStream stream;
 Lexer(unique InputStream s) {
 stream = s;
 }
 unique Token getToken() { ... }
}

void lexerClient() {
 unique InputStream stream =
 new FileInputStream(file);
 unique Lexer l = new Lexer(stream);
 l.getToken();
}

Figure 7. A Lexer class that uses an InputStream as part
of its representation. The InputStream is passed to the
constructor as a unique reference.

interface Iterator<element> {
 element Object next();
}

public class List<element> {
 private owned Link<element, owned> front;
 void add(element Object e) { ... }
 unique Iterator<element> iterator() {
 return new ListIter<element,owned>(front);
 }
}

class ListIter<element, link>
 implements Iterator<element> {
 private link Link<element, link> cur;
 public element Object next() {
 element Object e = cur.o;
 cur = cur.next;
 return e;
 }
}

Figure 6. A List class and an iterator over the list

316

passed between components might not be a simple object, but
could be a complex data structure that includes multiple internal
objects with nontrivial internal aliasing patterns. A type system
with only uniqueness could express passing a unique reference to
a data structure between components, but could not express the
constraint that aliasing is allowed within the data structure but not
beyond it. Similarly, a system with only object ownership could
express the limited scope of aliasing within the passed data
structure, but could not express the architectural invariant that the
first component does not retain any references to the data
structure.

Blackboard Architectures. Figure 9 shows a blackboard
architectural style, where computational components surround a
central data store. The components in a blackboard architecture
communicate exclusively by modifying shared state in the data
store. Component actions are triggered by changes to the data
store made by other components.

In the Architecture component class, the connections show
the control flow between the computational components and the
data store. These control-flow connections specify that
components m1 and m2 do not call each other’s methods directly,
but instead communicate only through method calls to the store—
and this specification is verified by ArchJava’s type system
[ACN02b]. The alias annotations, in turn, describe the data
sharing relationships between the components. A glance at the
Architecture code shows that the store, m1, and m2
components all share the same alias parameter.

The interface of the data store shows in more detail how data
structures are shared between different parts of the architecture.
In its data port, the data store defines a requires method that
it calls to notify clients whenever data has changed. This method
passes a change message to the computational components; this
message is lent, indicating that the clients may not store
persistent references to it.

The data store also implements two methods allowing clients to
get data and to update the store. Here, the specification of what
data is requested is a lent parameter of getData, but the
returned data is annotated with the data_owner parameter,

indicating that it is shared persistently between different
components in the architecture.

2.5. Reasoning about Data Sharing
One criterion for evaluating the alias annotation system is, does it
help in reasoning about data sharing? In this subsection, we
consider the reasoning benefits of our alias annotation system by
discussing how the annotations can help programmers answer
software maintenance questions that are difficult to answer in
existing Java programs.

What parts of the program might be affected by a change to a
data structure? This question often comes up when the system
must be evolved to meet changing requirements. In general,
answering it requires identifying all parts of the program that
could refer to the changed data. Confronting this task by tracing
through the program manually is tedious and error-prone.

Our alias annotations can give concrete aid in answering this
question. If the reference to the modified data is unique, only
the parts of the program to which the unique reference flows can
be affected. If the reference to the modified data is owned, the
scope of the change is limited to the current object and its
delegates, while a reference annotated with an alias parameter
indicates the need to look in the enclosing object to understand
sharing patterns. A lent reference indicates that the current data
structure is part of a different object’s representation, and it
suggests that the caller and callee need to agree on a contract that
specifies any intended modifications to the data. References with
a shared annotation are as challenging to reason about as
ordinary Java references, but we hope these references will be rare
in practice.

What components might this component communicate with? It is
important to answer this question when making changes to a large
software system. The earlier ArchJava language design makes
control flow communication between components explicit in the
connections between components. AliasJava’s annotations
complement ArchJava by making communication through shared
data explicit, as shown in Figures 8 and 9.

How difficult would it be to distribute a system across two
machines? This question might be important if a system must be
scaled beyond the resources of a single machine. Unfortunately,
data sharing between components poses challenges for effectively
distributing legacy applications. Alias annotations in the system’s

component class Filter {
 public port in {
 void accept(unique Data d) {
 // process data and send out
 out.accept(process(d));
 }
 }
 public port out {
 requires void accept(unique Data d);
 }
 private unique Data process(unique Data d) {...}
}

public component class PipeAndFilter {
 private final owned Source source = ...;
 private final owned Filter filter = ...;
 private final owned Sink sink = ...;
 connect source.out, filter.in;
 connect filter.out, sink.in;
}

Figure 8. A pipe and filter architecture implemented in
ArchJava with alias annotations.

public component class Architecture {
 private final owned Blackboard<owned>store=...;
 private final owned Module1<owned> m1 = ...;
 private final owned Module2<owned> m2 = ...;
 connect m1.data, store.data;
 connect m2.data, store.data;
}

public component class Blackboard<data_owner> {
 public port data {
 requires void notify(lent Message change);

 data_owner Data getData(lent Spec spec);
 void update(data_owner Data d);
 }
}

Figure 9. A blackboard architecture expressed in ArchJava
with alias annotations.

317

architecture can help programmers to anticipate the issues likely
to come up when distributing a program across multiple machines.
For example, if objects annotated lent or unique are passed
between components that will be distributed across a network, the
objects can probably be passed by value between the two
distributed components. On the other hand, if the alias
annotations in the architecture indicate persistent sharing between
components that will be distributed, either a solution using remote
object references or extensive refactoring of the source code will
be necessary.

3. Formalization
We would like to use formal techniques to prove that the type
system is safe, and preserves the intended aliasing invariants. A
standard technique, exemplified by Featherweight Java [IPW99],
is to formalize a core language that captures the key typing issues
while ignoring complicating language details. We have
formalized AliasJava as AliasFJ, a core language based on
Featherweight Java (FJ).

3.1. AliasFJ
Syntax. Figure 10 presents the syntax of AliasFJ. The
metavariables C, D and E range over class names; A ranges over
alias annotations; p and q range over actual alias parameters;
and range over formal alias parameters; T and U range over
types; f and g range over fields; v ranges over values; e ranges
over expressions; � ranges over locations; S ranges over stores;
and M ranges over methods. As a shorthand, we use an overbar to
represent a sequence. We assume a fixed class table CT mapping

classes to their definitions. A program, then, is a pair (CT, e) of
a class table and an expression.

As in Featherweight Java, AliasFJ omits interfaces, inner classes,
and some statement and expression forms. AliasFJ does not have
static fields, so we omit the shared alias type, which can be
considered a special case of parameterization where the owning
object is the entire program. These changes make our type
soundness proof shorter, but do not materially affect it otherwise.

AliasFJ extends Featherweight Java in several ways. Classes are
parameterized by a list of alias annotations, and extend another
class that has a subsequence of its alias parameters. Because we
want to reason about aliasing, we add mutable fields and field
assignment to FJ. Therefore, a store S maps locations � to their
contents: the class of the object and the values stored in its fields.
We will write S[�] to denote the store entry for �, and S[�,i] to
denote the value in the ith field of S[�]. Functional store updates
are abbreviated S[�→C< l >(v)]. The store also holds the
actual alias parameters for each location, in order to check run-
time casts properly.

Classes define a set of fields f and methods M . Expressions
include variables, object creation expressions, field reads and
writes, casts, and method calls. We also include an error
expression, representing failed casts and null dereferences.

In the compiler for the full language, a live variable analysis
identifies the last use of unique variables automatically. AliasFJ
models the results of this analysis explicitly by marking a single
unique read of a variable with a unique tag. Similarly, the
compiler for the full language performs an analysis to determine
that unique fields are overwritten immediately after being read.
Instead of modeling this analysis formally, AliasFJ provides a
destructive read operation (again, identified by the unique tag)
that overwrites the field with null after every read.

Values represent irreducible computational results, and include
locations in the store and a distinguished null location.
Different references to the same location in the program may have
different alias annotations; for example, there might be some
references to a location annotated lent and others annotated
unique. Therefore, values within expressions are tagged with an
alias annotation A.

