
Incommunicado: Efficient Communication for Isolates

Krzysztof Palacz Grzegorz Czajkowskiy Laurent Daynèsy Jan Vitek

S3Lab, Dept of Computer Sciences, Purdue University, West Lafayette, IN, USA
y Sun Microsystems Laboratories, 2600 Casey Avenue, Mountain View, CA 94043, USA

ABSTRACT
Executing computations in a single instance of safe language
virtual machine can improve performance and overall plat-
form scalability. It also poses various challenges. One of
them is providing a fast inter-application communication
mechanism. In addition to being eÆcient, such a mechanism
should not violate any functional and non-functional prop-
erties of its environment, and should also support enforce-
ment of application-speci�c security policies. This paper ex-
plores the design and implementation of a communication
substrate for applications executing within a single JavaTM

virtual machine modi�ed to enable safe and interference-free
execution of isolated computations. Designing an eÆcient
extension that does not break isolation properties and at the
same time pragmatically o�ers an intuitive API has proven
non-trivial. This paper demonstrates a set of techniques
that lead to at least an eight-fold performance improvement
over the in-process inter-application communication using
standard mechanisms o�ered by the JavaTM platform.

Keywords
Application isolation, inter-application communication.

1. INTRODUCTION
Running multiple computations in a single instance of the
Java virtual machine (JVMTM), for instance executing many
servlets in a Web server, has the potential for improving
overall system performance and scalability by sharing some
of the virtual machine's internal data structures. Such col-
location also creates opportunities for better management of
resources and elegant control policies at the language level.
The main diÆculty in delivering collocation is that the plat-
form must provide strong isolation guarantees to ensure that
if one computation fails or misbehaves, other computations
will not be disrupted or prevented from performing their
assigned tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

The application isolation API de�nes the basic functional-
ity that can be used to create and manage mutually dis-
joint computations within the JVM. The key abstraction
proposed is that of an isolate1. Isolates are instances of the
Isolate class, which provides the means to start and stop
an isolated computation.

The goal of our project, code-named Incommunicado due to
the conicting needs of keeping applications disjoint while
allowing them to interact, is to explore the design space of
communication infrastructures for isolates. The presented
design is by no means de�nitive, nor are we in a position to
advocate its inclusion in the isolation API. Rather, we seek
to gain experience with the costs and bene�ts of a particular
scheme as well as to provide a exible and eÆcient platform
for further experimentation.

Designing a communication substrate for isolates is challeng-
ing for several reasons. New communication mechanisms
cannot interfere with other features o�ered by the under-
lying language or by its particular implementation. This
item is particularly important: any new feature may have
subtle interactions with, for instance, the automatic mem-
ory manager, which in turn may impact the safety of the
language. Any communication mechanism should be gen-
eral enough to accommodate the many di�erent application
requirements, such as di�erent security policies [11], and re-
source limits [3, 8]. Yet it must remain eÆcient, so that
the bene�ts of collocation are not drowned by the com-
munication costs. In this respect, it is essential to use a
high-performance virtual machine for experimentation. Us-
ing low-quality virtual machine implementations, or virtual
machines without dynamic compilers, may skew the picture
of the relative costs. Implementing the mechanism in a mod-
ern, fast virtual machine is much more time consuming, but
leads to performance answers meaningful for practical use.
Similarly, bytecode editing approaches are not only plagued
by performance problems, but typically must prohibit the
use of certain languages features [13].

Another important guiding principle for our implementation
is to pay as you go. In other words, applications that do
not communicate should not su�er any slowdown due to the

1The application isolation API, currently under review as
JSR 121 [14], has not been �nalized as of this writing. The
name isolate was chosen in order to avoid further overload-
ing of terms such as task, process, domain, etc.

262

presence of the new mechanism. This principle is key for
practical acceptance.

Incommunicado is a new communication substrate for iso-
lates that has been designed to provide a minimal inter-
face for isolate communication and was implemented in the
Multitasking Virtual Machine (or MVM) [7]. MVM ex-
hibits many features we believe will be present in future
virtual machines. In particular, it is a single-process, high-
performance, full-featured virtual machine hosting multiple
tasks in an interference-free way, with clean application ter-
mination and resource reclamation facilities. MVM has been
designed to demonstrate that multitasking in a safe language
can be practical and eÆcient.

The design of Incommunicado can be characterized by:

� Simplicity { Incommunicado is inspired by the JavaTM

remote method invocation API (RMI), a model that
is already familiar to programmers [9].

� EÆciency { communication costs in our system are
between 8 and 70 times smaller than when locally using
RMI. Thus we feel justi�ed in advocating the use of the
substrate for performance critical applications.

� Security { policy-neutral hooks are provided for im-
plementing application-speci�c policies. The policies
can be speci�ed simply and run eÆciently.

� Non-intrusiveness { the functional and non-funct-
ional properties of the underlying virtual machine were
preserved. In particular, we were careful to preserve
isolation and termination.

This paper shows how to use the new facilities and de-
tails the cross-isolate method invocation package which is
the centerpiece of our implementation. The main contribu-
tions of this work are a description and performance evalua-
tion of an isolate communication mechanism that addresses
the above requirements while simplifying program develop-
ment.2

2. APPLICATION ISOLATION API
The application isolation API provides the means of creat-
ing and managing isolated computations (isolates), written
in the Java programming language. An isolate, constructed
as an instance of the Isolate class, encapsulates an appli-
cation or a component. The goal of the isolate API, and
the main di�erence with servlets and applets, is that iso-
lates guarantee strict isolation between programs. Isolates
have disjoint object graphs, sharing objects is forbidden, and
each isolate has its own version of a static state of each class
it uses. This form of isolation guards application against
various form of interference. No special coding conventions
need to be followed within an isolate, nor is there a need
for recompilation or any other modi�cation to the bytecode.

2The interface presented in this paper is not a part of the
JSR 121 API.

From a program's point of view, starting an isolate is equiv-
alent to starting a new JVM and gives the programs the
same rights: applications executed as isolates have full ac-
cess to all features of the JDKTM and to all constructs of
the Java programming language, controlled by standard per-
missions. From an implementation point of view, running
multiple isolates in the same virtual machine enables sharing
of internal virtual machine (VM) data structures, bytecode
and in some cases compiled code. No particular techniques
are prescribed to realize isolates, and implementation strate-
gies can range from running the JVM in a separate process
for each isolate to executing all applications within a single
multi-tasking JVM in a single process.

The isolate API can be used to start new applications as
isolates and to manage their life-cycle. For instance, a Web
server can choose to start each servlet as an isolate, while
servlets themselves can be oblivious of the fact that they are
run as isolates.

2.1 The Isolate API
The Isolate class provides a simple interface. Isolates are
created by specifying a class name and an array of string
arguments:

Isolate isl = new Isolate("MyClass", args);

The only requirement is that the speci�ed class must have
a main() method just like a Java application executed from
the command line. A newly created isolate is inactive, its
creator must call start(Link[]) to inject a new thread into
the isolate with an array of communication links to other
isolates.

