
An Analyzable Annotation Language

Sarfraz Khurshid Darko Marinov Daniel Jackson

Laboratory for Computer Science

Massachusetts Institute of Technology

200 Technology Square, Cambridge, MA 02139

{khurshid,marinov,dnj}@lcs.mit.edu

Abstract
The Alloy Annotation Language (AAL) is a language (un-
der development) for annotating Java code based on the
Alloy modeling language. It offers a syntax similar to the
Java Modeling Language (JML), and the same opportunities
for generation of run-time assertions. In addition, however,
AAL offers the possibility of fully automatic compile-time
analysis. Several kinds of analysis are supported, includ-
ing: checking the code of a method against its specification;
checking that the specification of a method in a subclass
is compatible with the specification in the superclass; and
checking properties relating method calls on different ob-
jects, such as that the equals methods of a class (and its
overridings) induce an equivalence. Using partial models in
place of code, it is also possible to analyze object-oriented
designs in the abstract: investigating, for example, a view
relationship amongst objects.

The paper gives examples of annotations and such analyses.
It presents (informally) a systematic translation of anno-
tations into Alloy, a simple first-order logic with relational
operators. By doing so, it makes Alloy’s automatic analysis,
which is based on state-of-the-art SAT solvers, applicable to
the analysis of object-oriented programs, and demonstrates
the power of a simple logic as the basis for an annotation
language.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.1 [Software Engineering]: Specifications;
D.2.4 [Software Engineering]: Program Verification—Cl-
ass invariants, programming by contract, formal methods.

General Terms
Verification, Languages

Keywords
Specification language, Java language, Alloy modeling lan-
guage, Alloy Analyzer, compile-time analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02,November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00

1 Introduction

The benefits of annotating code with specifications are well
known, but for the most part they have not been realized,
and programmers still view them as more trouble than they
are worth. Much progress has been made. Annotation lan-
guages are now better integrated with programming lan-
guages; they can handle the complexities of object-oriented
code (such as dynamic dispatch, and the interaction between
frame conditions and subclassing); and they can be read-
ily compiled into run-time assertions. But to make annota-
tions attractive to practitioners, we believe it is necessary to
squeeze more value from them, by providing new analyses
for the same annotations.

In this paper, we outline an annotation language, called
AAL, that we are currently developing. The paper illustrates
AAL on small examples. We have not yet demonstrated
that the features of the language, or its analysis technol-
ogy, will scale to realistic programs. AAL is similar to the
Java Modeling Language (JML) [19] in its aim of provid-
ing a lightweight approach to code annotation, and it has
adopted the JML syntax for distinguishing pre- and post-
state values. JML, however, uses Java expression syntax,
and is conceptually founded on algebraic specifications [18];
AAL, in contrast, is based on a simple first-order logic with
relational operators, and is thus more in the tradition of
semantic data modeling (now called “object modeling”).

AAL allows partial specifications of methods to be written,
which can be executed as run-time assertions. In addition,
however, it supports fully automatic compile-time analysis.
This analysis, which is based on our previous work, and re-
duces to finding models of relational formulas, has a variety
of applications. It can be used to check code against speci-
fications, producing counterexample traces that show how a
method’s code misbehaves. It can be used to generate test
cases from invariants and preconditions fully automatically;
this is especially useful for elaborate data structures, such
as trees, which cannot be generated randomly because of
intricate structural constraints, and are tedious to generate
manually. It can be used also for more elaborate checks that
are easily expressed in our logic but not usually expressible
at all in other annotation languages, such as that an equals
method actually defines an equivalence.

Automatic compile-time analysis, more than run-time analy-
sis, has the potential to change how programmers work. The
success of test-first programming, a key practice of Extreme
Programming [1], indicates not only the importance of hav-

ing regressions tests (and having them early), but also the
value of focusing on intent before coding. Even though the
programmer isn’t required to write a specification, the act
of devising test cases forces a consideration of what behavior
is intended. Our approach promises to bring the benefit of
test-first programming with lower cost. An invariant (espe-
cially for a complex structure) is usually much less work to
write than a reasonable test suite. Having written it, the
programmer can rely on our analysis not only to generate a
high quality test suite but also to check crucial properties of
the specification itself. A crucial advantage of compile-time
analysis is that it can be applied before the code is complete,
whereas run-time analyses require not only that the module
be complete, but that whatever libraries it uses be complete
and available also.

The language we present is a declarative, first-order logic.
This makes it simple and familiar. The inclusion of relational
operators makes it easy to express navigations amongst ob-
jects. The set of elements of a list, for example, may be
denoted by the expression p.*next.elt, where p is the vari-
able that points to the list, *next indicates zero or more
traversals of a field next from list nodes to list nodes, and
elt indicates traversal of a field from a node to its contained
element. The user can view the heap as a labeled graph,
modeled with standard notions of sets and relations. We
believe this is simpler than an algebraic viewpoint, which
requires a collection of predefined datatypes to model sets,
tuples, sequences, and so on.

The logic is expressive enough to capture much of the be-
havior of an object-oriented program. In particular, it can
express the mutation of shared objects that is the cause of
much complexity in object-oriented programs. The annota-
tion language is actually a full modeling language, and can
be used to model and analyze an object-oriented program in
its entirety. We illustrate this by application to the design
of views, in which mutation of one object is propagated to
another belonging to a different class [7].

Previous work has shown how to use the Alloy language to
represent the heap of an object-oriented program [12, 13],
how to check code automatically against an Alloy specifica-
tion [15], and how to generate test cases automatically from
Alloy invariants [24]. The new contributions of this paper
are:

• An embedding of the Alloy logic in an annotation lan-
guage designed to be as close as possible to JML;

• A translation scheme that translates annotations and
checks into simple Alloy formulas, making existing Al-
loy analysis technology [9] applicable;

• As part of this scheme, a handling of some of the
tricky aspects of object-oriented programs and spec-
ifications, most notably: frame conditions (and their
interaction with object sharing and subclassing), dy-
namic dispatch, recursion, and user-defined equality;

• A series of small examples illustrating the power of the
approach, including analyzing whether a user-defined

equality method obeys the object contract, and analyz-
ing views (as used extensively in the Java Collections
Framework [34]).

Our approach can be viewed as an attempt to gain the ben-
efits of two complementary approaches to annotation: the
JML approach [19], which allows rich specifications but only
run-time analysis, and the Extended Static Checker (ESC)
approach [4], which provides compile-time analysis but for
much less expressive specifications. This work builds on both
of these projects. From JML, it takes ideas of syntax and
specification inheritance. From ESC, it takes ideas about
how to interpret frame conditions. It combines these ideas
with an analysis technology that makes it possible to have
both rich specifications and compile-time analysis.

2 Overview
The key idea in this paper is that the behavior of an object-
oriented program can be modeled and analyzed within a
simple first-order logic of sets and relations. In this section,
we explain briefly how the state of an object-oriented pro-
gram is modeled with sets and relations; how a method’s
behavior is modeled as a formula; and how the problem of
analysis always reduces to finding an assignment of (set and
relation) values to variables that makes a formula true. In
later sections, these ideas are elaborated more fully.