Types. Ordinary types consist of an alias annotation A and a class
name parameterized with annotations p. We also include types
representing NULL and ERROR. Annotations may be lent,
unique, owned, or a parameter p. Actual alias parameters in

 C : C < (CLASS-REFLEX)

E : C

E : D D : C

<
<<

 (CLASS-TRANS)

D : C

...D C C

<
><><= βα extendsclass)(CT

 (CLASS-EXTENDS)

><<><

=∨=∨=
<

pqp D B : C A

BA B A

D : C

,

lentunique
 (SUBTYPE-ALIAS)

 T : <ERROR (SUBTYPE-ERROR)

 T : <NULL (SUBTYPE-NULL)

Figure 11. Subtyping Rules

CL ::= class C< , β > extends D< > { T f ; M }

M ::= T m(T x) T { return e; }

e ::= x
 | new C< >()
 | e.f
 | e.f = e, e
 | (T)e
 | e.m(e)
 | error
 | unique(x)
 | unique(e.f)

| A(v)

v ::= null
 | l

T ::= A C< p >
 | NULL
 | ERROR

A, B ::= lent | unique | p
p, q ::= owned | �_�l

S ::= l Å C< l >(v)
 ::= x Å T

Σ ::= l Å T

l ∈ Locations
� ∈ Parameters

Figure 10. AliasFJ Syntax

318

the source text must be parameters of the enclosing class, or
owned. However, during reduction, these parameters may be
replaced with locations �, indicating the object that corresponds to
that actual alias parameter. Thus, we include locations in the type
syntax so that we can give alias types to expressions in an
executing program.

Subtyping Rules. AliasFJ’s subtyping rules are given in Figure
11. Class subtyping is defined by the reflexive, transitive closure
of the immediate subclass relation given by the extends clauses
in CT. We require that there are no cycles in the induced subtype
relation. The subtyping relationship between ordinary types
follows that of classes. The rule encodes the alias annotation
semantics where unique is a subtype of any other annotation,
lent is a supertype of any other annotation, and all other
annotations must match exactly. Also, the alias parameters of the
supertype must be a subsequence of the subtype’s parameters.
Finally, any expression can have an error or null
subexpression, and so ERROR and NULL are subtypes of all other
types.

Evaluation Rules. The evaluation relation, defined by the
reduction rules in Figure 12, has the form S � e → e’,S’, read
“In the context of store S, expression e reduces to expression e’
in one step, producing the new store S’.” We write →* for the
reflexive, transitive closure of →. Most of the rules are standard;
the interesting features are how they manipulate the alias type
system. The R-NEW rule reduces a new expression into a unique
reference to a fresh location. The store is extended at that location

to refer to a class with the same type and alias parameters, with all
null fields.

There are two rules for field reads. The R-READ rule applies to
normal reads of a field fi; it looks up the receiver in the store,
identifies the ith field. The result is the value at field position i in
the store. The rule derives the annotation for the resulting value
from the alias annotation from the type of the ith field of the
receiver. Because this is not a unique field read, if the field was
annotated with unique then the resulting value will be annotated
with lent. We denote this substitution with
[lent/unique]A, meaning that all occurrences of unique in
A are replaced with lent. Similarly, if the field was annotated
with owned, the dynamic owner of that field is the actual receiver
�, and so we replace any owned annotations with �.

The R-UNIQUEREAD rule is similar, but applies to unique reads.
Here, the result is always a value with a unique annotation, but
the value of the field that was read is updated to null in the
store. This reflects the “destructive read” semantics, which
models our user-level language’s requirement that unique fields
be updated after unique reads.

The R-WRITE rule is straightforward, updating the ith field of the
receiver object with the value written to field fi. As in Java, the
R-CAST rule checks that the cast expression is a subtype of the
cast type. Note, however, that in AliasFJ this check also verifies
that the alias parameters match, doing an extra run-time check that
is not present in Java.

The invocation rule uses the mbody helper function (defined in
Figure 15) to determine the correct method body to invoke. The
method invocation is replaced with the appropriate method body.
Several substitutions are made into the body to reflect the method
argument and receiver values. First of all, any occurrences of
formal alias parameters of the enclosing class are replaced with
the actual alias parameters � of the receiver value. Second, the
formal parameters of the method x as well as the variable this
are replaced with the actual values passed in. This substitution
involves some subtlety, however, because if one of the parameters
is annotated unique, it would not be sound to replace all
occurrences of that parameter with the unique value. Instead,
only the unique read of the parameter is replaced with the
unchanged argument value; the other non-unique reads are
replaced with a modified argument value where unique
annotations have been replaced with lent.

The full semantics of the language include error rules representing
casts that fail and null pointer dereferences. A set of congruence
rules (such as if e�e’ then e.f�e’.f) allows reduction to
proceed in the order of evaluation defined by Java. We omit the
congruence and error rules here, but they can be found in a
companion technical report [AKC02].

Typing Rules. Typing judgments, shown in Figure 13, are of the
form Te :, --lΣΓ , ����� ���� 	
�� 	���� ���������	� � ���� �	����
typing Σ, expression e has type T.” The T-VAR and T-UVAR

������ ����� ��� 	
�� 	���� ��� �� �������� ��� �� ���������� unique
annotations with lent if the expression is not a unique variable
read. Similarly, the T-LOC rule looks up the type of a location in
Σ, leaving its annotation as expressed in the source text.

There are also two typing rules for field reads—the normal rule,
which replaces unique annotations with lent, and the unique
read rule, which leaves unique annotations unchanged. The
rules for field read, field write, and method invocation verify that
an owned value can only be accessed through the receiver this
in the source text (naturally, reduction can replace this with a
location).

S ,(C S

)](CS[S S

′→><
><→=′∉

)()

)(

ll

lll

uniquenew

null

--l

domain
 (R-NEW)

S)(vA).fA(S

A /][/[A

D AT

f TC)v(C]S[

R

R

,

fields

ii

i

iii

→
=

><=

=><=

l

l

ll

--l
]

)(

owneduniquelent

β

 (R-READ)

S)(v)).f(A(S

)]v]/v([CS[S

C T

f TC)v(C]S[

′→
><→=′

><=

=><=

,

)(

ii

i

i

fields

uniqueunique

null

unique

l

ll

ll

--l

α

 (R-UNIQUEREAD)

S e e v,).fA(S

)]v]([v/vCS[S

f TC)v(C]S[

′→=
><→=′

=><=

,

fields

i

i

l

ll

ll

--l

)(

 (R-WRITE)

,

C

C

:S[] D (v) A D T

S (T)A() A() S

= < > < > <
→

l l l

l l--l
 (R-CAST)

()

())

/ /

,

f

lent

lent 0

0

lent lent

0

S[] C (v) C C ...

m,C (x,e v [/] v

this [/] A()

e [v/ (x), A()/ (),

, , v /x, /] e

S A().m(v) e

CT

mbody

α

α

= < > = < >

= =
=

′ =

′→

l l

l

l

l l

l--l

class

lent unique

lent unique

unique unique this

owned this this

 S
 (R-INVK)

Figure 12. AliasFJ Evaluation Rules

319

Several of the typing rules use the auxiliary function inst (defined
in Figure 15), which uses the type of the receiver of a method
invocation or field access to convert the formal annotation
variables referenced in the method or field type to the actual
annotation variables used at the call site.

We have made one significant simplification relative to FJ. We
do not distinguish between upcasts, downcasts, and so-called
“stupid casts” which cast one type to an unrelated one. This
means that our type system does not check for “stupid casts” in
the original typing derivation, as Java’s type system does.
However, the change shortens our presentation and proofs
considerably, and the stupid casts technique from FJ can be easily
applied to our system to get the same checks that are present in
Java.

Store Typing. Figure 14 shows the rules for well-formed classes,
methods, and stores in AliasFJ. Class and method typing rules
check for well-formed class definitions, and have the form “class
declaration E is OK,” and “method m is OK in E.” The rules for
class and method typing are similar to those in FJ. Rule T-CLASS

ensures that subclasses can only extend the list of annotation
parameters from their superclasses, and verifies that lent does
not appear in field types. Rule T-METH performs several checks.
It ensures that the body is well typed in the environment that
assumes the method arguments have their declared types, and an
empty store. The rule also verifies that there is at most one unique
read of each method argument (including this). Finally, the
override auxiliary function verifies that each overriding method
have the same type signature as the overridden method.

The store typing rules ensure that the form of the store is
consistent with the Java’s typing rules. The two clauses of the
store typing rule are the usual well-formedness rules, requiring the
store type Σ to type every location in S, and verifying that the
types of objects in a field are compatible with the field’s type
using the auxiliary rule T-STORELOC. The last rule defines the
annotation convenience function, which is used in stating the
properties of the alias annotation system.

Auxiliary Definitions. Most of the auxiliary definitions shown in
Figure 15 are straightforward and are derived from FJ. The field
lookup rule returns the list of fields in a given class, along with
their types. AliasFJ follows Java’s lookup rules for method types
and method bodies. The inst function accepts a type in a method
or field signature as well as the type of the receiver of a method or
field access, and converts the first type from its original scope to
the scope of the method or field access. It does this by simply
replacing the formal alias parameters in the signature type with
the corresponding actual alias parameters in the receiver type.
Finally, the last rule checks that overriding methods have the
same type signatures as the methods they override, except that the
class of this may differ.