The Isolate class provides methods to terminate the exe-
cution of isolates, exit() and halt(), the former is equiva-
lent to termination of the VM with Runtime.exit(), while
the latter is equivalent to Runtime.halt() which performs a
forced shutdown without �nalization. Unlike the deprecated
stop method of java.lang.Thread, isolate termination is
guaranteed to leave the virtual machine and JDK code in
a consistent state. Thus, isolate-based applications are bet-
ter suited to interruptible tasks than for instance applets or
servlets.

2.2 The Link API
Links, which are part of the Isolate API, provide a low-level
communication layer designed for high bandwidth commu-
nication of basic data types (byte arrays, byte bu�ers, serial-
ized objects, sockets, and strings). Communication between
isolates is done through instances of subclasses of the ab-
stract Link class. Links are one- or two-way communication
channels between a pair of isolates that transport instances
of the class LinkMessage. The simplest case of a send-receive
sequence over links is coded as follows:

// sender isolate
LinkMessage message;
A data = new A();
message = LinkMessage.newSerializableMessage(data);
link.send(message);
...

263

// receiver isolate
LinkMessage message = link.receive();
A data = (A) message.getSerializable();

Links are created by invoking the static method newInst-
ance with a pair of isolates as arguments. Thus the following
code snippet creates a one way connection between the cur-
rent isolate and a newly created isolate:

Link lnk = Link.newInstance(Isolate.currentIsolate(),
new Isolate(aclass, args));

Note that both end-points of a link must exist3 before creat-
ing the link. This causes a slight diÆculty for setting up the
initial communication topology. Passing an array of links to
the start method solves this problem. Thus, in the above
example the isolate isl can be bootstrapped by calling

isl.start(new Link[]flinkg);

Once communication has been set up in this fashion, changes
in the interconnection topology can be e�ected by exchang-
ing links (in a message over an existing link). For com-
pleteness, we mention the existence of the EventLink class,
which provides a channel for receiving noti�cation of isolate
life-cycle events (currently three events types are supported:
starting, stopping, terminated).

2.3 The Isolate Security Model
As mentioned above isolates provide protection against un-
intentional sharing, which has been the cause of numerous
security breaches (see for instance [24]). The communication
API does not require an isolate to accept incoming message
(receive operations are explicit). Such provisions are needed
to prevent certain kinds of denial of service attacks. The
remaining forms of inter-isolate interference are related to
uncontrolled use of computational resources, such as CPU
and heap memory. The API provides a IsolatePermission
class that extends the BasicPermission class of the Java
platform security infrastructure. It controls the creation and
stopping of isolates, inter-isolate communication, listing of
all isolates, and retrieving an isolate's context.

3. ISOLATE COMMUNICATION WITH XIMI
Incommunicado o�ers a high-level inter-isolate communica-
tion substrate called XIMI (for C ross-I solateM ethod Invoc-
ation). Initially our goal with XIMI was to provide a simple
and exible programming model for inter-isolate communi-
cation. We chose to model XIMI on RMI, a well known com-
ponent of the Java platform. The version of XIMI presented
here is signi�cantly di�erent from our earlier design. When
we started working on XIMI (summer 2001), the Isolate API
did not specify how isolates were to communicate. This has
since then been addressed by the Link API. Another moti-
vation for revising our design was that our experience with
the XIMI programming model suggested that compatibility
with RMI is diÆcult to achieve and negates some of the
advantages of Isolates.

3By \exist" we mean that the isolates have been created,
but they need not have been started.

This section introduces the revised XIMI programming model.
Implementation issues will be discussed in Section 4. We
start by contrasting XIMI with RMI.

3.1 Why not RMI?
The abstraction of remote procedure call (RPC) has proven
to be versatile [4], and has been adopted for a variety of soft-
ware and hardware platforms. Communication mechanisms
inspired by RPC but customized for a particular environ-
ment, such as RMI [9], have emerged. Their existence pro-
vides a convenient way for programmers to utilize network
capabilities via an API in the spirit of the programming
language at hand.

While remote method invocation is syntactically identical to
local method invocation, there are signi�cant semantic dif-
ferences. Remote objects can only be manipulated using ref-
erences of the interface type java.rmi.Remote or any other
interface that extends it. Arguments to remote method in-
vocations as well as their return values are passed by deep
copy, following the semantics of serialization. Remote ob-
jects are exchanged by remote references, and stubs are cre-
ated as replacement for remote objects to forward invoca-
tions. Beneath this high-level interface lie three layers of
implementation:

� stub layer: provides (compile-time) automatically gen-
erated implementations of sub-interfaces of Remote, so-
called stubs. These stubs forward invocations to the
actual, programmer-supplied implementations of these
sub-interfaces using the transport layer.

� remote reference layer: is responsible for determining
the identity of the remote object, whether the remote
object is replicated or not, and whether the remote ob-
ject is currently instantiated or has to be instantiated.

� transport layer: is responsible for connection manage-
ment, encoding and dispatching invocations over the
wire.

RMI is a general purpose protocol for distributed communi-
cation across administrative domains. Thus, with RMI, Java
virtual machines with potentially di�erent internal data for-
mat, object layouts, and class representations are able to
exchange data. In the case of Isolate communication much
of this generality is merely overhead.

For isolates collocated within the same JVM several of these
di�erences disappear. For instance, data formats and object
layouts are identical on both communicating parties. Fur-
thermore, network errors need not be taken into account,
and machine failures are likely to be simultaneously fatal
for both sides. Thus, there is little motivation for forcing
programmers to catch errors that will not occur.

For this reason we have chosen to design XIMI for speed
rather than versatility, with the understanding that appli-
cations requiring a more expressive protocol may have to
fall back on RMI. XIMI provides an application layer inter-
face comparable to RMI's application layer. The semantics

264

of isolate communication follows the call semantics of RMI
but with some objects passed by copy and other by cross-
isolate references. APIs providing access to the lower layers
of RMI are not supported. For example, XIMI does not
have equivalents of classes and methods providing program-
matic access to the transport layer of RMI. These classes
and methods were omitted because their functionality (such
as setting up and managing connections or monitoring their
"liveness") is either not applicable or performed di�erently.

3.2 The XIMI Communication Substrate
Incommunicado provides a simple interface to inter-isolate
communication. The Isolate API has been modi�ed (i) to
add a new method to the Isolate class (ii) to de�ne two
cross-isolate objects called Portal and DeferrablePortal,
and (iii) to add a new security manager class called Isolate-
SecurityManager. The new interface is given in Figure 1.

Isolate(String, String[], String) constructs an isolate;
the �rst argument is the name of the main isolate class and
the last argument is the name of a subclass of Isolate-
SecurityManager (or null). The only constraint is that the
main class must have a static main(String[]).