2.1 Modeling state
The heap of an executing program is viewed as a labeled
graph whose nodes represent objects and whose edges rep-
resent fields. The presence of an edge labeled f from node
o to o’ says that the f field of the object o points to the
object o’. Mathematically, we treat this graph as a set (the
set of nodes) and a collection of relations, one for each field.
From a type perspective, the relations are untyped, and so
any object may be associated by a given field with any other.
We therefore classify the objects into classes by associating
a subset with each class, and we constrain the relation asso-
ciated with a field so that it only maps objects that belong
to the field’s class.

This simple approach, in which fields are essentially untyped,
has a great advantage. It eliminates the need for casts. The
assertion that an object belongs to a given class becomes
a membership test. And since field “get” (dereferencing)
is treated as relational image, application of a field to an
object of the wrong class yields the empty set. This is par-
ticularly handy in navigation expressions, in which a field is
applied over a set of objects, only some of which belong to
the appropriate class.

To model mutation, we simply associate a distinct graph
with each state. In a specification there are only two states—
the pre-state and the post-state. Mathematically, we treat
fields as ternary relations, each of which maps an object to
an object in a given state.

2.2 Specifications and models
Our annotation language includes the following parts. Each
method may be annotated with three formulas—a precon-
dition (labeled requires), a postcondition (labeled ensures),

and a behavior model (labeled does)—and a frame condi-
tion (labeled modifies). The precondition, postcondition
and frame condition together form a specification, which is
used to check the code of the method. In the checking of a
client, the specification may be used as a surrogate. Some-
times, however, a client may legitimately rely on stronger
properties than the specification guarantees, because, for ex-
ample, the specification has been deliberately weakened to
ensure that subclasses are subtypes. Or we may want to per-
form an analysis of the method that accounts for the details
of its behavior. In these cases, it is more appropriate to use
the behavior model than the specification. This model may
be provided explicitly by the user (especially if no code is
yet present), but more commonly it will have been automat-
ically generated from the code, or from the specification (by
conjoining pre- and post-conditions). We thus use the terms
specification and (behavior) model interchangeably, except
when we want to point out the distinction.

2.3 Dynamic dispatch
The specification or behavior model of a method may “in-
voke” other methods as if they were mathematical functions.
This is necessary for specifying polymorphic methods. A
method to insert an element into a set, for example, will use
the equals method of the element to determine whether or
not the element should be inserted. To express this in the
specification or model, we use equals as if it were a mathe-
matical function. In order to capture the dynamic dispatch
in which the meaning of this function depends on the class
the element belongs to, this function is desugared to a wrap-
per function that invokes the equals function of the appro-
priate class based on which class the element belongs to.

2.4 Analysis
Our analysis works by translating theorems to be checked
into Alloy [10, 14], a software modeling language. We use
Alloy’s analysis tool, the Alloy Analyzer, to check the theo-
rems. The analysis always reduces to finding an assignment
for a formula that binds its free variables to values in such
a way that the formula is true. In general, the free variables
will represent the state of the program at several points in
its execution. To check that a method in a subclass correctly
preserves the specification of its superclass method, for ex-
ample, we would construct a formula saying that a pre- and
post-state exist that satisfy the constraints of the behavioral
model of the subclass method, but do not satisfy the con-
straints of the superclass specification. A solution to this
formula is a pair of states illustrating a violation: that is, a
counterexample.

Our language is undecidable, so the analysis cannot be com-
plete. The Alloy Analyzer conducts a search in a “scope”
specified by the user that bounds the size of the basic types.
In application to program checking, this amounts to limit-
ing the size of the heap. A failure to find a counterexample
does not mean that the theorem holds; it may mean that a
counterexample exists, but only for heaps larger than those
considered. In our experience in analyzing design models,
we have found that surprisingly small scopes suffice to de-
tect many subtle errors, and it seems likely that the same
should hold for code.

The reader may wonder how this approach differs from test-
ing; after all, only some finite set of cases is considered.
There are two crucial differences. First, the user does not
have to provide any test cases. Second, experience with
model checking in the last decade has demonstrated that
exhaustive analysis of a bounded space is far more effective
at finding bugs than testing, largely because of the large
number of cases considered. The satisfiability solvers that
we use as the underlying technology in the Alloy Analyzer
can routinely handle spaces of several hundred bits in width;
an analysis of a billion cases (or, a state space of 30 bits),
which is completely infeasible in testing, is thus very small.

3 Examples
Our presentation is organized around two examples. Both
illustrate how programs that are seemingly straightforward
can become surprisingly complicated. In the first, we con-
sider determining whether the equals method of a class sat-
isfies the “object contract”—in particular that it define an
equivalence relation over the elements of the class. In prac-
tice, it is easy to get this wrong, especially when overrid-
ing the method in a subclass, because of the asymmetry of
method dispatch.

In the second, we consider two implementations of a set in-
terface: one a standard implementation as a red-black tree,
and the other as a view on the first. This second class ex-
hibits strange properties. Modifying the subset class causes
modifications in the other; worse, because a subset is defined
with a predicate on elements, inserting an element that does
not satisfy the predicate will not cause it to be inserted at
all. A set object thus fails to obey the simplest set axioms:
that inserting an element into a set results in it belonging to
the set afterwards. In fact, even the complexities of views
are not necessary to break these axioms; since an inserted
object may replace an object already present that is equiv-
alent (by its equals method), insertion may actually remove
an object! These are not contrived examples. It is for rea-
sons such as these that the specification of the Set interface
in the Java Collections Framework does not claim that the
standard set axioms hold.

3.1 Overriding equals
We first use AAL to specify the behavior of two Java equals

methods and to check the correctness of their overriding.
Any implementation of equals should satisfy two crucial
properties: at least being an equivalence relation and be-
ing consistent with hashCode [34]. It is easy to develop such
implementations incorrectly [30], and special care should be
taken for classes that allow equals to be overridden, i.e., for
classes that are not final.

3.1.1 Superclass
Consider the equals method of the class java.awt.Dimension

that is a non-final class from the standard Java libraries [34].
An object of java.awt.Dimension has two integer fields, width
and height. The following is an example AAL annotation of
java.awt.Dimension and its equals method:

class Dimension {
int width;
int height;

//@ does {
//@ \result = (obj instanceof Dimension &&
//@ this.width = obj.width &&
//@ this.height = obj.height)
//@ }
public boolean equals(Object obj) {

if (!(obj instanceof Dimension))
return false;

Dimension d = (Dimension)obj;
return (width == d.width) &&

(height == d.height);
}

}

The does annotation specifies a model for the behavior of
the method. Such models can be provided by the program-
mer or automatically generated from the code, as here. A
model is a formula over the method parameters, classes, and
fields. The keyword \result, borrowed from JML, allows re-
ferring to the return value of the method. In this example,
we consider an annotation that provides a model and not
a specification, because we want to check that the model
correctly implements the specification.