Tx

x]/[T

 --l :,

)(

ΣΓ
Γ= uniquelent

 (T-VAR)

)(:, x(x) ΓΣΓ --l unique (T-UVAR)

><ΣΓ

><=Σ
ll

ll

C A)A(

C

:,

)(

--l
 (T-LOC)

 ><><ΣΓ pp C)e(C uniquenew :, --l (T-NEW)

><><ΣΓ

><ΣΓ
pp

q

C A)eC (A

D Ae

:,

:,

--l

--l
 (T-CAST)

 ERROR :, error--lΣΓ (T-ERROR)

 , : NULLΓ Σ --l null (T-NULL)

, : ()

(a variable)

()

, :
R

R

 e A C C T f

T ... e e

T [/] T A C

 e.f T

i

i

i

p fields

inst , p

Γ Σ < > =
= ∧ ⇒ =

= < >
Γ Σ

--l

--l

owned this

lent unique
 (T-FIELD)

, : ()

(,)

, :
R

R

 e A C C T f

T D T T A C

 (e.f) T
i i

i

p fields

inst pβ
Γ Σ < > =

= < > = < >
Γ Σ

--l

--l
unique

unique
 (T-UFIELD)

, : , :

, : ()

(,)

(a variable)

, :

0 1 1

2 2

1

0 0

0 1 2 2

 e A C e T

 e T C U f

:T U A C

U ... e e this

 e.f e , e T

i

i

i

p

fields

inst p

Γ Σ < > Γ Σ

Γ Σ =

< < >
= ∧ ⇒ =

Γ Σ =

-- --l l

--l

--l
owned

 (T-WFIELD)

, : , :

()

(,) (,) ()

(() a variable)

, :

0 0

0 this R

0 0 this 0 R 0

0 0

0

 e T e U

T A C m,C T T T

: :U T T T T T T T ,T

m,C e e this

 e.m(e) T

p mtype

inst inst inst

mtype

Γ Σ Γ Σ

= < > = × →

< < =
∈ ∧ ⇒ =

Γ Σ

-- --l l

--l

owned
(T-INVK)

Figure 13. AliasFJ Typechecking

OK }M ;f T{D C

C IN OK M T...

><><
∉

αβα extendsclass

lent

,
 (T-CLASS)

C in OK } e; { T)x T m(T

e (x) . this},x{x

C AT TTT D, m,

D... C C

T : S Se T:this ,T:x

this

thisthis

this

return

unique

extendsclass

inoncemostatappears

)(

)(

:

∈∀

><=→×

><=

<∅

α

α

override

CT

, --l

(T-METH)

() ()

() ,

,

S

S . S[]

 S

dom dom

dom

Σ =
∀ ∈ Γ Σ

Γ Σ
l l--l

--l
 (T-STORE)

)v(C

T][: T f TC

Tv ... C C

FF

><ΣΓ
<=

∈ΣΓ><=

l

l

--l

--l

,

/)(

,)(

α

α

fields

CL class

 (T-STORELOC)

iiannotation

fields

CT

]A/,/[S

...D AC

C C)v(C]S[

owned

class

lll

ll

α

α

=
><=

><=><=

),,(

)(

)(

 (STOREANNOT)

Figure 14. AliasFJ Class, Method, and Store Typing

320

3.2. Type Soundness
We can show the type soundness of AliasFJ through two standard
theorems, subject reduction and progress. Type soundness
implies that the language’s type system is well behaved. In a
type-safe language like Java, well-typed programs won’t halt with
errors other than failed casts and null-pointer exceptions. We
state the theorems here, leaving the proofs to a companion
technical report [AKC02].

Theorem [Subject Reduction]: If Te :, --lΣΓ , S , --lΣΓ and
S,ee S ′′→--l , then T:T <′Σ⊇Σ′∃ , such that Te ′′Σ′Γ :, --l and

S , ′Σ′Γ --l .

Subject reduction is proved by induction on the derivation of
S,ee S ′′→--l , with a case analysis on the last reduction rule

used. A term substitution lemma is useful for the method

invocation case. This lemma states that substituting terms in a
well-typed expression preserves the typing. �

Theorem [Progress]: If Te :, --lΣ∅ , then either e is an
irreducible value, contains an error subexpression, or else ∀S
such that S , --lΣ∅ , S,ee S ′′→--l .

The proof is by induction on the derivation of Te ∈Σ∅ --l, , with
a case analysis on the last typing rule used. �

3.3. Properties
Type soundness is important, but we would also like to show that
our system has well-defined properties that allow programmers to
reason effectively about aliasing relationships. The first theorem
gives the meaning of uniqueness: a unique annotation on a
reference implies that no other heap references refer to that
location.

Theorem [Uniqueness]: If Te :, --l∅∅ and S,ee ′′→∅ *--l ,
then for all � such that � occurs in S’ or e’ with annotation
unique, all other occurrences of � in S’ or e’ have annotation
lent.

Formally, we say that � occurs in S with annotation A if there
exists some �’, i such that S[�’,i] = � and annotation(S,�’,i)=A.
We say that � occurs in e with annotation A if A(�) is a
subexpression of e. Different occurrences are distinguished in the
obvious way—by a pair (�’,i) for stores, and by textual location
for expressions.

The proof is by induction on the derivation of S,ee ′′→∅ *--l ,
with a case analysis on the last reduction rule used. The crux of
the proof is showing that the reduction rules obey three local
properties: no duplication of unique references except with lent
annotations, no flow from lent references to references with other
annotations, and that whenever a unique reference flows to a
reference with an ownership annotation, the original reference is
dead. The most interesting cases in the proof are method
invocation, where the method typing rule ensures that unique
arguments are not duplicated during method substitution, and
unique field read, where the semantics of the rule assigns null to
the read field. �

We have argued in section 2.2 that ownership annotations are
useful because they organize aliased objects into a hierarchical
tree, and a group of objects can be persistently shared only if the
group owner uses parameterization to delegate a capability to
access the group. Intuitively, an object can only refer to an object
if it has a capability to access that object. In order to allow this
kind of reasoning about object ownership, we need the ownership
annotations for an object to be consistent across the program’s
store and execution:

Theorem [Ownership Consistency]: If Te :, --l∅∅ and

S,ee ′′→∅ *--l , then for all �,�’ such that � occurs in S’ or e’
with annotation �’, all other occurrences of � in S’ or e’ have
either annotation lent or annotation �’.

The proof is by induction on the derivation of S,ee ′′→∅ *--l ,
with a case analysis on the last reduction rule used. The proof
relies on the uniqueness property to show the base case: when a
location is first given an owner, there is only one reference to that
location. Once this is established, it is easy to show that the rules
preserve ownership consistency. �

Corollary [Ownership Soundness]: If Te :, --l∅∅ ,
S,ee ′′→∅ *--l and S,ee S ′′′′→′′ *--l , then for all �,�’ such that �

occurs in S’ or e’ with annotation �’, all occurrences of � in S”
or e” have either annotation lent or annotation �’.

The proof is similar. �

Field lookup:

fields(Object) =

f T ,g TC

g TD

}M ;f T{ D C C

g

g

=

=

><><=

)(

)(

,)(

fields

fields

CT αβα extendsclass

Method type lookup:

TTTCm,

M} e; { T)x T(m T

}M ;f T{ D C C

this

this

F

→×=
∈

><><=

)(

,)(

mtype

CT

return

extendsclass αβα

)()(

in definednot is

,)(

Dm,Cm,

M m

}M ;f T{ D C C F

mtypemtype

CT

=

><><= αβα extendsclass

Method body lookup:

)()(

,)(

e,xCm,

M} e; { T)x T(m T

}M ;f T{ D C C

thisx

=
∈

><><=

mbody

CT

return

extendsclass αβα

)()(

in definednot is

,)(

Dm,Cm,

M m

}M ;f T{ D C C

mbodymbody

CT

=

><><= αβα extendsclass

Alias type instantiation:

]T/[D BT,

...D D

pqqinst

pCT

=><
><=

)(

)(class

Valid method overriding:

)(

,

)(

0this

TthisUthis00

0this

UUU C, m,

C AT C AU TU TU

TTTC m,

→×
><=∧><=∧=∧=

⇒→×=

override

mtype

αβα

Figure 15. AliasFJ Auxiliary Definitions

321

4. Annotation Inference
Although AliasJava is intended to give programmers the
flexibility to express a wide variety of data sharing idioms, there
are practical issues that may limit its adoption. In particular,
adding alias annotations to existing programs and libraries may
require significant work.

We have addressed this issue by developing a technique for
inferring the annotations in AliasJava. The inference algorithm
allows developers to easily infer the sharing relationships in
library code or in legacy systems. If desired, programmers can
refine the inferred declarations in order to enforce additional
restrictions on aliasing.

Our inference algorithm begins by inferring lent annotations,
since this annotation is the most general (a value with any other
annotation can be assigned to lent) and since it can be inferred
independently from other annotations. We next infer unique
annotations using an algorithm that depends only on the inferred
lent annotations. We infer the remaining annotations in a final
pass.