Communication between isolates is done through portals.
A portal, an instance of a non-public class extending the
Portal abstract class, is at the receiving end of a connec-
tion. To communicate, a server isolate must create a portal
object and send that portal through an existing communica-
tion channel (either as a message over a link or as an argu-
ment to another portal). Each portal has a target object and
one or more external stub objects. The portal and target
objects 'live' within the server isolate, while the stubs are
located in client isolates. Cross-isolate calls have semantics
similar to RMI in that portal objects are passed by refer-
ence (involving the creation of stubs), while all other objects
are always copied maintaining the semantics of serialization,
even though the implementation avoids the overhead of ac-
tual serialization. Returns are treated in a similar fashion.
If a method called through a portal throws an exception,
the exception will be serialized and returned to the calling
isolate.

The semantics of cross-isolate method invocation are that
the caller will always block. On the callee side, the se-
mantics depend on how the portal was created. The static
method Portal.newPortal() creates a plain portal, while
the method Portal.newDeferablePortal creates a defer-
able portal. Both methods take an interface, a target object
and boolean. They di�er in their behavior with respect to
external calls. A plain portal will always forward calls to
the target object, thus creating a new thread within the
target isolate to handle the external call (see Section 4.4
for implementation details)4. A deferrable portal defers the
execution until an explicit accept() call from within the iso-
late. Thus the call is handled by an existing thread within
the isolate. The accept method is blocking thus if there is

4The portal interface does not mandate creation of
threads per se, a thread pool could as well be used by an
implementation of XIMI.

no pending call on the portal, the current thread will wait
until one occurs. If a call is issued on an isolate with several
threads blocked on the particular portal, one of these will
be selected randomly.

Each portal has an exported interface which must be an
interface implemented by the portal's target. Unlike RMI
which requires that the exported interface extend Remote,
any interface may be chosen at portal creation time. This
facilitates inter-isolate communication by allowing any ob-
ject implementing the interface to be used as the target of
a portal. Stub objects created from a given portal have a
reference to the portal's target and forward invocations. All
portals support methods to get and set the target object, as
well as a close method which closes a portal. Pending calls
are allowed to complete but no new calls will be processed.
A portal can also be copyable, meaning that isolates hold-
ing one of the portal's stubs may send that stub to another
isolate. If the portal is not copyable, then its stubs will not
be serialized. A portal can thus be associated with multiple
stub objects.

�nal public class Isolate f

public Isolate(String classname,
String[] args,
IsolateSecurityManager sm);

public void start(Object[] portals);

static public Object[] getPortals();
g

public abstract class Portal f

static public Portal newPortal(Class iface,
Object target,
boolean copyable);

static public Portal
newDeferrablePortal(Class iface,

Object o,
boolean copyable);

void close();

void setTarget(Object tgt);

Object getTarget();

Class getExportedInterface();

void accept() throws InterruptedException;
g

public abstract class IsolateSecurityManager f

void checkInvokeFromIsolate(Isolate src,
Method m)

throws AccessControlException;

void checkClassDefinition(Isolate src,
String classname)

throws AccessControlException;

�nal public Isolate getParent(Isolate src);

�nal public Isolate getCurrent();
g

Figure 1: Incommunicado interfaces. In the case of
Isolate, we only present new methods. Implementa-
tions of Portal and DeferrablePortal are private.

265

interface Map f
Object put(Object name, Object obj);
Object get(Object name);
...

interface Converter f
Printable prepare(Document doc);
...

class ConverterImpl
implements Converter f
...

class PrintServer f

static public void main(String[] args) f

Map nameSrv = (Map) Isolate.getPortals()[0];
Portal conv = Portal.newPortal(Converter.class,

new ConverterImpl(),
true);

nameServ.put("converter", conv);
...

class App f
...
Document doc = new DocImpl();
Converter conv = (Converter) nameSrv.get("converter");
Printable file = conv.prepare(doc);

Figure 2: An example of inter-isolate communication. PrintServer registers a Converter with the name
server. App, running in another isolate, looks up the converter and invokes prepare() in the PrintServer.

Isolates have two methods to bootstrap communication. The
start(Object[] portal) method is called by the isolate's
creator to inject a number of stubs into a newly created iso-
late (the semantics of start are identical to that of a cross-
isolate call). Then from within an isolate, getPortals()
can be used to obtain all portals. The array of objects re-
turned may contain remote stubs as well as plain objects.
A name server object can simply be passed as an argument
as shown in Figure 2. Thus XIMI di�ers from RMI in that
the java.rmi.Naming functionality is not required.

Implementations of the IsolateSecurityManager class must
provide the following two methods, checkInvokeFromIsol-
ate and checkDefineClass, to respectively check that a par-
ticular invocation is legitimate and that the target isolate is
allowed to load a class while unpacking a message received
from another isolate. The class further provides two meth-
ods, getCurrent and getParent, to respectively get the iso-
late that is the target of the operation, as well as its creator.

3.2.1 Example: Servers

Figure 2 illustrates isolate communication with one isolate,
running the PrintServer class, providing a document con-
version service, and a client running App. The two isolates
are connected by a name server, an object implementing the
standard Map interface. The name server is a stub for an ob-
ject living in yet another isolate. The class PrintServer
is thus able to export a conversion service from its main
method. When it calls the name server's put method with
a string and the converter portal, the string is passed by
copy while the portal is converted to a stub. The portal was
created in copy mode since the name server must be able
to forward stubs to isolates requesting them. Without this,
any attempt to hand out stubs would fail. The class App of
Figure 2 is an application that uses the name server to get
a cross-isolate reference to a converter. The variable conv is
actually a copy of the stub stored in the name server.

3.2.2 Example: Futures

Another use case for portals is to combine them with fu-
tures [17]. A future is an object that stands in for the result

of a computation. Futures decouple computation of inter-
mediate values from the main control ow of a program,
a future may be computed in the background. The main
computation need only block if, when it needs the result,
the background task has not completed. For instance in the
previous example, the class App was forced to wait for the
document conversion to terminate, with futures the same
program can be written as:

Callable obj = new Callable() f
Object call(Object arg) f

return conv.prepare((Document) arg);
gg;

Future future = new BasicFuture(obj, doc);
future.run();

...

Printable file = (Printable) future.get();

The application can now perform arbitrary actions between
the time run() is invoked and the result is requested with
get(). In Figure 2 the client blocked until completion of
prepare().

On the server side, the choice whether to have (i) one thread
per request, (ii) a thread pool, or (iii) sequential processing
is made by specifying a portal class. If conv is a stub cre-
ated from an instance of Portal, calls to prepare() will be
concurrent. On the other hand, if a deferrable portal had
been used, along with the following code in main(), calls
would be serialized.

while (true) f conv.accept(); g

A thread pool implementation can be derived by extending
the above with logic to manage a set of threads.

3.2.3 XIMI Class Stubs

XIMI simpli�es application development by avoiding the in-
termediate step of stub generation. RMI's requirement of
a remote stub class compiler, rmic, is an extra step in the
development cycle. For each remote method in an inter-
face extending Remote, rmic generates a method in the stub
class with the same signature that marshals its arguments,

266

Figure 3: Overview of XIMI communication. Calls to the security manager and copies are explicitly indicated,
we assume that the security manager for B is located in its parent B.

sends them to the remote object and unmarshals the return
value it receives. Whenever an exported remote object is
passed as a parameter or return value in a remote method
call, the stub for that remote object is passed instead and
the stub class has to be available for loading in both client
and server. In XIMI stubs are generated dynamically, on
demand, hence no preprocessing is required and no special
tools need be invoked during development, nor is necessary
to ensure stub availability at class loading time.