3.1.2 Checking AAL models
Every AAL specification and model can be automatically
translated into Alloy and checked with the Alloy Analyzer
(AA).1 We describe in this section only the result of the
analysis; Section 5 presents the translation. We use AA to
automatically check that all equals methods implement an
equivalence relation. The following AAL assertion expresses
the equivalence property:

assert equalsIsEquivalence {
allnn o: Object | // reflexivity

o..equals(o)
allnn o, o’: Object | // symmetry

o..equals(o’) => o’..equals(o)
allnn o1, o2, o3: Object | // transitivity

o1..equals(o2) && o2..equals(o3) =>
o1..equals(o3) }

This assertion consists of three, implicitly conjoined, formu-
las. The variables quantified with allnn range over all non-
null objects. The operator ‘=>’ denotes implication. The
operator ‘..’ invokes AAL methods, using (single) dynamic
dispatch as in Java, based on the dynamic class of the re-
ceiver object. Note that this property is inherently global,
i.e., an invariant on all classes and not just a class invariant
for Object.

The assertion is checked by presenting a translation into ba-
sic Alloy (described later in Section 5) to the Alloy Analyzer.
The expressions involving equals are expanded using the be-
havior model of the Dimension class given above. In this case,
the analyzer checks the assertion, and reports that there are
no counterexamples for this particular class.

1We have not yet implemented the translation; for the ex-
amples of this paper we performed it manually.

3.1.3 Subclassing with overriding
Consider Dimension3D, a subclass of java.awt.Dimension that
adds a field depth and incorrectly overrides equals:

class Dimension3D extends java.awt.Dimension {
int depth;

//@ does {
//@ \result = (obj instanceof Dimension3D &&
//@ super..equals(obj) &&
//@ this.depth = obj.depth)
//@ }
boolean equals(Object obj) {

if (!(obj instanceof Dimension3D))
return false;

Dimension3D d = (Dimension3D)obj;
return super.equals(obj) &&

depth = d.depth;
}

}

We again use AA to check the assertion equalsIsEquivalence,
and this time it automatically generates a counterexample:

Object_1: Dimension {
width = 0,
height = 1 }

Object_2: Dimension3D {
width = 0,
height = 1,
depth = 3 }

These two objects violate the symmetry property: setting o

= Object 1 and o’ = Object 2 makes o..equals(o’), but not
o’..equals(o). The reason is that the former equals is from
Dimension, and it is oblivious of the field depth introduced in
Dimension3D, whereas the latter equals is from Dimension3D,
and it correctly compares all the fields in the objects. This
counterexample shows that Dimension3D incorrectly overrides
equals, as it violates the equivalence property.

The problem is actually in the equals method of the class
java.awt.Dimension; it is hard to correctly override it in a
subclass. An overridable equals can be implemented in Java
using the getClass method instead of the instanceof primi-
tive [30]. In our running example, it requires changing equals

of java.awt.Dimension to use the expression obj.getClass()

== this.getClass() instead of obj instanceof Dimension.

Modeling this change in AAL is straightforward; we replace

obj instanceof Dimension

with

obj..getClass() = getClass()

in does. We translate the changed AAL specification into
Alloy and again use AA to check the equivalence assertion.
This time AA reports no counterexamples.

3.2 Subset views
We next illustrate AAL by developing specifications for sets
and subset views. We consider a generalization of views re-
turned by the subSet method in the class java.util.TreeSet

of the Java Collections Framework (JCF). We develop ex-
ample specifications for parts of the following:

• The java.util.Set interface.

• The abstract class java.util.AbstractSet for sets whose
element membership is based on equals method. This
specification is abstract and uses an Alloy set to rep-
resent the set of elements.

• The java.util.TreeSet class that uses red-black trees
to implement java.util.AbstractSet.

• A set that represents a subset view on another set; this
specification also shows how a method argument that
is essentially a function can be handled.

Finally, we illustrate how behavior of methods can be auto-
matically analyzed in an interactive fashion.

3.2.1 Set interface
Consider the following example AAL specification for a part
of the java.util.Set interface:

package java.util;

public interface Set extends Collection {
//@ ensures {
//@ \result = (o instanceof Set &&
//@ containsAll(o) &&
//@ o..containsAll(this))
//@ }
boolean equals(Object o);

//@ ensures {
//@ \result = all o: Object |
//@ c..contains(o) => contains(o)
//@ }
boolean containsAll(Collection c);

}

The specifications are given only for methods equals and
containsAll, because the interface Set should not specify
all standard axioms for sets. Otherwise, subclasses such as
Subset view could not be subtypes of Set, as noted earlier.
We present in the example only the most relevant parts of
the specification; AAL additionally borrows from JML parts
that specify exceptional behaviors (when a method returns
throwing an exception), access modifiers (public, protected,
and private), inheritance of specifications etc.; for details
see [19].

Since the specifications omit preconditions (there are no
requires annotations), they are true by default, as in JML.
The postcondition for equals specifies that the result is true

iff o is a non-null object of Set or its subclass and this and
o are subsets of each other. The method containsAll de-
termines if c is a subset of this; the result is true iff every
object contained in c is also contained in this; ‘:’ denotes
set membership.

3.2.2 Abstract set
Consider next the following AAL specification for a part
of the abstract class java.util.AbstractSet that implements
the Set interface:

package java.util;

abstract class AbstractSet implements Set {
//@ model s: set Object;

//@ invariant {
//@ allnn disj e1, e2: s | !e1..equals(e2)
//@ }

//@ ensures {
//@ \result = (o in s ||
//@ somenn e: s | e..equals(o))
//@ }
boolean contains(Object o);

//@ ensures {
//@ \old(contains(o)) => s = \old(s),
//@ s = \old(s) + o
//@ \result = (s != \old(s))
//@ }
//@ modifies { s }
boolean add(Object o);

}

The model field s declares a (mathematical) set of objects;
set is an AAL keyword, and ‘: set’ declares a subset. This
field is used in specifications, but it does not need to be in an
implementation for this class or its subclasses [19]. The class
invariant specifies that objects in the set are not equal with
respect to the equals method. The keyword disj declares
disjoint subsets; in this case, it ensures that e1 and e2 are
distinct. The symbol ‘!’ denotes negation.

The postcondition for contains specifies that the result is
true iff o itself is in s (which handles the case when o is
null) or there exists a non-null object in s that is equals of o;
‘in’ denotes subset/membership operation, and ‘||’ denotes
disjunction.

Each of the methods presented so far is a pure method (also
referred to as an observer), i.e., it does not modify the state
(there is no modifies annotation) and its specification ex-
presses properties of only one state. The method add is a
mutator method that modifies the state and also returns a
value. Its specification relates a pre-state (i.e., the state im-
mediately prior to the method invocation) to a post-state
(i.e., the state immediately after the method invocation).