4.1. Inferring Lent
We infer lent annotations with a constraint-based algorithm.
Our algorithm assigns either lent or non-lent to each local
variable, expression, and method parameter of reference type, and
to the this reference for each method. Initially, we
optimistically assume that all annotations are lent. We then
assign non-lent annotations the base-case expressions that may
not be lent: values that are returned from a method or assigned
to a field. We also conservatively assume that the arguments of
native methods are non-lent.

Next, our algorithm constructs a directed graph capturing the
value flow between the variables and expressions in the program.
The final annotations can be computed by traversing this graph
backwards from all non-lent nodes, so that if an expression a
flows to expression b, and b is non-lent, then a must be non-
lent as well. Intuitively, this represents the constraint that a
lent value may not be assigned to a non-lent variable. All
nodes in the graph that are not backwards reachable from non-
lent nodes can safely be annotated lent.

4.2. Inferring Unique
Our algorithm for inferring unique annotations is similar to the
lent algorithm above. The algorithm assigns either unique or
non-unique to each program variable and expression. As
before, we optimistically assume that all annotations are unique,
except for the arguments and results of native methods.

We divide value flow into two cases: ordinary assignments (x =
y), where both x and y are live after the assignment, and last
assignments (x =last y), where y is dead after the assignment.
We assume that live variable analysis has already annotated all
value flows as ordinary assignment or last assignments.

For each ordinary assignment x = y we require that x is non-
unique, since it must alias the value y that is not dead. In

addition, if x is not lent, then y must also be non-unique,
since it must alias x after the assignment.

The rule for last assignments x =last y is simple: if y is non-
unique, then x must be non-unique also. Since y is dead
after the assignment, if we can prove that y was unaliased before
the assignment, we know that x is unaliased after the assignment.
Thus, starting from the non-unique base cases generated from
ordinary assignments and native methods, we can propagate
non-unique forward along the directed graph formed by last
assignments. All remaining variables and expressions are
unique.

The graphs generated for both lent and unique inference are linear
in the size of the source text, and traversing them touches each
edge in the graph at most once. Therefore, our algorithm for
inferring these alias types is linear in the size of the program.

4.3. Inferring Other Annotations
In order to infer the remaining alias annotations, we adapt a
constraint-based alias analysis that solves equality, component,
and instantiation constraints over type variables. Type inference
with instantiation constraints was first described in an abstract
form by Henglein [Hen93]. More recent papers describe concrete
worklist-based algorithms, which we have adopted in our work
[FRD00,OCa00]. The underlying problem of finding an optimal
solution for a set of component and instantiation constraints is
undecidable [KTU93], and we have no proof that our inference
algorithm terminates. However, in practice our algorithm works
well; neither we nor others working on similar algorithms have
ever encountered an example that causes the algorithm to loop
[Hen93,FRD00,OCa00].

Our analysis is most similar to that used by O’Callahan in the
Ajax system [OCa00]. O’Callahan’s analysis can infer
polymorphic types for static methods only. While our current
analysis does not infer polymorphic types for methods, the type
system supports them and we believe our analysis could be
extended to infer these types for both static and instance methods.
O’Callahan distinguishes different instances of a class based on
their creation site, while our analysis distinguishes instances based
on how they are used in the system. Thus, we are able to
distinguish different objects that are created at the same place but
are used in different ways, but we don’t waste effort tracking
objects that are created in different places but are used in the same
way.

Due to space constraints, we cannot present the full details of the
inference algorithm, which is described in a companion technical
report [AKC02]. Instead, we present a high-level overview of the
algorithm in parallel with an example that illustrates many of the
key issues. We choose as our running example the Stack code
in Figure 3, assuming initially that none of the alias annotations in
that figure is present. Our goal will be to infer the alias
annotations given in Figure 3. The discussion below focuses on
the core of the inference algorithm, which infers the alias
parameters for each class. Later, we will describe how to
integrate the other annotations into the constraint-based
framework.

322

Analysis Setup. We begin our analysis by creating a unique node
for every variable, method argument or result, class, field, and
expression in the program text. This node is a type variable
representing the alias annotation for the corresponding declaration
or expression. Distinct type variables indicate distinct alias
parameters of the enclosing class.

Figure 16(a) shows the type variables generated from Figure 3.
For example, the code in the Stack class includes the type
variables Stack, top, pop, temp, and o (we abbreviate the type
variable for a method result by the method name). To simplify the
presentation, we ignore certain anonymous type variables
generated from program expressions.

Our analysis solves three different forms of constraints: equality,
component, and instantiation, which are described in turn below.

Equality Constraints. When a value flows from one variable to
another within a class, we generate an equality constraint a = b,
indicating that the two corresponding type variables must
represent the same alias annotation. For example, our analysis
generates the equality constraint top = temp due to the assignment
temp = top in line 6 of the definition of Stack. However, we
do not generate equality constraints for value flow between
variables in different classes. For example, even though the
method pop returns the result of calling member, we don’t
equate the corresponding pop and member variables, because that
would place unnecessary constraints on other parts of the program
that use Link.member. We use instantiation constraints
(discussed below) to reason about value flow between classes in a
way that treats different Link objects differently. Figure 16(b)
shows the equality constraints generated from Figure 3.

In our implementation, equality constraints are solved via
unification using a union-find data structure. Thus, for the
equality constraint top = temp, we choose top arbitrarily as the
equivalence class representative, and update all references to temp
to refer to top instead. ≤

The initial equality constraints shown at the top of Figure 16 are
clearly not sufficient for inferring correct alias types. For
example, the argument o of push and the return value of pop
should have the same alias type, yet just looking at the Stack
class is insufficient to discover this information. Only by
reasoning about how objects are stored within the Link class can
we infer the correct alias types for Stack. In our system, this
reasoning is done with component and instantiation constraints.

Component Constraints. A component constraint (o �m v), read
“v is a component of o with index m,” means that the type variable
v represents member m of object o. Component constraints allow
us to keep track of the relationship between a particular stack and
the objects and links within that stack, for example. For each
member m of a class C, we generate a component constraint C �m
m. We generalize the notion of member to any type variable
within a class, so that component constraints are also generated
for method arguments, results, and local variables. Figure 16(b)
shows the component constraints generated from Figure 3.

Instantiation Constraints. If C is a class, an instantiation
constraint (C �v o), read “o is an instance of C with index v,”
means that type variable o represents an object that is an instance
of C that is stored in the local variable or field v. Instantiation
constraints allow us to treat different instances of a class
separately; we group instances by the local variable or field that

the instance is stored in. Each instance will have its own copy of
its local variables and fields in our representation—these are
generated by the propagation rules discussed below. For example,
different instances of Stack can have different actual alias
parameters, so that different stacks can hold objects with different
owners. For each class member m that has declared type C, we
generate an instantiation constraint C �m m.

Instantiation constraints are also used to reason about the
relationship between type variables in two different classes. For

(a) Initial variables:
class StackClient: StackClient, st, i, i2
class Stack: Stack, top, pop, temp, o
class Link: Link, obj, nxt, _obj, _nxt, member, next

(b) Initial constraints:

Equality:
top = temp obj = _obj nxt = _nxt
obj = member next = nxt

Component:
StackClient �i i StackClient �i2 i2 StackClient �st st
Stack �top top Stack �pop pop Stack �temp temp
Stack �o o Link �obj obj Link �nxt nxt
Link �_obj _obj Link �_nxt _nxt Link �member member
Link �next next

Instantiation:
Stack �st st Link �top top Link �temp temp
Link �nxt nxt Link ��nxt _nxt Link �next next
o �st i pop �st i2 next �top top
member �temp pop _obj �top o _nxt �top top

(c) After solving initial equality & uniqueness constraints:

StackClient

i

st

Stack

top

o

Link

next

obj

Component Constraint a > b Instantiation Constraint b ≤ a
a b a b

(d) Final constraint system:

StackClient

i

st

Stack

top

o

Link

obj

st_top

Component Constraint a > b Instantiation Constraint b ≤ a
a b a b

Figure 16. Constraints generated and solved during inference
of the alias types given in Figure 3.

323

example, the argument o of push is assigned to the _obj
argument of the constructor of the link represented by the type
variable top. We encode this relationship with the instantiation
constraint _obj �top o, indicating that o is the instance of _obj
inside the top link. Here, the index on the instantiation constraint
shows how the instance is related to its parent. Thus, for each
member m that flows to or from a member n of another class at a
method call or field dereference with receiver r, we generate an
instantiation constraint n �r m. Figure 16(b) shows the
instantiation constraints generated from Figure 3.