3.2.4 Fast loading

Our implementation is based on MVM which provides a fast
loading mechanism that bypasses full class loading, includ-
ing the fetching, parsing and veri�cation of the class �le.
Full class loading is required only by the �rst isolate that
loads a given class. Subsequent loads of the same class in
other isolates reuse the previously created run-time system
data structures, thus considerably speeding loading [7]. The
current version of MVM limits fast loading to the default
class loader. Future MVM versions will lift this restriction
and allow fast loading for user-de�ned class loaders. XIMI
takes advantage of fast class loading.

3.3 Enforcing Security Policies with XIMI
The security requirements of isolate communication di�er
from RMI in at least two respects. First, controlling network
connections is a non-issue. Second, eÆciency is crucial |not
only should applications that do not require a security man-
ager not pay for it, but those requiring security managers

should not experience overheads that would dwarf the per-
formance gains of XIMI. For these reasons, Incommunicado
introduces a subclass of SecurityManager called Isolate-
SecurityManager that provides policy-neutral hooks that
allow the implementations of a variety of security policies
for controlling communication between isolates. Further-
more cross-isolate references can be used like capabilities as
described next.

3.3.1 Capabilities

Capabilities are a well known access control mechanism [18]
used in operating systems as well as some agent systems
(e.g. [22] and [13]). A capability is an unforgeable token
that grants certain access rights to its owner. Some authors
have advocated the use of plain objects as capabilities [26,
11], under the rationale that references can not be manu-
factured and their type describes what can be done with
the object. While this approach can be successful in cer-
tain cases, objects lack two important characteristics found
in most capability-based systems: revocation and copy con-
trol. XIMI references behave as capabilities. Revocation
can be achieved by closing a portal. The expression

portal.close();

will ensure that no more calls can be issued through the
stubs associated with this portal. Calls in progress will not
be a�ected. Copy control is meant to restrict the ow of
capabilities between isolates:

Portal port = Portal.newPortal(Printer.class, obj, false);

267

will create a portal whose stubs can not be copied. Thus if
an isolate acquires the stub, it will not be able to send it to
another isolate via XIMI.

3.3.2 Interposition

Instances of IsolateSecurityManager and its subclasses are
able to interpose on relevant XIMI operations and throw a
AccessControlException if the current security policy is
breached. The security exception is then serialized and re-
thrown in the caller. The interface of this class, given in Fig-
ure 1, consists of two methods: checkClassDefinition(Iso-
late src, String cl) is invoked every time a new class
is about to be loaded as a result of a XIMI call. While
this method may appear redundant given the normal secu-
rity check on class loading, this is not the case since there
is no easy way to check what event triggered a class load
(stack inspection could be used, but it is rather inconve-
nient). The arguments to the method are the name of the
class about to be loaded, the isolate that caused the load
and the isolate in which the class will be loaded. The invo-
cation of this method occurs during deserialization. If the
security manager throws an exception the entire XIMI call
is aborted. The other method in the security manager in-
terface is checkInvokeFromIsolate(Isolate src, Method

met), called once for each XIMI method invocation. Its ar-
guments are the originating isolate and the reection object
describing the method about to be invoked.

Security policies are chosen by the current isolate and dy-
namically associated with newly created isolates. In other
words the same application can have di�erent policies at
di�erent times. For instance,

isl = new Isolate("Application", null,
"RelaxedSecurityManager");

creates a new isolate running the Application class with an
instance of RelaxedSecurityManager.

We will now illustrate some applications of the proposed
API with examples from the literature.

3.3.3 The JavaSeal security model

The JavaSeal mobile object system [25] provides an abstrac-
tion called a seal (for sealed object), which plays a similar
role to isolates. Just as isolates, seals are disjoint computa-
tions which communicate through channels. The seal secu-
rity model enforces hierarchical communication |a seal can
only communicate with its direct parent and direct descen-
dants in the seal hierarchy. The model also imposes strong
restrictions on class loading to protect seals against code in-
jection attacks |seals can only exchange instances of classes
known to both communicating parties. This policy can be
expressed by restricting invocations to parent-child isolate,
and by throwing an exception if class loading is triggered as
a side e�ect of isolate communication. The following class
demonstrates how to interpose on invocations and loading
requests.

class SealPolicy extends IsolateSecurityManager f

void checkDefineClass(Isolate s, String n) f

throw new SecurityException();
g

void checkInvokeFromIsolate(Isolate src, Method m) f

if (!src.equals(getParent(getCurrent())) &&
!getCurrent().equals(getParent(src)))
throw new SecurityException();

g g

checkInvokeFromIsolate ensures that the source of inter-
isolate method invocation is either the parent of the current
isolate, or that the current isolate is the parent of the source.
Note that this security manager is generic, in that the same
instance can be used for multiple isolates.

3.3.4 The Secure Object Spaces model

Bryce simpli�ed the access model of JavaSeal in [5] by al-
lowing any pair of isolates (or in the paper's terminology
object spaces) to communicate provided appropriate access
rights could be obtained. Access rights are hierarchical, thus
a parent can grant and revoke the communication rights of
its children. A similar approach was investigated in [13].
To enforce this model, the security manager plays the role
of a reference monitor checking an access matrix for every
invocation.

class SOSPolicy extends IsolateSecurityManager f

void checkInvokeFromIsolate(Isolate src, Method m) f

if (matrix(src, getCurrent()) != GRANT)
throw new SecurityException();

g g

While the authors have experience with these models, it
is not clear how well the proposed isolate security model
will coexist with the Isolate API. Experimental results pre-
sented in Section 5 were obtained without explicit security
managers.

4. IMPLEMENTING XIMI ON MVM
The Multitasking Virtual Machine (MVM) [7] is a general-
purpose environment for executing disjoint Java applications
in a single operating system process. Internally, each isolate
is supported by a logical instance of the JVM. The bulk of
the runtime as well as the runtime representation of loaded
classes, which includes bytecodes, meta-data describing the
class itself (e.g., its �elds, methods and constants) and code
produced by a dynamic compiler, are shared among all JVM
instances. Creating a new JVM instance adds only a small
set of data structures that captures the part of the execution
context of a program that cannot be shared (for example,
storage for static variables, class monitors, and initializa-
tion status of classes loaded by the program, storage for its
threads, and so on). This separation of the JVM runtime
components into shareable and non-shareable and careful
elimination of other possible sources of interference among
Java applications improves scalability as well as strength-
ens application isolation when compared to other currently
available approaches and mechanisms such as class loaders,
separate processes, or middleware containers.