In AAL postconditions, as in JML, prefixing an expres-
sion with \old indicates its evaluation in the pre-state, e.g.,
\old(s) is the value of model field s in the pre-state, and
\old(contains(o)) is an invocation in the pre-state. (It is
not legal to apply \old to the invocation of mutator meth-
ods.) The formula F => G,H means that if F holds, G should
hold also; if not, H should hold. The postcondition for add

specifies that the set is unchanged if it contains the object
o in the pre-state; otherwise, o is added to the set in the
post-state.

The modifies annotation in AAL is the same as in JML: it
lists the fields that the method can change; the assignment
to other fields is not allowed. We discuss the semantics of
modifies in more detail in the next subsection. Intuitively,
the method add can change only the field s (of this); all
other fields retain their pre-state values.

3.2.3 Set implementation
Consider next the following AAL specification for a part of
the class java.util.TreeSet that implements sets (of compa-
rable elements) with red-black trees:

package java.util;

class TreeSet extends AbstractSet {
Node root;

static final boolean RED = false;
static final boolean BLACK = true;

static class Node {
Object key;
Node left = null;
Node right = null;
Node parent;
boolean color = BLACK;

}
//@ represents s <- root.*(left + right).key;
//@ depends s <- root +
//@ \fields_of(root.*(left + right));

//@ invariant { // RedBlackFacts
//@ // 1. every node is red or black,
//@ // by construction
//@ // 2. all leafs are black,
//@ // by construction
//@ // 3. red nodes have black children
//@ allnn e: root.*(left + right) |
//@ e.color = RED =>
//@ e.(left + right).color in BLACK
//@ // 4. all paths from root to leafs
//@ // have same number of black nodes
//@ allnn e1, e2: root.*(left + right) |
//@ null in e1.(left + right) &
//@ e2.(left + right) =>
//@ #(e1.*parent & BLACK.~color) =
//@ #(e2.*parent & BLACK.~color)
//@ }

//@ invariant { // BinarySearchTreeFacts
//@ ...
//@ }

//@ // inherits spec from the superclass
boolean add(Object o) { ... }

//@ does { \result = new Subset(this, p) }
Set subSet(Predicate p) { ... }

}

Each tree has a root of class Node; each node has its data
stored in key, pointers to its parent and its left and right

children, and color which can be RED or BLACK.

The represents annotation specifies the abstraction function,
i.e., how the concrete fields in objects that build a TreeSet

relate to the model field in Set; ‘*’ denotes reflexive transitive
closure, and ‘+’ denotes set union. The depends annotation
specifies a set of the concrete fields that the model field de-
pends on; \fields of represents all fields for each object in
the given set.

The semantics of modifies takes into account these depen-
dencies: if a method can modify a model field f, then it can
also modify the fields that f depends on. In the example,
the add method in TreeSet can modify all fields in the tree,

since add in AbstractSet can modify field s. Conceptually,
the depends annotation allows mutator methods in TreeSet

to inherit their specifications from AbstractSet without any
change, thus enabling modular reasoning. The full treat-
ment of modifies is beyond the scope of this paper; details
can be found in [20,29].

The class invariant specifies the structural constraints for a
red-black tree. All four properties can be easily expressed
in AAL; ‘#’ denotes the size of the set and ‘~’ denotes the
transpose relation, effectively following the field backwards.
This example omits the invariants for a binary search tree,
such as acyclicity, ordering of elements, and a definition of
the parent relation as the transpose of the union of left and
right. These invariants are also straightforward to express
in AAL [24].

The main property to check for an implementation of a
method is code conformance, i.e., whether the code correctly
implements the specification. We call a state valid iff all
objects in the state satisfy their respective class invariants.
Code conformance requires showing that for all valid pre-
states that satisfy method precondition, the execution of the
method body produces a post-state that is valid and satisfies
the postcondition. In Alloy, this is schematically expressed
as:

all s, s’: State |
valid(s) && pre(s) && body(s, s’) =>

valid(s’) && post(s, s’)

One way to check code conformance is to translate the code
of the method body into an Alloy formula and analyze the
above implication with the Alloy Analyzer. Jackson and
Vaziri developed a technique for automatic translation of a
subset of Java into Alloy [15]. Work proceeds on optimizing
this approach [36]; although it does not yet scale, it can
handle a realistic red-black tree implementation in which the
checked procedures have up to 50 lines of code. Another way
to check code conformance is to use automatic testing. The
TestEra framework [24] generates cases automatically from
invariants and has also been demonstrated on the red-black
tree implementation.

The method subSet is used to create a subset view. The
model for this method uses a constructor for Subset that
creates a a new view on s with filter p.

3.2.4 Subset view
We next develop an AAL specification of a subset view. In
JCF, the class java.util.TreeSet provides an implementa-
tion of a (sorted) set, as shown above, and also of a subset
view. A subset view is created with so.subSet(fromElement,

toElement), where so is the backing set object, and the result
is a portion of so with elements ranging from fromElement,
inclusive, to toElement, exclusive. The returned set is backed
by so, so changes in the view are reflected in so, and vice-
versa. Note that a view can also be constructed as a view
on another subset view.

More generally, a subset view on a set can be created by giv-
ing a predicate (boolean returning function) that determines

membership in the subset. In a language that supports first-
class functions, a view analogous to the above view in JCF
could be created by so.subSet(p), where so is a set and p is
a predicate defined, for example, as (lambda (o) (and (>= o

fromElement) (< o toElement))) in Scheme. In Java, pred-
icates, and first-class functions in general, are obtained by
wrapping them within objects.

The following is a sample AAL annotated abstract class for
predicates:

abstract class Predicate {
//@ model def: set Object;

//@ ensures { \result = o in def }
boolean admits(Object o);

}

Each Predicate object has a model field def that denotes
a (mathematical) set of objects (extensionally) defining the
predicate. This field contains the admissible objects, i.e., the
objects for which the functional predicate would evaluate to
true. The method admits determines if the input object o is
admissible for this predicate.

The following is an AAL annotated class for subset views:

class Subset implements Set {
Set on;
Predicate filter;

//@ invariant {
//@ allnn ss: *on | ss !in ss.^on // acyclic
//@ null !in on + filter
//@ }

//@ requires { null !in s + p }
//@ ensures { on = s && filter = p }
//@ modifies { on + filter }
Subset(Set s, Predicate p) { ... }

//@ ensures {
//@ \result = (filter..admits(o) &&
//@ on..contains(o))
//@ }
boolean contains(Object o) { ... }

//@ does {
//@ filter..admits(o) => on..add(o),
//@ modifies {}
//@ }
boolean add(Object o) { ... }

}

Each Subset object has two fields: on points to the set object
that backs this subset view and filter is a predicate that
determines membership for this subset view.

The class invariant requires that subset views have no cyclic
dependencies along on fields, i.e., that for each subset view,
there be (transitively) a backing set that is not a view; the
operator ‘^’ denotes transitive closure.