Component and Instance Uniqueness. In the example program,
values flow from the argument o of push to the obj field of
top, and from the obj field of top to the result of pop. This is
represented by the two instantiation constraints obj �top pop and
obj �top o (here we assume that _obj and member have already
been unified into obj). The index top common to both these
constraints indicates that pop and o are the same instance of obj.
Intuitively, pop and o should be unified, because program values
can flow from o into obj and then back into pop. We formalize
this intuition with an instance uniqueness rule:

a �b c ∧ a �b d ⇒ c = d

This rule ensures that two instances of the same type variable that
have the same index will be unified. Once pop and o are unified
into o, i and i2 will both be instances of o with the same index st,
and so they will be unified as well. An analogous rule is used to
ensure that two components of the same type variable with the
same index are also unified:

a �b c ∧ a �b d ⇒ c = d

Figure 16(c) shows the example system after solving the initial
equality constraints and applying the uniqueness rules.

Constraint Propagation. If top is an instance of Link, as
shown in Figure 16(c), then it ought to have next and obj
components. Furthermore, these components ought to be fresh,
distinct from the next and obj components of any other Link.
This motivates the component propagation rule:

a �b c ∧ a �I d ⇒ ∃ e . d �b e

Applied to top, this rule states that since Link has a component
next (Link �next next) and top is an instance of Link (Link �top top),
then there must exist some variable top_next such that top_next is
a component of top at index next (top �next top_next). Intuitively,
this new variable represents the particular “next” link in the top
field of Stack, potentially distinct from the next link of any
other Link.

Now, anything we infer about next (for example, if we discover it
is equal to some other type variable) must also apply to top_next,
since top_next is just a specialization of next that is a component
of the top instance of Link. We encode this intuition with the
constraint that top_next is an instance of next. Then top_next will
be a transitive instance of Link, ensuring that it will gain its own
next and obj components. These constraints are generated with
the instance propagation rule:

a �b c ∧ a �I d ∧ d �b e ⇒ c �I e

The precondition for this rule is the conjunction of the
precondition and the conclusion of the component propagation
rule. Thus, this rule applies whenever a new component constraint
is generated. In the case of top_next, the rule’s conclusion simply
states that next �top top_next.

Avoiding Infinite Propagation. The discussion above suggests
that constraint propagation as presented above may never
terminate. For example, top is a Link, so it must have a next
component top_next. But, top_next is transitively a Link also, so
with a couple of instantiation constraint propagations we discover
that we need to create top_next_next, a next component of
top_next. There must be a way to stop this expansion if the
algorithm is to terminate.

Like O’Callahan and others, we apply the extended occurs check
to avoid infinite constraint propagation. The extended occurs
check rule can be stated as follows:

If ∃ L �i1 a1 �i2 … �iN R and ∃ L �c1 b1 �c2 … �cM R

 then L = R

Intuitively, this rule states that if one type variable R is both a
transitive instance and a transitive component of another type
variable L, then we should unify L and R to avoid infinite
constraint propagation. In the example, the extended occurs
check would discover that Link �next next ∧ Link �next next. Thus,
our implementation generates the equality constraint next=Link,
which eliminates the source of the loop.

Figure 16(d) shows the final results of the constraint-based
algorithm. As described above, next has been unified into Link.
Also, component propagation has resulted in two components
each for top and st. Due to application of the component and
instance uniqueness rules, the components of top are itself (just as
Link is its own component) and o, while the components of st are i
and a new node, st_top. Like top, of which it is an instance,
st_top has two components, itself and i.

The example constraint system has now reached fixpoint with
respect to the constraint propagation and uniqueness rules. Link
has two components, one of which refers to another Link instance;
these represent the alias parameters used in Figure 3. Stack also
has two components; one of these will turn into Stack’s alias
parameter, and the other will turn into an owned annotation, as
discussed below. Finally, StackClient’s two components will
eventually turn into owned and unique annotations.

Integration With Other Alias Annotations. The algorithm
described above can infer alias parameters for each class in the
system. However, some of the type variables in the example
should actually be given a non-parameter alias type. For example,
temp and i2 could be annotated lent, and st and i could be
annotated unique.

We integrate alias parameter inference with inference of other
alias annotations by storing a boolean flag in each node for each
possible non-parameter annotation: lent, unique, owned, and
shared. Below, we discuss how each flag is initialized and
propagated as type inference proceeds, and how a final alias
annotation is computed from the flags at the end.

The owned flag is initialized to true for each variable that is non-
public and is never accessed on a receiver other than this.
These constraints are the two base-case semantic requirements for
owned methods and fields. When two nodes are merged, the
resulting node is owned only if both of the merged nodes were
owned.

The shared flag is initialized to true for each static field and
each argument and result of a static or native method, as
these are the base cases for shared annotations. Whenever a

324

shared node is merged with an unshared one, the resulting node is
shared. Furthermore, whenever a component constraint is
introduced, if the parent node is shared, then the component node
must be marked shared as well—otherwise, there would be no
way to express its alias annotation in the final system.

The lent and unique flags are initialized with the result of lent and
unique inference, as described above. Lent and unique flags are
not modified or propagated during constraint solution.

Final Alias Annotations. The final alias annotations are assigned
from the constraint graph so as to make the annotations as precise
and flexible as possible. Since lent is the most general
annotation, all declarations whose node has a lent flag equal to
true are given a lent annotation. Unique is the most precise
possible annotation for the remaining declarations, so every
remaining declaration whose node has a true unique flag is
annotated unique. In order to be sound, we must next make
every unmarked declaration whose equivalence class
representative (ECR) node has a true shared flag shared. Next,
we mark the remaining declarations as owned based on their
ECR nodes’ owned flags. All remaining declarations must be
marked with an alias parameter of the enclosing class; for each
class, the different ECR nodes that are components of that class
are given letter names a, b, c, and so forth.

In the stack example, the nodes i2 and temp have true lent flags,
and so these variables are marked lent (note that this is a more
optimistic annotation than the one given in Figure 3). The variable
i is marked unique on a basis of node i’s flags. In class
Stack, the ECR node for top has a true owned flag, while the
ECR node o representing members pop and o is not owned.
Thus, top is annotated owned, while pop and o are annotated
with a fresh alias parameter a. Likewise, member and next are
given fresh alias parameters a and b in class Link.

Declarations that have a class type which is parameterized must be
given actual alias parameters that correspond to the formal alias
parameters of the class. Because of the way the constraints were
set up, the declaration’s node will have a component node that is
an instance of each formal parameter of the class, and the
corresponding actual parameter can be computed from this node:
either owned, shared, or a formal alias parameter of the
enclosing class. For example, in class Stack, we need to assign
actual alias parameters to top, temp, and the new expression.
These all share the same ECR node, top. But node top has two
component nodes: itself and o. Node o corresponds to parameter
a of Stack, and o is an instance of obj (which is parameter a of
Link), so the a is used as an actual of top corresponding to the
formal parameter a of Link. Node top is owned, and is an
instance of Link (which is parameter b of Link), so owned is
used as an actual of top corresponding to the formal parameter b
of Link. Thus the inferred type of top is owned
Link<a,owned>, and similar types are inferred for temp and
the new expression.

5. Evaluation
A significant deficiency of previous work on specifying object
ownership is that no significant experience has been reported
regarding the usability of these systems in practice. We have
evaluated AliasJava with three experiments. To test our system’s
flexibility on collection library code, we added alias annotations
by hand to the Hashtable class from the java.util library.

To determine if meaningful data-sharing relationships between
components can be represented in a software architecture, we
applied our system to Aphyds, the subject of a previous ArchJava
case study [ACN02a]. Finally, we measured the effectiveness of
annotation inference by comparing inference results to small
hand-annotated examples, and measured its scalability by running
part of it on over 400 classes from the Java standard library.

5.1. Hashtable
Motivation. Collection class code is a challenge for alias
annotation systems, because collection classes and their iterators
often store references to data objects that are logically a part of
application objects. Collection classes were a significant part of
the design motivation for Flexible Alias Protection. Thus,
collection classes are an important test of any alias annotation
system.

We have evaluated AliasJava by annotating Hashtable from
the java.util collection class library (from the JDK 1.2.1).
Hashtable is an interesting test case for a number of reasons.
The class must distinguish different alias types for the keys,
values, and possibly the entries in the Hashtable.
Hashtable is also one of the more complex pieces of the
library, so it is a relatively challenging test case. Finally, we
wanted to test our system on an industrial-strength library with
many features and warts. The Flexible Alias Protection paper
used a simplified version of Hashtable as a running example in
their paper, so this allows a partial comparison to related work
[NVP98].

Goals. The goals of our study included answering the following
experimental questions:

• Can the annotation system effectively express the
aliasing invariants of collection class code?

• How much effort is required to annotate existing code?

• Can annotations be done locally, without annotating all
transitively reachable code?