MVM grants each isolate a share of the global heap. No pro-
grammatic means are given to obtain a reference to an ob-
ject allocated by one isolate from another. This guarantees

268

that objects allocated by di�erent isolates belong to disjoint
graphs of objects, and that each such graph has disjoint sets
of garbage collection roots. Each live root is uniquely asso-
ciated with one isolate. Reclaiming heap space used by an
isolate consists of ignoring the isolate's roots in subsequent
garbage collections.

When an isolate is terminated, either because it exits or
because another, privileged isolate invokes halt(), the re-
sources allocated to the isolate must be reclaimed. In par-
ticular, all threads must be rolled forward out of any critical
sections protecting shared resources up to a termination-safe
point where all the threads of that isolate can be stopped
and their resources reclaimed. Reclamation of resources in-
cludes executing �nalizers. Application-de�ned �nalizers are
not guaranteed to terminate (e.g., because of in�nite loops
in their code); resource control techniques, beyond the scope
of the paper, address this problem.

The goal of the Incommunicado implementation in the con-
text of MVM was to introduce the smallest possible number
of new virtual machine primitives that would provide ad-
equate performance and to implement the remaining func-
tionality in user-level libraries while taking advantage of the
existing RMI infrastructure. Our implementation is con-
tained in the ximi package. The new MVM runtime entry
point is mvm invoke() which is used to implement actual
XIMI method invocations.

4.1 XIMI references
What makes XIMI references interesting is that they are
cross-isolate references and thus introduce sharing between
distinct isolates. Yet since the illusion of disjoint object
graphs must be maintained, JVM-level sharing must re-
main hidden to user code written in the Java program-

Figure 4: Cross-isolate references. A reference to
a Map object in Isolate A points to stub which, in
turn, points to the real object in Isolate B through
a XIReference. The portal controlling the stub is lo-
cated in Isolate B and has a reference to the XIRef-
erence.

ming language. We address this issue by introducing the
ximi.XIReference class, which extends java.lang.ref.-
WeakReference. Use of XIReference is restricted to VM
code to ensure that user code will not be able to gain a di-
rect cross-isolate pointer. The target of a XIReference is
thus strongly reachable only if there are references to it in
its own isolate.

Garbage collection is totally transparent in XIMI and does
not need interfacing with user-level code. The functionality
of java.rmi.dgc [9] is not needed for the proper function-
ing of XIMI, since global GC adequately ful�lls that role. In
MVM, the heap has generational organization. Each isolate
has its own private, independently-collectable, new genera-
tion, while the old generation is shared physically (though
not logically). XIReferences are allocated in old space to
avoid being traversed during young generation collection and
thus ensuring that the target object (in another isolate) is
not traversed at young GC time. This scheme has the sig-
ni�cant advantage that it does not entail changes to the GC
algorithms. It is necessary to treat XIReferences as GC
roots to prevent their target from being garbage collected
during a young GC collection. Thus, new generation collec-
tions of one isolate never access new spaces of other isolates.
This maintains the desirable property of isolate-local collec-
tion. Old space collections span all isolates and in e�ect
perform an equivalent of a distributed garbage collection.

Each XIMI reference caches the identity hash code of its
target so that hashCode() calls do not require cross-isolate
accesses. The equals() method is implemented as a native
call accessing the target and performing a pointer equality
test (a native call is necessary because the target is a private
�eld inherited from Reference). Also, synchronizing on a
stub object will serialize accesses to that object but not to
its target; this is consistent with the behavior of RMI and
with MVM's properties of application isolation.

In order to ensure that targets of XIMI references are indeed
unreachable to programmers, small changes to the JDK li-
braries were necessary. The Java programming language
allows trusted user code to circumvent language protection
mechanisms using reection; hence it was necessary to in-
troduce an extra check in the setAccessible() method
of java.lang.reflect.AccessibleObject to prevent pro-
grammers from making the referent �eld accessible. This
method is rarely used (mainly during serialization) and the
extra check is not expensive.

4.2 Stubs and invocation
As mentioned earlier, rmic is not needed for creating stubs.
Instead they are constructed on demand, as an instance of a
dynamically generated subclass of XIMIStub, which extends
RemoteStub. Note that instances of RemoteStub include a
reference to an instance of RemoteRef. For XIMIStub this
reference always points to an instance of CrossIsolate-
Reference. Dynamic subclass generation is performed en-
tirely in tentirelyprogramming language by the XIMIStub-
Generator class similarly to the Proxy API introduced in
JDK 1.3 [21].

269

When the generator constructs a stub, each method in the
speci�ed interface is translated to a method with the same
signature as the original method. Arguments packaged as
an array of objects are passed along with an instance of
java.lang.reflect.Method identifying the remote method
to be called, to the XIMI reference embedded in the stub in-
stance. The reference object then calls its invoke() method
which results in the mvm invoke() VM call. The VM appro-
priately transmits the arguments over to the target isolate,
resolves and calls the method in the target isolate, and trans-
mits back the return value.

4.3 Serialization
The most signi�cant win over RMI is due to optimized VM-
local serialization and deserialization. For most objects se-
rialization/deserialization can be replaced by a deep copy5.
Special treatment is required for any object that must run
user code during serialization. User code is invoked in the
following cases:

� the class implements the Externalizable interface,

� the class (or its superclasses) has one of readObject(),
readResolve(), writeObject(), writeReplace(), or

� the class is serializable but one of its parents is not.

Such classes will be referred to as special as opposed to
classes which can be serialized entirely by the VM. Special
classes require that the VM provide an interface to serial-
ization that respects the standard protocol. Whenever the
VM discovers that an instance of a special class has to be
serialized, a pair of streams will be allocated and used for
serialization.

The original serialization code attempts to serialize all ob-
jects reachable from the serialization root. Since in XIMI
there are two serialization mechanisms working on the same
object graph, one on the VM side and one in user code,
there is a risk that an object could be copied twice. More-
over, when an object is deserialized the VM needs to know
which object it is a copy of, to update all the fast-copied
objects that pointed to the original. Unfortunately the in-
formation about an object's identity is lost during serializa-
tion. Therefore, the VM must be explicitly informed which
objects are being written to the stream. We have created
XIMIObjectOutputStream and XIMIObjectInputStream for
this purpose. The replaceObject() method of Object-
OutputStream is overridden to always return the original
object passed to it as an argument and to invoke an MVM
callback which records the identity of the object being se-
rialized. Similarly XIMIObjectInputStream overrides the
resolveObject method to perform a MVM callback to set
the identity of the object about to be deserialized.

For objects of normal classes, replaceObject() returns an
instance of ximi.NormalObjectReplacement. This object
has an integer �eld whose value is the address of a variable

5The copy will only capture serializable objects and preserve
the semantics of transient �elds.

in the VM address space that, in turn, points to the ac-
tual object (a so-called global JNI handle). Such global JNI
handles can be safely embedded in objects as integers be-
cause NormalObjectReplacement instances are never reach-
able from user code and even though the garbage collector
may move objects to which JNI handles point to when se-
rialization is being performed, the addresses of the handles
themselves remain una�ected. The size of NormalObject-
Replacement is most likely smaller than the size of the object
it is replacing and since it has no reference �elds, it will not
cause the reection code to serialize recursively all the ob-
jects the original object points to. Thanks to the callback
in replaceObject() the VM is informed that the original
object has to be copied on the VM side and its �elds have
to be processed. This technique ensures that pointers from
special to normal objects are updated correctly.