The constructor creates a Subset from the given set and pred-
icate. The precondition requires that these arguments be
non-null. The method contains determines the membership
of an object in a subset view. The postcondition requires

that the input object o be both admissible by the predicate
filter and also in the backing set of this. The method add

first checks if o is admissible by filter: if so, add simply in-
vokes the method add for the backing set; otherwise, add does
not modify any field in the state. Using modifies as a sub-
formula allows the user to specify conditional changes easier
than by putting all fields that can change in the modifies

clause and listing that they remain the same when some
condition holds.

3.2.5 Analysis
We next present an example analysis of the above classes.
The analysis focuses on a simple property of the behavior
of the add methods. We show how to interactively use the
analysis results to strengthen some assumptions in the spec-
ifications and to recheck the new specifications.

Consider the following annotated code for checking addition:

TreeSet ts; Subset su; Object o;
...
//@ assume { null !in ts + su }
ts.add(o);
//@ assert { su..contains(o) }

The assume annotation specifies the properties that the code
can expect to hold: ts and su are non-null objects. The
assert annotation specifies the properties that the code is
expected to establish at a certain control point. The above
code sequence has only one (mutator) method invocation,
and thus only two states. It requires that an addition of an
object o to a set ts also make o a member of a subset su. Ad-
ditionally, the method can assume that the pre-state is valid
(all objects in the pre-state satisfy their class invariants),
and the method body has to ensure that the post-state is
also valid.

The Alloy Analyzer checks (the translation into Alloy of) the
above sequence and produces a counterexample, as expected,
because su is not constrained to be a subset view on ts. We
next add this constraint to our property:

//@ assume {
//@ null !in ts + su
//@ su.on = ts
//@ }
ts.add(o);
//@ assert { su..contains(o) }

The Alloy Analyzer checks the new sequence and once again
produces a counterexample. This time, the assertion fails
because the predicate of su does not admit o. We next add
a constraint to rule this case out, too:

//@ assume {
//@ null !in ts + su
//@ su.on = ts
//@ su.filter..admits(o)
//@ }
ts.add(o);
//@ assert { su..contains(o) }

The Alloy Analyzer checks the new sequence and once again
produces a counterexample. This time, the assertion is not

established because ts contains itself as an element. In this
case, invoking ts..contains(ts) (i.e., ts..equals(ts)) is the
culprit. In Java, it results in an infinite recursion; in AAL,
it results in an underspecified relation as we explain in Sec-
tion 5.4. We rule out such instances by modifying the class
invariant for AbstractSet so that a set does not contain itself
(transitively through other AbstractSets):

class AbstractSet {
//@ invariant {
//@ allnn disj e1, e2: s | !e1..equals(e2)
//@ this !in ^s
//@ }

}

The Alloy Analyzer again checks the sequence and once
again produces a counterexample. This time, the assertion
fails because ts contains as an element a subset view on ts,
i.e., ts indirectly contains itself, which leads to the above
problem. One way to rule out these instances is to constrain
abstract sets not to include sets as members. (The keyword
no requires the set to be empty; ‘&’ denotes set intersection.)

class AbstractSet {
//@ invariant {
//@ allnn disj e1, e2: s | !e1..equals(e2)
//@ allnn a: AbstractSet | no a.s & Set
//@ }

}

With this correction in place, the Alloy Analyzer checks the
sequence and this time reports no counterexamples.

4 Alloy
In this section we describe the basics of Alloy; details can
be found in [10,11]. Alloy is a strongly typed language that
assumes a universe of atoms partitioned into subsets, each
of which is associated with a basic type. An Alloy model is a
sequence of paragraphs that can be of two kinds: signatures,
used for construction of new types, and a variety of formula
paragraphs, used to record constraints.

4.1 Signature paragraphs
A signature paragraph introduces a basic type and a col-
lection of relations (that are called fields) in it along with
the types of the fields and constraints on their values. For
example,

sig Object {}

introduces Object as an uninterpreted type (or a set of in-
divisible atoms). A signature may inherit fields and con-
straints from another signature. For example,

sig Predicate extends Object {
def: set Object }

declares Predicate to be a subset of Object. The field def

declares a relation from Predicate to Object. In a field dec-
laration, the keyword set specifies that def maps each atom
p in Predicate to a set of atoms in Object, i.e., p is an ar-
bitrary relation; the keyword option specifies a partial func-
tion; omitting any keyword specifies a (total) function.

In a signature declaration, the keyword static specifies the
declared signature to contain exactly one atom. For exam-
ple, the following declares null to be a singleton subset of
Object; a singleton set can be viewed as a scalar:

static sig null extends Object {}

4.2 Formula paragraphs
Properties of signature atoms are recorded as logical formu-
las declared using formula paragraphs. To indicate that such
a property always holds, the formula is packaged as a fact
paragraph. A property may be defined without imposing
it as a permanent constraint by packaging it as a function
paragraph to be applied elsewhere. A theorem about a spec-
ification or a property that is intended to hold is packaged
as an assertion paragraph; a tool can check an assertion by
searching for a counterexample, i.e., a model of the formula’s
negation.

4.2.1 Relational expressions
A formula paragraph is formed using Alloy expressions. The
value of any expression in Alloy is always a relation—that is
a collection of tuples. Each element of such a tuple is atomic
and belongs to some basic type. A relation may have any
arity greater than one. Relations are typed. Sets are viewed
as unary relations.

Relations can be combined with a variety of operators to
form expressions. The standard set operators—union (+),
intersection (&), and difference (-)—combine two relations
of the same type, viewed as sets of tuples. The dot operator
is relational composition. When p is a unary relation (i.e.,
a set) and q is a binary relation, p.q is standard composi-
tion; p.q can alternatively be written as q[p], but with lower
precedence. The unary operators ~ (transpose), ^ (transi-
tive closure), and * (reflexive transitive closure) have their
standard interpretation and can only be applied to binary
relations.

4.2.2 Formulas and declarations
Expression quantifiers turn an expression into a formula.
The formula no e is true when e denotes a relation con-
taining no tuples. Similarly, some e, sole e, and one e are
true when e has some, at most one, and exactly one tu-
ple respectively. Formulas can also be made with relational
comparison operators: subset (written : or in), equality (=)
and their negations (!:, !in, !=). So e1:e2 is true when ev-
ery tuple in (the relation denoted by the expression) e1 is
also a tuple of e2. Alloy provides the standard logical op-
erators: && (conjunction), || (disjunction), => (implication),
and ! (negation); a sequence of formulas within curly braces
is implicitly conjoined.

A declaration is a formula v op e consisting of a variable
v, a comparison operator op, and an arbitrary expression
e. Quantified formulas consist of a quantifier, a comma-
separated list of declarations, and a formula. In addition to
the universal and existential quantifiers all and some, there
is sole (at most one) and one (exactly one). In a declaration,
part specifies partition and disj specifies disjointness; they
have their usual meaning.