Methodology. The subject of our study was the source code to
java.util.Hashtable from the JDK 1.2.1. The original
source was 934 lines of code, including comments. We added
alias annotations by hand to the Hashtable code, attempting to
express the aliasing semantics of the code with the simplest and
most flexible annotations possible.

In this study, we tested a local annotation technique intended to
allow us to verify the alias constraints within the Hashtable
code without annotating the entire Java standard library. We
annotated and typechecked Hashtable in its entirety, but added
only minimal, unchecked annotations to the parts of the standard
library used by Hashtable. The annotations added to
Hashtable are then sound if the annotations we added to the
standard library are conservative.

Results. We were successful at annotating Hashtable with
alias types after making one change to the source code (discussed
below). In addition to modifying the code for Hashtable,
partial annotations were added to 17 other classes, including
java.lang.Object, ObjectInputStream and
ObjectOutputStream from the I/O library, several interfaces
and abstract classes in java.util, and seven exception classes.
In most cases we only had to annotate one or two methods from

325

each external class, suggesting that it is practical to annotate only
a local portion of a large system.

The study took about 2 hours and 20 minutes of programming
time, not counting occasional interruptions to fix problems with
the compiler. This is a relatively small investment compared to
the time spent developing this library, suggesting that our
annotation system is practical for developing new code. However,
it would still be time-consuming to add alias annotations to a very
large system; a better solution is to infer the annotations
automatically, or add annotations incrementally to just the most
critical parts of the system.

Several excerpts from the source code highlight lessons learned
from the study. For example, we decided to give Hashtable
three parameters: one each for keys, values, and entries:

public class Hashtable<key, value, entry>
 extends Dictionary<key, value>
 implements Map <key, value, entry>,
 Cloneable,
 java.io.Serializable { ...

The choice of three parameters is a balance between flexibility on
the one hand and simplicity and comprehensibility on the other.
For example, we could have reduced the number of parameters by
merging the entry and key parameters. On the other hand, we
could have added additional parameters also. For example,
Hashtable has methods for returning the sets of keys, values,
and entries. We chose to annotate the keySet method’s return
type as key Set<key>, but we could have added extra alias
parameters to Hashtable to get a type of keyset
Set<key>. However, adding three extra alias parameters to the
hash table to represent the key, value, and entry sets would make
the class harder to understand and use. This example illustrates
that the best alias annotation for a piece of code is not necessarily
the most general.

The private inner Enumerator class below is part of the
original, unannotated code defining an Iterator over the keys,
values, and entries of the Hashtable:

 private class Enumerator implements Iterator {
 int type; // KEYS or VALUES or ENTRIES
 public Object nextElement() {
 Entry e = ...;
 return type == KEYS ? e.key :
 (type == VALUES ? e.value : e);
 }
 }

The same code is used for keys, values, and entries; the value
returned by nextElement is determined by the value of the
type flag. Because we wanted to use separate alias parameters
for keys, values, and entries, we could not give this code a static
type as it was. Instead, we converted this code to always return an
entry so that we could give it the alias type entry. We then
defined two wrapper classes that implement Iterator and
extract and return the key and value from the hash table entry
returned by Enumerator.nextElement.

The set of Hashtable keys is implemented with a simple
KeySet class that illustrates how inner classes are handled in our
system:

 private class KeySet extends AbstractSet<key> {
 public unique Iterator<key> iterator() lent {
 return new KeyEnumerator(true);
 }
 // other methods...
 }

In this code, class Keyset can reference the key parameter of
the enclosing Hashtable class even though KeySet has no
alias parameters of its own.

The class Collections contains a set of static methods that are
used by many of the classes in java.util:

public class Collections {
 public static unique Set<elements>
 synchronizedSet<elements>(
 unique Set<elements> s) {
 return new SynchronizedSet(s);
 }

The synchronizedSet method is used by the Hashtable to
synchronize access to its key, value, and entry sets. This method
shows the need for method parameterization in our annotation
system: synchronizedSet needs to be parameterized by the
owner of the elements in the collection so that it can be used to
synchronize sets with any element parameter.

The comment for the method above states, “In order to guarantee
serial access, it is critical that all access to the backing set is
accomplished through the returned set.” In other words, there
should be no aliases to the set passed to this method, because
access through these aliases would not be synchronized. The
original library did not enforce this constraint; however, we used
our alias annotation system to enforce this constraint by
annotating the set argument with unique.

Problematic Classes. As described above, we annotated a
number of other classes in addition to Hashtable; these
annotations were not checked by the compiler, but Hashtable
was checked against the asserted annotations. In general, the
annotations we applied to classes other than Hashtable were
what we would expect to have used if our compiler had been
checking those annotations as well. The lone exceptions were
certain methods of ObjectInputStream and
ObjectOutputStream. Our annotation system expressed the
conceptual semantics of these serialization-related methods (e.g.,
writeObject accepts a lent argument and readObject
returns a unique object). However, the actual implementation
of these methods caches object references in order to save and
restore object graphs that contain sharing. Therefore, AliasJava
would be unable to typecheck the implementations of these
classes against these alias annotations. Although it would be nice
to handle this example in our system, we can easily typecheck
clients of these classes by asserting an alias annotation interface
that expresses the desired semantics; we could also provide an
unsound alias annotation cast to complement our system’s
existing, sound cast (which checks alias parameters at run time).

5.2. Aphyds
We wanted to evaluate AliasJava on application code as well as
library code, in order to answer the following experimental
questions:

• Is the annotation system practical on realistic
application code?

326

• Does the annotation system help to encode application-
specific architectural constraints?

Methodology. We performed a case study, adding alias
annotations to the architecture of an existing ArchJava
application. The subject of our study was Aphyds, a pedagogical
circuit layout application written by an electrical engineering
professor for one of his classes. Students are given the program
with several key algorithms omitted, and are asked to code the
algorithms as assignments. The source code is about 12,500 lines
long.

In previous work, we expressed the control-flow architecture of
Aphyds, as drawn by the developer, using the ArchJava language
[ACN02a]. The intention of this study is to express the data
sharing relationships in the architecture using the alias annotation
system as an addition to ArchJava.

Aphyds has an architecture that follows the model-view design
pattern [GHJ+94]. A set of user interface windows forms the
view, and interacting with the model to execute circuit operations
and display circuit elements. The model has an internal
repository-style architecture, with a set of five computational
components surrounding and interacting with a central data store
of circuit elements.

In this study, we focused on the model part of Aphyds. Our goal
was to express the data sharing relationships between the
components in the architecture. Thus, we applied AliasJava to the
AphydsModel class representing the overall model’s
architecture, as well as the Circuit repository and the five
computational module classes. These 7 large classes comprise
3550 lines of code, as measured by Unix wc (word count). We
typechecked the alias annotations in these classes against
annotations we added to parts of the interfaces of the Java
standard library and the rest of the Aphyds application.

Results. The study took about three hours and 40 minutes—less
than a quarter of the time that it took the same programmer to
express the control-flow architecture of the same part of Aphyds.
The alias annotation system probably required editing more lines
of source text than the earlier, control-flow architecture
annotations. However, the alias annotations did not require
changing any existing source code, just adding annotations. In
contrast, our earlier system required significant source-code
refactoring to make the code conform to the developer’s intended
architecture.

We discovered almost immediately that it was quite tedious to
annotate the majority of method arguments (including this) and
local variable declarations that have a lent annotation. We have
since made lent the default annotation for method arguments
and locals.

The annotations in the architecture show the style of sharing in
this repository application. The circuit database has a single alias
parameter, data, that represents the circuit elements in the
database. Since all of the other computational components act on
these circuit elements, they are also parameterized by the same
alias parameter. We did not use the shared annotation except
for objects of type String. String objects are immutable in
Java, so we did not feel that it was important to track their aliasing
patterns precisely, and making strings shared simplified our
annotation task.

The annotations in ports used for communication between
components also show the semantics of the methods used for
inter-component communication. Methods that return computed
data typically take lent parameters and return results annotated
either unique or data. In contrast, methods that set data
usually take parameters with data annotations. These
annotations also showed that the objects shared between
components came from a small set of classes including circuit
elements and data structures that reflect their organization into a
circuit.

5.3. Annotation Inference
We evaluated our annotation inference algorithm in several ways.
First, we applied inference to small examples, and compared the
inferred types with those generated by hand. We then evaluate the
scalability of inference in time and space using the Java Standard
Library. Finally, we report our observations on the inferred types
for Java library code.

Inference Benchmarks. We chose as our inference benchmarks a
set of code examples taken from this paper, specifically Figures 1
through 6. These examples do not involve ArchJava code (for
which our annotation inference implementation is not yet
complete). We ran the inference algorithm on versions of the
code that had all annotations stripped out.