To handle pointers from normal to special objects, instances
of ximi.SpecialObjectRedirection are used. When a spe-
cial object emerges from deserialization, the VM side does
not know which special object it is a copy of, so it can-
not update the fast-copies of normal objects to point to it.
It is not guaranteed that during a given serialization the
n-th call to resolveObject() will be invoked on the ob-
ject returned by the n-th call to replaceObject(). There-
fore one cannot assign serial numbers to special objects in
the replaceObject() callback and identify them on dese-
rialization. The following solution has been implemented.
Each time a replaceObject() method is invoked on a spe-
cial object, a SpecialObjectRedirection is created. Before
the XIMIObjectOutputStream is closed, all the accumulated
SpecialObjectRedirection objects are saved to it. These
objects contain two �elds, one is a reference to the original
special object and the other is the same reference wrapped
by a JNI handle. On deserialization, the native pointer re-
tains its value while the original reference is updated to point
to the deserialized copy of the special object. resolveOb-
ject() invokes a callback that informs MVM of the address
of the copy of the special object so that references pointing
to it can be correctly updated. Again, the memory over-
head of those extra objects is relatively small (two �elds
plus serialization overhead) and proportional to the number
of special objects.

Our solution has one problem: when an object contains
a writeReplace method, the method is called and the re-
sulting replacement object is given to the replaceObject()
method. Therefore XIMIObjectOutputStream cannot see
the original object and cannot register it with the VM.
There might be references to the original object that the
VM will not be able to update to refer to the replacement
upon deserialization. To solve this problem, we changed
the implementation of ObjectOutputStream to include a
registerReplacement method called whenever a replace-
ment is instantiated. The default implementation of this
method does nothing, but XIMIObjectOutputStream over-
rides it and ensures that the SpecialObjectRedirection

instance created for an object being serialized refers to the
original object, not to its replacement. This is a small JDK
change which can be easily maintained.

270

4.4 Threading
There are several choices regarding on which stack and in
which thread in the target isolate remote method shall be
invoked. XIMI currently employs an \impersonation" tech-
nique: whenever a call is performed on an object residing in
another isolate the current thread temporarily changes its
e�ective task ID, thus crossing over to the other isolate for
the duration of the call or instantiation. To ensure preserva-
tion of isolation properties a new Thread object is allocated
upon crossing the isolate boundary and associated with the
VM-side thread object. When the remote call completes
the original Thread object is restored (following stack disci-
pline). Appropriate try-catch blocks are inserted to insulate
the caller from a failure in the callee's code. It is likely that
the same thread will call a remote method again on the same
isolate, therefore for each isolate a weak reference to the
thread most recently allocated by XIMI is maintained. This
caching mechanism avoids repeated allocation of threads.
Thread locals are nulled out when a thread crosses an iso-
late boundary and when a cached thread is reused.

4.5 Termination
An isolate can be terminated at any time, invalidating the
referent �elds of all XIReference pointing to objects of that
isolate. These referent �elds can only be accessed by special
isolate-aware MVM downcalls or by the garbage collector.
If an isolate is terminated while in JVM code, the compu-
tation will be aborted and an exception will be reported to
the calling isolate. From the garbage collector's perspec-
tive all objects in the terminated isolate will be either un-
reachable or weakly reachable (since XIReference inherits
from WeakReference). According to the language speci�ca-
tion, once the garbage collector determines that an object
is weakly reachable it will \atomically clear all weak refer-
ences to that object and all weak references to any other
weakly-reachable objects from which that object is reach-
able through a chain of strong and soft references" [21]. In
the context of MVM this means that no dangling references
will ever appear upon isolate termination: either the refer-
ent �eld of XIReference is null or it points to a valid object
and the native downcall can determine that the isolate has
been terminated. Once the referent �elds are cleared all the
objects belonging to the terminated isolate become available
for reclamation. It is important that the new generation of
the terminated isolate be actually scavenged (and not dis-
posed of without examination), otherwise the XIReferences
would not have their referent �elds cleared, thus possibly
misleading the global garbage collector during its future
runs. An alternative technique not requiring new generation
scavenging upon isolate termination would be to maintain a
list of all XIMI references.

The current implementation limits immediate reclamation
of resources upon isolate termination. If a remote call is
in progress, the caller cannot be terminated because of the
various VM-side resources allocated to the caller's thread.
Termination is delayed until it returns from the inter-isolate
call { which can take an arbitrarily long time. Lifting this
limitation requires a mechanism for releasing VM-side re-
sources from selected parts of the thread.

5. PERFORMANCE
To evaluate the eÆciency of XIMI in comparison to RMI, we
ran a set of microbenchmarks intended to reect how RMI is
used in real-world applications and how XIMI might be used
for inter-isolate communication. In our baseline con�gura-
tion both the client and the server were located in the same
JVM and communicated via regular RMI. Therefore e�ects
related to full serialization and use of operating system com-
munication primitives are observed but not the network-
related overhead. The experimental setup consisted of a Sun
EnterpriseTM 3500 server with four UltraSPARCTM II pro-
cessors, with 4GB of main memory, running the SolarisTM

Operating Environment, version 2.8. The baseline con�gu-
ration was executed using the Java HotSpotTM virtual ma-
chine (referred to from now on as HSVM), version 1.3.1,
with the JDK version 1.3.1. This is also the code basis for
the MVM prototype used in our experiments, which allows
for meaningful comparisons. Each remote method imple-
mentation in our benchmarks returns the value it has been
passed as an argument. We organized our benchmarks in
the following groups depending on the type of arguments
passed to the remote call:

� prims: eight benchmarks in which values of various
primitive types are passed, and one void call.

� primarr: eight benchmarks in which 100 element ar-
rays of various primitive types are passed around.

� smallobj: one benchmark with balanced binary trees
of depth 5.

� bigobj: one benchmark with binary trees of depth 5;
each node in the tree contains the same �elds as in
smallobj and also one �eld for every primitive type
and a String �eld

� objarr: one benchmark with 100-element arrays of
the same type as nodes in bigobj; each array entry is
a root of a balanced binary tree of depth 5

� remote: one benchmark with 100-element arrays of
objects implementing the Remote interface

Figure 5 presents the execution time of XIMI-based invoca-
tions expressed as percentage of the execution time of the
baseline con�guration. For each type of argument we mea-
sured the time needed to execute 1000 remote method in-
vocations. The data shows that XIMI is at least 8 times
faster than RMI. The biggest di�erence is observed with
smallobj, for which XIMI performs more than 70 times
better than the baseline. This can be explained by XIMI's
more eÆcient serialization, executed entirely within the VM
in this benchmark. Other benchmarks do not experience
similar improvements either because serialization is not as
heavily used (e.g., primarr serializes a single object per in-
vocation, prims serializes only one boxed primitive value
per invocation), or because other costs are more prominent.
In particular, the performance gains obtained from an opti-
mized serialization decrease as the size of transferred objects
increases, as indicated by the di�erence between smallobj
and bigobj.