4.2.3 Functions, facts and assertions
A function (fun) is a parametrized formula that can be ap-
plied by binding its parameters to expressions whose types
match the declared parameter types. By default, a function
returns a boolean value—the value of the formula in its body.
A function may return a (non-boolean) relational value.

Functions can be grouped around the type of the first ar-
gument, like the methods of a class in an object-oriented
language. For example, a “receiver” and a “result” argu-
ment can be declared with the following shorthand:

fun S::f(...): T {...}

This declaration is equivalent to

fun f(this: S, result: T, ...) {...}

where this and result are (reserved) keywords that name
the arguments declared anonymously, and the ellipsis in the
new argument list is the old argument list. Note Alloy’s
convention of treating the second argument in a function
declaration as the function’s result.

A function can also be applied with its first argument pre-
sented in prefix position; for example,

s..f(a, b, c)

is short for

f(s, a, b, c)

A fact is a formula that takes no arguments and need not be
invoked explicitly; it is always true. An assertion (assert) is
a formula whose correctness needs to be checked, assuming
the facts in the model.

5 Translation
In this section, we describe the translation of AAL annota-
tions and Java code into Alloy. We organize the presentation
of our translation by the constructs that AAL supports. We
illustrate each construct using the views example from Sec-
tion 3.

5.1 Inheritance
The translation of inheritance into Alloy is similar to compi-
lation of OO languages, involving creation of virtual function
tables. Details can be found in [25]. In outline, the transla-
tion has six steps:

1. Compute a hierarchy of class declarations.

2. Construct sig Object that represents the set of all ob-
jects in the heap.

3. Translate each class declaration into a sig declaration,
with appropriate subset relationship.

4. Translate each method specification into an Alloy func-
tion with a unique name.

// class hierarchy

sig Object {}
sig Set extends Object {}

sig AbstractSet extends Set {}
sig TreeSet extends AbstractSet {}

sig Subset extends Set {}
sig Predicate extends Object {}

static sig null extends Object {}

// distinct classes share only the null reference
fact nullIsCommon {

AbstractSet & Subset = null
Set & Predicate = null
null in TreeSet }

// no objects for interface without a model field
fact noConcreteObjects {

no Set - AbstractSet - Subset - null }

// dynamic types

fun Object::is_Object() {
this in Object - AbstractSet -

Subset - Predicate - null }

fun Set::is_Set() {
this in Set - AbstractSet - Subset - null }

fun AbstractSet::is_AbstractSet() {
this in AbstractSet - Subset - null }

fun TreeSet::is_TreeSet() {
this in TreeSet - null }

fun Subset::is_Subset() {
this in Subset - null }

fun Predicate::is_Predicate() {
this in Predicate - null }

Figure 1: Translation of the class hierarchy for the subset

view example.

5. Add dispatching functions that model dynamic dis-
patch based on the receiver type.

6. Replace super with appropriate static invocation.

We illustrate these steps by translating the equals methods
for sets presented in Section 3. Throughout, the Alloy text
that results has been indented to show its correspondence to
the class hierarchy.

Step 1 computes the following class hierarchy for our running
example:

Object
+-- AbstractSet (implements Set)

+-- TreeSet
+-- Subset (implements Set)
+-- Predicate

Figure 1 shows the translation done by steps 2 and 3. The
translation introduces null as an atom of Object that is
shared by all classes. We have previously modeled null as
the empty set, but that approach is too restrictive; for ex-
ample, it disallows null to be in a set of objects. The current

approach uses the following semantics for null: dereferenc-
ing null along a field produces the empty set and invoking
a method on null always results in an unsatisfiable formula,
as we show in the translation of methods.

Step 4 introduces Alloy functions for the method specifica-
tions and behaviors. Since Alloy does not have dynamic
dispatch, each function has to have a unique name. For ex-
ample, the translation for the equals methods introduces the
following functions:

fun Object::Object_equals(o: Object): boolean {
result = (this = o) }

fun Set::Set_equals(o: Object): boolean {
... }

The function corresponding to the (default) equals method
in class Object is built from its behavior. We show later
how the translation builds the body for the function that
corresponds to the specification for the Set interface.

Step 5 adds the dispatching function for equals:

fun Object::equals(o: Object): boolean {
(this..is_Object() &&
this..Object_equals(o)) ||

(this..isAbstractSet() &&
this..Set_equals(o)) ||
(this..is_TreeSet() &&
this..Set_equals(o)) ||

(this..is_Subset() &&
this..Set_equals(o)) ||

(this..is_Predicate() &&
this..Object_equals(o)) }

This function models dynamic dispatch based on the re-
ceiver type. It allows method invocations o..equals(p) from
AAL to be translated into identical function applications,
o..equals(p), in Alloy. (Recall that ‘..’ in an Alloy expres-
sion denotes function application without dynamic dispatch
semantics.) Since Predicate does not override equals, it in-
herits equals from Object; likewise, AbstractSet, TreeSet, and
Subset inherit equals from Set.

Step 6 uses the class hierarchy information to replace invoca-
tions on super with appropriate static invocations; this step
does not translate anything in our running example.

5.2 State
To handle mutator methods and their sequencing, the trans-
lation introduces a model of state in Alloy. We adopt a re-
lational model of the state/heap where fields of objects are
treated as relations among objects. A valuation of these re-
lations defines a state; different valuations give rise to differ-
ent states. The translation first introduces a new signature
State and then translates methods that express properties
on state(s). For our running example, the signature State

is:

sig State {
// fields
s: (AbstractSet - null) -> Object,
def: (Predicate - null) -> Object,
on: (Subset - null) ->! Set,
filter: (Subset - null) ->! Predicate }

Each atom of State models a state. Each relation in State

corresponds to one of the field declarations in the AAL spec-
ifications of the classes. (In practice, the names of the fields
in State are fully qualified with their class names.) This
translation essentially flattens out the hierarchical structure
of the heap. The multiplicity marking ‘!’ on on and filter

specifies that for each atom t of State, t.on, respectively
t.filter, is a total function from non-null Subset atoms to
Set atoms.

5.3 Methods and class invariants
AAL annotations of methods and class invariants are trans-
lated into Alloy functions. We first illustrate translation of
the class invariant for the Subset class:

//@ invariant {
//@ allnn ss: *on | ss !in ss.^on // acyclic
//@ null !in on + filter
//@ }

The translation generates the following Alloy function:

fun Subset::Subset_inv(t: State): boolean {
all ss: *(t.on)[this] - null | ss !in ^(t.on)[ss]
null !in t.(on + filter)[this] }

The function name is chosen according to the rules for han-
dling inheritance, and the function has one parameter of
type State. Each field access in the body, in this example
this.(on + filter), is replaced with the access of the cor-
responding value in the state, i.e., t.(on + filter)[this].
JML allows class invariants to be inherited, and thus a body
for a class invariant may be, in general, conjoined with the
class invariants from the superclass(es).