Our implementation of annotation inference inferred exactly the
same types as are shown in the figures (up to renaming of
parameters), with the following exceptions. We inferred lent or
unique annotations for a few local variables that have owned or
shared annotations in the figures (for example, temp and i2 in
Figure 3 and s in Figure 4 were lent, and the points in Figure 2
were unique). In this case, the annotations inferred by the
inference algorithm were in fact more precise than the ones in the
figures.

Scalability. Our inference algorithms for lent and unique
scale linearly with program size. We timed the algorithms on the
408 classes in the JDK 1.2.1 standard library that are reachable
from java.lang.Object. As a point of reference, it takes
about 100 seconds for our compiler to parse and typecheck these
classes. Our lent and unique inference analyses took 33
seconds and 151 seconds, respectively. Thus inferring these
annotations takes time comparable to parsing and typechecking.

Our current constraint solver implementation has been partly
optimized, but we will continue to improve execution time and
space using techniques developed by O’Callahan and others
[OCa00]. The solver infers alias parameters for the 408 Java
standard library classes in about 30 minutes, using 2 GB of
memory.

Standard Library Inference. We ran our inference algorithm on
the same 408 classes from the Java Standard Library to determine
whether the inferred annotations would be both precise and
understandable.

Our experiment suggests that the inference algorithm is fairly
precise, although some improvement is still needed. Around 50%
of method and constructor parameters were inferred to be either
lent or unique, which represent the most precise annotations.
The other annotations were split about equally between shared
and alias parameters, with a few owned annotations also.

327

The major symptom of imprecision in the inference results
appears to be unnecessary shared annotations. We have found
that inference results are very sensitive to the way that the type
system is encoded into constraints, and the way that the extended
occurs check unifies type variables. By experimenting with
different constraint encodings and unification heuristics, we have
been able to reduce shared annotations considerably, and we
believe there is still room for improvement. We hope to eliminate
another major source of imprecision by implementing inference of
static method parameters.

When evaluating the understandability of the inferred annotations,
we discovered that many classes had dozens if not hundreds of
inferred parameters. In a sense, the analysis is too precise,
making distinctions between different alias parameters that are too
fine to be useful to the programmer. Our experience suggests that
additional tools or heuristics will be needed to reduce the number
of parameters for each class to a manageable level.

6. Related Work
Our work builds on a number of existing type systems for
describing alias relationships in object-oriented programs. The
most closely related work falls into two main categories:
uniqueness type systems for describing unaliased pointers, and
ownership type systems for describing pointers that are confined
to a limited domain. AliasJava combines these lines of research,
supporting both unique references and a flexible form of object
ownership. The synergy of these features allows AliasJava to
express important idioms that neither class of annotations can
express alone, such as those discussed in section 2.4.

Uniqueness types can be used to declare references that are
unaliased [Min96, CBS98]. Passing a unique object from one
method to another avoids all aliasing problems, since the original
method may not use the object again. Our lent annotation is
similar to Wadler’s let! Construct [Wad90]. Boyland’s alias
burying paper [Boy01] described how to implement unique
pointers without a special destructive read operation, an
innovation adopted by AliasJava. Alias burying uses an effect
system to enforce a stronger uniqueness invariant than AliasJava
enforces: namely that when a unique field is read, all previous lent
aliases to that field are dead.

Linear type systems [Wad90] guarantee uniqueness and in
addition can be used to track resource usage. Linear types have
been applied to check protocols defining the order in which
library methods can be called, as in the Vault language [FD02].
Leino et al. have also used uniqueness to specify and check side
effects in a modular way [LHZ02]. A number of research efforts
have used linear types to verify the correctness of explicit memory
management using the concept of a region
[TT94,CWM99,FD02,GMJ+02]. A region represents a group of
objects that are deallocated together. A region type is similar to
an ownership type in that all objects must be accessed through
their region. Although supporting explicit deallocation is not a
goal of AliasJava, our system makes two contributions relative to
region types. First, regions must be tracked linearly to enable
explicit deallocation; AliasJava relaxes this constraint on owning
objects, permitting more flexible aliasing patterns. Second, region
types do not have an encapsulation model like AliasJava’s for
protecting access to the objects in a region; any object that can
name the region can access the objects inside it.

Ownership types, which describe a limited static or dynamic
scope within which sharing can occur, can also be used to control
aliasing. Early work such as Islands [Hog91] and Balloons
[Alm97] imposed strict rules on sharing objects between
components, significantly limiting expressiveness. A more recent
variation, Confined Types [BV99], allows programmers to restrict
object references to within a particular package; the system has
been extended to support inference of confined types [GPV01].
Universes [MP99] provides a combination of ownership and
confinement, providing additional flexibility using read-only
references that can cross universe boundaries. More recently,
Clarke et al. and Banerjee et al. have used ownership types to
reason about side effects and representation independence as well
as aliasing [CD02, BN02].

The ownership annotations in AliasJava are most closely related
to Flexible Alias Protection [NVP98] and its successors
[CPN98,CNP01,Cla01]. Flexible Alias Protection uses
ownership polymorphism to strike a balance between
guaranteeing aliasing properties and allowing flexible
programming idioms. In Flexible Alias Protection, owned objects
can only be accessed by their owner and its children. However,
this invariant prohibits iterators, which are not owned by a
collection, yet must access its owned state. Clarke et al. address
this issue by introducing a new abstraction called ownership
contexts: each object has an owning context (the context that
owns it) and a representation context (the context that owns its
representation) [CNP01, Cla01]. The key property of their system
is a containment invariant, which states that if object o1 refers to
object o2, then the representation context of o1 must be inside the
owning context of o2.

The ownership subset of AliasJava is quite similar to that of
Clarke’s thesis [Cla01] in both expressiveness and the properties
enforced. We wanted to enforce an encapsulation property that
relates objects directly, rather than one that relates abstract
ownership contexts. Therefore, we chose to phrase the
encapsulation guarantees of AliasJava in terms of capabilities that
can be passed from one object to another using ownership
parameters. AliasJava’s capability-based encapsulation is slightly
weaker than Clarke’s containment invariant because we place no
restrictions on alias parameters, but AliasJava is correspondingly
more flexible. Existing implementations of Flexible Alias
Protection and its successors lack support for language features
such as inheritance [Bok99, Buc00], and thus there has been no
significant experimental validation of the design.

Capabilities for Sharing [BNR01] describes a general capability-
based aliasing model that can encode a number of other alias-
control systems, including ours, as a special case. The capabilities
in their system are fine-grained and are dynamically checked; in
contrast, our type system verifies statically (except for casts) that
objects are only accessed through appropriate high-level
capabilities.

Parameterized Race Free Java (PRFJ) uses the concept of object
ownership and uniqueness to develop a type system to guarantee
that a program is free of data races [BR01] and deadlocks [BR02].
PRFJ was not designed to encapsulate owned objects. However, a
variant of PRFJ supports a stronger notion of object encapsulation
than AliasJava: owned objects are confined within the owner, its
owned objects, and its inner classes [BR02]. This variant is more
restrictive than AliasJava: an object can delegate a capability to

328

access its owned state to its other owned objects and to its inner
classes, but not to trusted external classes and methods, even
temporarily. Thus, iterators can only be implemented as inner
classes of the collection they iterate over. Also, objects cannot be
unique if they have non-shared, non-unique ownership
parameters—prohibiting many uses of unique. To our knowledge,
this variant has not been evaluated in practice.

Systems such as Alias Types [WM00] and Role Analysis
[KLR02] specify the shape of a local object graph in more detail
than our system. The Alias Types proposal uses this information
to safely deallocate objects, while Role Analysis is used to specify
and check properties of data structures. In contrast to these
detailed specifications of a local alias graph, the goal of AliasJava
is to provide a lightweight and practical way to constrain global
aliasing within a program.

An alternative to using a type system to limit aliases is to use an
alias analysis-based tool such as Lackwit [OJ97] to visualize the
aliases within a program. For answering questions about aliasing,
AliasJava can be more precise than Lackwit, which does not treat
data structures polymorphically. Compared to Lackwit’s
successor Ajax [OCa00], AliasJava allows more parametric
polymorphism on methods, but its treatment of subtype
polymorphism is less precise due to the constraints of AliasJava’s
type system. One benefit of expressing alias information in a type
system is that the information is constantly available and
constantly checked for consistency, and so there is no need to run
a tool to take advantage of it.

A final area of related work is systems that enforce the secure flow
of information. A representative system is JFlow [Mye99], which
annotates each piece of data with a set of principals that own the
data, and for each owner, a list of principals that are allowed to
read the data. The type system verifies that no principal can read
a piece of data unless all the data’s owners have given read
permission to that principal. AliasJava is more lightweight than
JFlow, because our system labels references with a single owner
instead of a list of owners and a list of authorized readers for each
owner. However, our system only supports reasoning about
information flow through data sharing, not other forms of
information flow.