271

We believe that most actual uses of RMI resemble the small-
obj benchmark, hence its good performance is most indica-
tive of the advantages XIMI may have in the context of its
practical, real-world applications. It is interesting to see
that XIMI achieves better improvement on primarr than
primobj. However, recall that in order to perform remote
method invocation with a primitive argument, both XIMI
and RMI wrap the primitive value with an object type dur-
ing call marshalling and unwrap the result on method re-
turn. This is not required in case of primarr since arrays
are objects already. The �xed cost of boxing primitives is in-
curred by both RMI and XIMI and hence the improvement
achieved by XIMI in prims is lower than in primarr. In
fact while for RMI prims is faster in absolute numbers than
primarr, for XIMI it is primarr that is faster than prims.

Figure 6 shows the contributions of various stages in XIMI
as the percentage of the total running time. The costs of a
XIMI remote invocation break down into �ve components:
byte-copying, reference patching, stub creation, isolate con-

percentage of RMI time

10.0

6.1

1.4

8.4

12.1

10.5

0

2

4

6

8

10

12

14

prims primarr smallobj bigobj objarr remote

Figure 5: XIMI running time as percentage of RMI
running time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

pr
im
s

pr
im
ar
r

sm
al
lo
bj

bi
go
bj

ob
ja
rr

re
m
ot
e

copy phase 1
copy phase 2
other
stub creation
isolate switch time

Figure 6: Remote invocation stages and their con-
tribution to run-time overheads.

text switch, and \other" costs. The copying mechanism for
passing arguments and returning a result proceeds in two
phases. Phase 1 copies the objects into the target isolate,
sets the transient �elds in the copies to their default val-
ues, and establishes a mapping between original objects and
their copies. Phase 2 uses this mapping to update all ref-
erence �elds in the copies. Whereas performance of phase
1 depends on the size of the objects, phase 2 depends on
the number of copied references. As result, the duration of
phase 2 for both prims and primarr, where the passed ob-
jects do not include any references, is only a small fraction
of the overall running time. Dynamic stub generation im-
poses a cost only for objects that are passed as stubs across
isolates, as it is the case with remote. The generation of a
stub class is a one-time event across all isolates, and only the
�rst isolate to use a particular stub class pays the cost of full
loading of that class. Subsequent isolates use fast loading.
The costs of crossing isolate boundaries are negligible due
to the thread impersonation technique described earlier.

The above results do not reect the costs of handling special
objects during serialization. These costs are highly depen-
dent on the number of special objects. Our experiments
indicate that in the extreme case, when all serialized ob-
jects are special, XIMI is in fact slower than RMI. This is
understandable since synchronizing two serialization mech-
anisms is costly as it involves serializing additional objects
and communicating between the Java classes and the VM
code. However, in many cases custom serialization yields ex-
actly the same results as the deep copy performed by XIMI.
For example, when implementing an array-based list the au-
thors of the class might choose not to rely on the default se-
rialization that would write the underlying array with possi-
bly many null entries at the end but instead write only the
non-null entries directly to the stream and recreate the ar-
ray on deserialization. XIMI cannot in general discover that
serialization and deserialization is semantically equivalent to
a deep copy but code written in the Java programming lan-
guage might indicate that this is the case by appropriately
annotating classes with that property, e.g., using a marker
interface. Standard serialization would ignore this interface
but XIMI would recognize it as an indication not to treat
instances of classes implementing this interface specially.

6. RELATED WORK
A substantial body of work exists on specializing RPC for
the local case. Lightweight RPC [2] and doors [12] are good
examples. In the context of the Java programming language
and the JVM, related e�orts revolve around (i) interfacing
the JVM with fast, typically non-TPC/IP protocols, (ii) im-
proving the speed of RMI, by either layering it on top of
faster protocols or by redesigning and re-implementing it,
and (iii) designing alternative communication mechanisms
for computations executed in the same instance of the JVM.
The notion of portals to regulate inter-domain communica-
tion was explored in the Seal calculus [23]. The interposition
approach for the security manager is not novel, similar ideas
have been studied in the security community [15, 10].

Exposing new communication primitives to the programmer
is typically accomplished either via JNI or through extend-

272

ing the VM. In Javia [6] a user-level network interface is
exposed to programmers as a set of send/receive methods.
A major issue is bu�er management. Applications can al-
locate pinned regions of memory and use them as arrays
in the Java programming language. These arrays are ob-
jects and can be accessed directly but are not a�ected by
garbage collection as long as they need to remain accessi-
ble by the network interface. Programmers manage bu�ers
explicitly and safely by detaching their lifetime from the
lifetime of their references. To maintain the safety proper-
ties of the language, the garbage collector was modi�ed to
change the scope of its collected heap dynamically. Bu�ers
are not moved by the collector until their deallocation, which
happens only after the application states there are no more
references to the bu�er and after the collector veri�es this
claim. Bu�er management in Javia is analogous to some
issues in XIMI: cross-isolate references e�ectively maintain
communication bu�ers. One of the reasons Javia designers
rely on programmer's explicit cooperation in identifying un-
used communication bu�ers is the lack of weak references in
their version of the JDK.

Manta [19] and KaRMI [20] are eÆcient re-implementations
of the RMI for high-performance parallel computing. While
these systems faced some of the same diÆculties as XIMI,
their solutions are di�erent. Manta layers RMI on top of a
user-level communication subsystem. For eÆciency Manta
relies on compile-time analysis to avoid creating threads at
the callee's site. The Manta RMI protocol cooperates with
the garbage collector to keep track of references across ma-
chine boundaries. In KaRMI a major source of performance
gains is slim encoding of type information: in the parallel
computing settings, it is safe to assume that the bytecode
of objects being exchanged is always available from the �le
system. Another serialization improvement is implementing
bu�ering on the receiver side. KaRMI departs from RMI
in that it cannot deal with code that explicitly uses socket
factories or port numbers.

Object caching at the client side has been identi�ed as a
potential source of signi�cant performance improvements to
RMI [16]. Since most remote accesses to objects are typ-
ically read-only this approach can work well. However, it
would not be very useful for XIMI as communication is fast.

Several projects aimed at safe and controlled direct sharing
of objects among computations running in a single instance
of the JVM. For instance the J-Kernel [13] adds protection
domains to the Java programming language and makes a
strong distinction between objects that can be shared be-
tween domains, and objects that are con�ned to a single
domain. Inter-application communication is performed via
deep object copies of method arguments and return values,
similarly to XIMI. However, certain objects can be shared
directly. They are wrapped inside capability objects, which
support revocation. Accessing such objects is more expen-
sive than using plain object references, since revocation sta-
tus must be checked each time. Bryce and Vitek imple-
mented JavaSeal, a mobile object platform in which dis-
joint computations, called seals, could coexist in the same
Java virtual machine [25]. One of the di�erences with our

approach is that JavaSeal was a purely user-level package
which relied on user-de�ned class loaders to enforce disjoint-
edness. Bryce later worked on secure object spaces in which
bytecode rewriting was used to ensure isolation [5].