The translation also introduces an Alloy function that deter-
mines whether a given state is valid, i.e., whether all objects
satisfy their class invariants:

fun State::valid(): boolean {
all o: Object - null | o !in this.free =>

o..inv(this) }

(The free set of unallocated objects is introduced in Sec-
tion 5.5.) The function inv is the dispatcher for class invari-
ants. Like the equals function shown above, it wraps the
functions of the individual classes, dispatching by testing
membership of the receiver object in the sets that corre-
spond to the classes.

We next illustrate translation of a pure method, using the
following example from AbstractSet:

//@ ensures {
//@ \result = (o in s ||
//@ somenn e: s | e..equals(o))
//@ }
boolean contains(Object o);

In this example, the method is annotated with a postcondi-
tion and the translation uses it to model the method. When
a method has a does annotation, the translation can use it
for the model.

The translation generates the following Alloy function:

fun AbstractSet::AbstractSet_contains(t: State,
o: Object): boolean {

result = o in t.s[this] ||
some e: t.s[this] - null |

e..equals(t, o) }

This function has, in addition to the method parameter, one
State parameter. This parameter is also added to each invo-
cation in the method body; each of these invocations is on
a pure method, since pure methods cannot invoke mutator
methods.

We next illustrate translation of a mutator method, using
the following example from AbstractSet:

//@ ensures {
//@ \old(contains(o)) => s = \old(s),
//@ s = \old(s) + o
//@ \result = (s != \old(s))
//@ }
//@ modifies { s }
boolean add(Object o);

Again, the translation uses the postcondition to model the
method, but it additionally uses the modifies annotation,
because the method is a mutator. For a mutator method,
the translation can also use the does annotation, which can
include modifies.

The translation generates the following Alloy function:

fun AbstractSet::AbstractSet_add(t, t’: State,
o: Object): boolean {

t.s[this]..contains(t, o) =>
t’.s[this] = t.s[this],
t’.s[this] = t.s[this] + o

result = (t’.s[this] != t.s[this])
modifiesFields_s(t, t’, this)
modifies(t, t’, this) }

This function has, in addition to the method parameter, two
State parameters, for pre-state t and post-state t’. We use
primed notation to signify post-state; the prime mark has
no built-in semantic significance in Alloy. The expressions
prefixed with \old are translated to evaluate in the pre-state.
The field accesses and the pure method invocation in the
body of this general method are translated as illustrated
earlier.

The modifies annotation, which specifies the modified fields,
is translated into several function applications. For each set
of fields that is modified, in this example s, an appropriate
modifiesFields function is invoked with the set of objects,
in this example this, that have exactly those fields modi-
fied, i.e., modifiesFields s(t, t’, this). The frame condi-
tion modifiesFields f constrains all the fields of an object
but f to be unchanged. If several fields are listed in the
modifies clause, a composite frame condition must be gen-
erated, in the same way that a single modifies condition is
generated for the whole set of objects that may change.

The function modifies is invoked with the set of objects
that may be modified by the mutator method. This func-
tion specifies that the fields of all other objects remain un-
changed:

fun modifies(t, t’: State, so: set Object) {
all o: Object - so {

t.s[o] = t’.s[o]
t.on[o] = t’.on[o]
t.filter[o] = t’.filter[o]
t.def[o] = t’.def[o] } }

The function modifiesFields s is similar, but it allows s to
change:

fun modifiesFields_s(t, t’: State,
so: set Object) {

all o: so {
t.on[o] = t’.on[o]
t.filter[o] = t’.filter[o]
t.def[o] = t’.def[o] } }

In general, the translation adds state(s) to an expression that
appears in a specification depending on the expression (an
invocation of a pure method pm, an invocation of a mutator
method mm, or a field access) and whether the specification
is for a pure method PM (i.e., it has only one state) or
for a mutator method MM (i.e., it has a pre-state and a
post-state):

• Invocation o..pm(...) in PM or \old(o..pm(...)) in
MM becomes o..pm(t, ...), where t is the (pre)state.

• Invocation o..pm(...) (not inside \old) in MM be-
comes o..pm(t’, ...), where t’ is the post-state.

• Invocation o..mm(...) in MM becomes o..mm(t, t’,

...).

• Field access o.f in PM or \old(o.f) in MM becomes
t.f[o].

• Field access o.f (not inside \old) in MM becomes
t’.f[o].

5.4 Recursion
The Alloy Analyzer currently does not support recursive
functions. We allow AAL specifications to be recursive.
Also, the translation given above results in recursive func-
tions (in particular through dispatching functions). We next
outline the translation that eliminates recursive functions so
that the models can be analyzed with the current Alloy An-
alyzer.

Elimination of recursion introduces new relations in the sig-
nature State and constrains these relations using the cor-
responding functions. For each set of mutually recursive
functions, the translation introduces a new relation; in our
running example:

sig State {
// fields
... // as above

// recursion
equalsR: Object -> Object,
containsR: Object -> Object,
addR: State -> Object -> Object }

Since add is a mutator method, the type of its corresponding
relation has an additional (post-)state.

For example, the translation eliminates recursion from equals

by replacing it with:

fact equalsFixPoint {
all This, o: Object | all t: State |
This..equals(t, o)
<=>
{
(This..is_Object() &&
This..Object_equals(t, o)) ||

(This..is_TreeSet() &&
This..Set_equals(t, o)) ||

(This..is_Subset() &&
This..Set_equals(t, o)) ||

(This..is_Predicate() &&
This..Object_equals(t, o)) } }

fun Object::equals(t: State, o: Object): boolean {
o in equalsR[t][this] }

The fact equalsFixPoint defines the relation equalsR so that
its tuples represent a fixed point of the equals methods. That
is, it will contain a tuple (s,o1,o2) iff in state s, object o1 is
equal to object o2; ‘<=>’ denotes equivalence. Note that this
translation does not constrain the relation to be the least
fixed point; if the definitions of recursive functions have sev-
eral fixed points, AA will explore all of them. This is an ap-
propriate approach for relational specifications: a recursive
definition with several fixed points corresponds simply to an
underspecified behavior and the analysis should explore all
possible behaviors.

The translation eliminates recursion from mutator methods
in a similar fashion; for the add method:

fact addFixPoint {
all This, o: Object | all t, t’: State |
This..add(t, t’, o)
<=>
{

(This..is_TreeSet() &&
This..AbstractSet_add(t, t’, o)) ||

(This..is_Subset() &&
This..Subset_add(t, t’, o)) } }

fun Object::add(t, t’: State, o: Object): boolean {
o in addR[t][t’][this] }

5.5 Object creation
AAL supports object creation in mutator methods. The
translation handles it by adding a field free: set Object

to the State signature; for each state t, t.free is the set
of unallocated objects in that state. Object creation then
allocates an object by removing it from the freeset.