7. Conclusion
This paper described AliasJava, an annotation system for Java that
places structural and temporal bounds on aliases, enabling
developers to reason more directly about aliasing in object-
oriented systems. AliasJava is expressive enough to describe a
wide range of important idioms, including collection classes,
iterators, and several architectural styles. Our design extends to
the full Java language, including arrays, casts, inheritance, and
inner classes. We formalized a subset of the system, and proved
key invariants of the annotations. Our alias annotations can be
automatically inferred using a novel variant of an existing
instantiation constraint-based algorithm. We have validated the
design of AliasJava and the inference algorithm on part of the
Java standard library and on a realistic application. Our
experience suggests that AliasJava is flexible enough to use on
existing code, that annotation overhead is reasonable, and that the
annotations can express important application constraints.

Acknowledgements
We would like to thank David Notkin, Doug Lea, members of the
Cecil group, and the anonymous reviewers for their comments and
suggestions. This work was supported in part by NSF grants
CCR-9970986 and CCR-0073379, and gifts from Sun
Microsystems and IBM.

References
[ACN02a] Jonathan Aldrich, Craig Chambers, and David Notkin.
ArchJava: Connecting Software Architecture to Implementation.
Proc. International Conference on Software Engineering, Orlando,
Florida, May 2002.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Notkin.
Architectural Reasoning with ArchJava. Proc. European
Conference on Object-Oriented Programming, Málaga, Spain,
June 2002.

[AKC02] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annotations for Program Understanding.
University of Washington technical report UW-CSE-02-11-01,
November 2002.

[Alm97] Paulo Sérgio Almeida. Balloon Types: Controlling
Sharing of State in Data Types, Proc. European Conference on
Object-Oriented Programming, Jyväskylä, Finland, June 1997.

[Arc02] ArchJava web site. http://www.archjava.org/

[Bok99] Boris Bokowski. Implementing "Object Ownership to
Order." Proc. Intercontinental Workshop on Aliasing In Object-
Oriented Systems, Lisbon, Portugal, June 1999.

[BN02] Anindya Banerjee and David A. Naumann.
Representation Independence, Confinement, and Access Control.
Proc. Principles of Programming Languages, Portland, Oregon,
January 2002.

[BNR01] John Boyland, James Noble, and William Retert.
Capabilities for Sharing: A Generalization of Uniqueness and
Read-Only. Proc. European Conference on Object-Oriented
Programming, Budapest, Hungary, June 2001.

[Boy01] John Boyland. Alias Burying: Unique Variables Without
Destructive Reads. Software Practice & Experience, 6(31):533-
553, May 2001.

[BR01] Chandrasekhar Boyapati and Martin Rinard. A
Parameterized Type System for Race-Free Java Programs. Proc.
Object-Oriented Programming Systems, Languages and
Applications, Tampa, Florida, October 2001.

[BR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard.
Ownership Types for Safe Programming: Preventing Data Races
and Deadlocks. Proc. Object-Oriented Programming Systems,
Languages and Applications, Seattle, Washington, November
2002.

[BS98] Boris Bokowski and André Spiegel. Barat—A Front-End
for Java. Freie Universität Berlin Technical Report B-98-09,
December 1998.

[Buc00] Alexander Buckley. Ownership Types Restrict Aliasing.
MEng. Computing Final Year Project Report, Imperial College of
Science, Technology and Medicine, London, United Kingdom,
June 2000.

329

[BV99] Boris Bokowski and Jan Vitek. Confined Types. Proc.
Object-Oriented Programming Systems, Languages, and
Applications, Denver, Colorado, November 1999.

[CBS98] Edwin C. Chan, John T. Boyland, and William L.
Scherlis. Promises: Limited Specifications for Analysis and
Manipulation. Proc. International Conference on Software
Engineering, Kyoto, Japan, April 1998.

[CD02] David Clarke and Sophia Drossopoulou. Ownership,
Encapsulation, and the Disjointness of Type and Effect. Proc.
Object-Oriented Programming Systems, Languages and
Applications, Seattle, Washington, November 2002.

[Cla01] David Clarke. Object Ownership & Containment. Ph.D.
Thesis, University of New South Wales, Australia, July 2001.

[CNP01] David G. Clarke, James Noble, and John M. Potter.
Simple Ownership Types for Object Containment. Proc. European
Conference on Object-Oriented Programming, Budapest,
Hungary, June 2001.

[CPN98] David G. Clarke, John M. Potter, and James Noble.
Ownership Types for Flexible Alias Protection. Proc. Object-
Oriented Programming Systems, Languages and Applications,
Vancouver, Canada, October 1998.

[CWM99] Karl Crary, David Walker, and Greg Morrisett. Typed
Memory Management in a Calculus of Capabilities. Proc.
Principles of Programming Languages, San Antonio, Texas,
January 1999.

[FD02] Manuel Fähndrich and Robert DeLine. Adoption and
Focus: Practical Linear Types for Imperative Programming. Proc.
Programming Language Design and Implementation, Berlin,
Germany, June 2002.

[FRD00] Manuel Fähndrich, Jakob Rehof, and Manuvir Das.
Scalable Context-Sensitive Flow Analysis using Instantiation
Constraints. Proc. Programming Language Design and
Implementation, Vancouver, Canada, June 2000.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, Massachusetts: Addison-Wesley, 1994.

[GMJ+02] Dan Grossman, Greg Morrisett, Trevor Jim, Michael
Hicks, Yanling Wang, and James Cheney. Region-Based
Memory Mangagement in Cyclone. Proc. Programming
Language Design and Implementation, Berlin, Germany, June
2002.

[GPV01] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating Objects with Confined Types. Proc. Object-
Oriented Programming Languages, Systems, and Applications,
Tampa, Florida, November 2001.

[GS93] David Garlan and Mary Shaw. An Introduction to
Software Architecture. In Advances in Software Engineering and
Knowledge Engineering, I (Ambriola V, Tortora G, Eds.) World
Scientific Publishing Company, 1993.

[Hen93] Fritz Henglein. Type Inference with Polymorphic
Recursion. Trans. Programming Languages and Systems,
15(2):253--289, April 1993.

[Hog91] John Hogg. Islands: Aliasing Protection in Object-
Oriented Languages. Proc. Object-Oriented Programming:
Systems, Languages and Applications, Phoenix, Arizona, October
1991.

[HLW+92] John Hogg, Doug Lea, Alan Wills, Dennis
deChampeaux, and Richard Holt. The Geneva Convention on the
Treatment of Object Aliasing. OOPS Messenger, 3(2), April
1992.

[IPW99] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A Minimal Core Calculus for Java and GJ.
Proc. Object-Oriented Programming Systems, Languages, and
Applications, Denver, Colorado, November 1999.

[KLR02] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role
Analysis. Proc. Principles of Programming Languages, Portland,
Oregon, January 2002.

[KTU93] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. The
Undecidability of the Semi-Unification Problem. Information and
Computation, 102(1):83--101, January 1993.

[LHZ02] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and
Yunhong Zhou. Using Data Groups to Specify and Check Side
Effects. Proc. Programming Language Design and
Implementation, Berlin, Germany, June 2002.

[Min96] Naftaly Minsky. Towards Alias-Free Pointers. Proc. of
European Conference on Object Oriented Programming, Linz,
Austria, July 1996.

[Mye99] Andrew C. Myers. JFlow: Practical Most-Static
Information Flow Control. Proc. Principles of Programming
Languages, San Antonio, Texas, January 1999.

[MP99] Peter Muller and Arnd Poetzsch-Heffter. Universes: A
Type System for Controlling Representation Exposure. In A.
Poetzsch-Heffter and J. Meyer (Hrsg.): Programmiersprachen und
Grundlagen der Programmierung, 10. Kolloquium, Informatik
Berichte 263, 1999/2000.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias
protection. Proc. European Conference on Object-Oriented
Programming, Brussels, Belgium, 1998.

[OCa00] Robert O’Callahan. Generalized Aliasing as a Basis for
Program Analysis Tools. Ph.D. Thesis, published as Carnegie
Mellon technical report CMU-CS-01-124, November 2000.

[OJ97] Robert O'Callahan and Daniel Jackson. Lackwit: A
Program Understanding Tool Based on Type Inference. Proc.
International Conference on Software Engineering, Boston,
Massachusetts, May 1997.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementing the
Call-by-������ -Calculus Using a Stack of Regions. Proc.
Principles of Programming Languages, Portland, Oregon, January
1994.

[Wad90] Philip Wadler. Linear Types Can Change the World!
Programming Concepts and Methods, (M. Broy and C. Jones,
eds.) North Holland, Amsterdam, April 1990.

[WM00] David Walker and Greg Morrisett. Alias Types for
Recursive Data Structures. Proc. International Workshop on
Types in Compilation, Montreal, Canada, September 2000.

330