Direct object sharing has also been implemented through
the modi�cations to the virtual machine. An example of
this approach is Ka�eOS [1], which supports the OS ab-
straction of a process in the JVM: each process executes
as if it were run in its own JVM, and has a separately col-
lectable heap. There is also a single kernel heap, maintained
by trusted code and used to store objects related to user
processes, for example, the objects that represent processes
itself. Ka�eOS processes can dynamically create a shared
heap to communicate with other processes. Objects on the
shared heap are not allowed to have pointers to objects on
any user heap, because those pointers would prevent this
user heap's full reclamation. Write barriers enforce this re-
striction; attempts to assign such pointers will result in an
exception. As a write barrier is executed on every pointer
write, even applications that never communicate incur per-
formance overhead related to the cost of object sharing. We
view this as an important limitation. XIMI's use of weak
references e�ectively achieves object sharing at no cost for
non-communicating programs.

7. CONCLUSIONS
Extending a multitasking-enabled virtual machine with a
communication mechanism that is at the same time eÆ-
cient, does not break any property of the virtual machine,
and is exposed to programmers through a simple and ex-
ible API poses various challenges. In this paper we pre-
sented a detailed analysis of the design and implementation
of a particular realization of this goal: equipping MVM with
an eÆcient inter-isolate communication mechanism. Incom-
municado demonstrates that the goal of high-performance
does not have to conict with safety and isolation properties.
Several techniques taking advantage of the properties of the
Java platform and collocation of computations in the same
instance of the JVM lead to a signi�cant performance im-
provements { at least eight-fold when compared to the local
invocation of RMI { while preserving the isolation, resource
accounting and clean termination properties of MVM. Our
investigation of isolate communication has been performed
independently from the work of the JSR 121 expert group,
in future work we plan to reimplement XIMI on top of the
link interface.

Acknowledgments: Krzysztof Palacz implemented XIMI
during a visit to Sun Microsystems Laboratories. The au-
thors are grateful to David Holmes for comments, to Doug
Lea for in depth discussions of the JSR 121 API, to Pete
Soper for his help and comments as well as for taking the
lead in the JSR 121 e�ort, to Miles Sabin for his comments
on portals and security issues, and to Doug Simon and Glenn
Skinner for last-minute corrections. Vitek is supported by
NSF CAREER grant #0093282-CCR and CERIAS.

273

Trademarks: Sun, Sun Microsystems, Inc., Java, JVM,
HotSpot, and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc., in the United States and
other countries. UltraSPARC is a trademarks or registered
trademarks of SPARC International, Inc. in the United
States and other countries. UNIX is a registered trademark
in the United States and other countries, exclusively licensed
through X/Open Company, Ltd.

8. REFERENCES

[1] G. Back, W. H. Hsieh, and J. Lepreau. Processes in
Ka�eOS: Isolation, resource management, and sharing
in java. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation
(OSDI-00), Berkeley, October 2000.

[2] B. N. Bershad, T. Anderson, E. Lazowska, and
H. Levy. Lightweight remote procedure call. ACM
Transactions on Computer Systems, 8(1):37{55,
February 1990.

[3] W. Binder, J Hulaas, and A. Villazon. Portable
resource control in java: The j-seal2 approach. In
Proceedings of the 16th Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA-01), October 2001.

[4] A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Transactions on Computer
Systems, 2(1):39{59, February 1984.

[5] C. Bryce and C. Raza�mahefa. An approach to safe
object sharing. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages
and Application (OOPSLA-00), October 15{19 2000.

[6] C. Chang and T. von Eicken. Interfacing Java with
the virtual interface architecture. In ACM 1999 Java
Grande Conference, June 1999.

[7] G. Czajkowski and L. Dayn�es. Multitasking without
compromise: a virtual machine evolution. In
Proceedings of the 16th Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA-01), October 1998.

[8] G. Czajkowski and T. von Eicken. JRes: A resource
accounting interface for Java. In Proceedings of the
13th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA-98),
October 18{22 2001.

[9] T. Downing. Java RMI. IDG Books, 1998.

[10] T. Fraser, L. Badger, and M. Feldman. Hardening
COTS software with generic software wrappers. In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy (SSP '99), May 1999.

[11] L. Gong. Inside Java 2 platform security: architecture,
API design, and implementation. Addison-Wesley,
Reading, MA, 1999.

[12] G. Hamilton and P. Kougiouris. The Spring nucleus: a
microkernel for objects. In Summer USENIX
Conference, June 1993.

[13] C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection
domains in Java. In Proceedings of the USENIX 1998
Annual Technical Conference, New Orleans, LA, June
1998.

[14] Java Community Process. Application Isolation API
Speci�cation. http://jcp.org/jsr/detail/121.jsp, 2002.

[15] M. B. Jones. Interposition agents: Transparently
interposing user code at the system interface. In
Proceedings of the 14th Symposium on Operating
Systems Principles, December 1993.

[16] V. Krishnaswamy, D. Walther, S. Bhola,
E. Bommaiah, G. Riley, B. Topol, and M. Ahamad.
EÆcient implementations of Java remote method
invocation. In Proceedings of the 4th Conference on
Object-Oriented Technologies and Systems
(COOTS-98), Berkeley, April 1998.

[17] D. Lea. Concurrent Programming in Java.
Addison-Wesley, Reading, MA, 1997.

[18] H. Levy, editor. Capability Based Computer Systems.
Digital Press, 1984.

[19] J. Massen, R. van Nieuwpoort, R. Veldema, H. Bal,
and A Plaat. An eÆcient implementation of java's
remote method invocation. In ACM PPoPP, Atlanta,
GA, May 1999.

[20] C. Nester, M. Philippsen, and B. Haumacher. A more
eÆcient RMI for Java. In Java Grande Conference,
San Francisco, CA, June 1999.

[21] Sun Microsystems, Ind. Java 2 SDK, Standard Edition
Documentation, 2001.

[22] A. Tanenbaum, S. Mullender, and R. van Renesse.
Using Sparse Capabilities in a Distributed Operating
System. In The 6th International Conference on
Distributed Computing Systems, May 1986.

[23] J. Vitek. The Seal Calculus of mobile computation.
PhD thesis, University of Geneva, 1999.

[24] J. Vitek and B. Bokowski. Con�ned types in Java.
Software Practice and Experience, 31(6):507{532,
2001.

[25] J. Vitek and C. Bryce. The JavaSeal mobile agent
kernel. Autonomous Agents and Multi-Agent Systems,
4, 2001.

[26] D. Wallach, D. Balfanz, D. Dean, and E. Felton.
Extensible Security Architectures for Java. In
Proceedings of the 16th Symposium on Operating
System Principles, 1997.

274