The translation disallows the objects in t.free to be pointed
to by any field. The translation also makes free objects to
point to no object. For our running example, the translation
adds:

fact Free { all t: State | with t {
no free.(s + on + filter + def)
no free.~(s + on + filter + def) } }

It also adds the following constraint to the body of the func-
tion modifies:

t’.free = t.free - so

Consider the following Subset constructor for our running
example:

//@ requires { null !in on + filter }
//@ ensures { on = s && filter = p }
//@ modifies { on + filter }
Subset(Set s, Predicate p) { ... }

This constructor is translated to:

fun Subset_new(t, t’: State,
s: Set, p: Predicate): Subset {

result in t.free
result..is_Subset()
t’.on[result] = s
t’.filter[result] = p
modifiesFields_on_filter(t, t’, result)
modifies(t, t’, result) }

The function Subset new requires result, i.e., the freshly al-
located object, to be unallocated in the pre-state and also
appropriately constrains its class. Subset new also contains
the translated modifies clause.

5.6 Code sequences
AAL supports analysis of (loop-free) code sequences that
may have method invocations. Code with loops can be trans-
lated into loop-free code using, for example, a finite unrolling
of loops [4, 15].

Consider, for example, the following code sequence that in-
volves a conditional branch:

TreeSet ts; Subset su; Predicate p; Object o;
...
//@ assume { null !in ts + su + p }
if (p.admits(o)) {

su.remove(o);
//@ assert { !ts..contains(o) }

}
ts.add(o);
//@ assert { p..admits(o) => su..contains(o) }

The translation uses verification condition generation, simi-
lar to that of ESC [4], and generates an Alloy assertion that
threads state through the sequence as shown in Figure 2.
This translation requires all (post-)states to be valid. If
methods are already checked to be correct implementations,
then this requirement can be omitted.

Note that all local variables declared in this example do not
change their values in the sequence and thus can be univer-
sally quantified. In general, a local variable can be bound
by several assignment statements in a code sequence, so it
cannot be translated simply to a quantified variable. One
can handle this by treating local variables as “fields” of the
state. Alternatively, instances of the same local variable can
be given distinct names, putting the code into single static
assignment (SSA) form [2]. This tends to result in smaller
Alloy formulas and thus faster analysis.

static part sig t0, t1, t2 extends State {}

assert {
all ts: TreeSet, su: Subset,

p: Predicate, o: Object {
null !in ts + su + p && valid(t0) =>

p != null &&
(p..admits(t0, o) =>

su != null &&
(su..remove(t0, t1, o) =>

valid(t1) &&
!ts..contains(t1, o) &&
(ts..add(t1, t2, o) =>

valid(t2) &&
p != null && su != null &&
p..admits(t2, o) => su..contains(t2, o)

)
),
ts != null &&
(ts..add(t0, t1, o) =>

valid(t2) &&
p != null && su != null &&
p..admits(t1, o) => su..contains(t1, o)

)
) } }

Figure 2: Translation of the example code sequence.

6 Related work

Recent annotation languages, such as the Java Modeling
Language (JML) [19] and the assertion subset of Eiffel [26],
are themselves based on much earlier foundational work in
program annotation. ANNA [22], for example, was an early
annotation language for Ada; the Larch interface languages,
such as Larch/C++ [18] led the way for modeling of the
heap in an object-oriented language. Eiffel’s innovation was
to integrate pre- and post-conditions into the programming
language itself, and to apply the assertions of superclasses
automatically to their subclasses. A systematic analysis of
the relationship between the assertions of classes at different
levels in the class hierarchy has been developed recently by
Findler and Felleisen [6]. Eiffel typifies the languages, like
JML, that build on the expression language of the program-
ming language; ANNA and Larch/C++ typify those lan-
guages, like AAL, that build assertions on a more abstract
semantics.

Our work builds on these foundations. Its novelty is two-
fold: using a relational semantics of the heap, and providing
opportunities for automatic compile-time analysis based on
exhaustive search. These aspects are intertwined: our anal-
ysis technology relies on the uniform representation of data
structures as relations, which are easily encoded as boolean
matrices, making possible the application of SAT solving
technology. The use of relations as a modeling tool for data
structures is not new; it goes back to the earliest work on
data abstraction [5], and to the entire field of semantic data
modeling. Specification and assertion languages for object-
oriented programs have, however, invariably preferred alge-
braic semantics instead, despite the use of graphs in shape
analysis as abstractions of the heap.

To our knowledge, our work is unique in offering the prospect
of fully automatic compile-time analysis for annotations that
can capture complex structural properties. Several other

annotation languages that are equally rich (or richer) have
been developed, such as JML and the assertion subset of
Eiffel, but these have been designed primarily for run-time
checking.

Static analyzers, such as the Extended Static Checker [4], the
Three-Valued-Logic Analyzer [21,31], the Pointer Assertion
Logic Engine [27], and Role Analysis [17], are automatic, but
cannot handle such expressive annotations. None of these,
to our knowledge, for example, can express and analyze the
red-black invariants (at least without additional manual in-
strumentation).

Our analysis would be termed unsound in the program anal-
ysis literature: that is, it may fail to find a counterexample
if one exists. Since we view its purpose as the discovery of
flaws rather than the demonstration of correctness, we pre-
fer to think of it as incomplete: not all bugs are found, but
it is sound in the sense that any counterexample reported
will represent a legitimate execution. None of the analyses
mentioned above reliably produce sound counterexamples.
In fact, most are also not complete: the authors of ESC
have argued convincingly that making their checker com-
plete would cause it to generate many more false alarms.

The LOOP project [35] aims at proving properties of Java
classes by translating them and their JML specifications into
logical theories in higher order logic. A theorem prover is
then used to verify the desired properties. This framework
has been used to verify that the methods of java.util.Vector
maintain the safety property that the actual size of a vector
is less than or equal to its capacity [8].

Our analysis translates AAL annotations and Java code into
Alloy. Alloy has been previously used for object-oriented
modeling. Two previous works propose encodings of the
heap in Alloy: one, like ours, models references directly as re-
lations [12]; the other [13] represents mutations as changes in
the mapping of references to mathematical objects. This sec-
ond approach is more modular, but results in a less tractable
analysis. AAL builds on these approaches by adding direct
support for (single) dynamic dispatch and recursion, and by
setting these constructs in the context of an annotation lan-
guage.

The approach to checking code against partial specifications
that we advocate in this paper is described in more detail
elsewhere [15] and is the subject of ongoing work [36]. Al-
though it has yet to be shown to scale, it has been applied
successfully to a practical implementation of a red-black tree.

Marinov and Khurshid developed TestEra [24], an Alloy-
based framework for automated testing of Java programs.
In TestEra, specifications are written in Alloy, and the Alloy
Analyzer is used both as an automatic test case generator
and as a test oracle. TestEra discovered bugs in a previous
version of the Alloy Analyzer. TestEra has also been used to
systematically test data structures, such as red-black trees.

Formal specification languages have been also extended with
object-oriented features for greater expressiveness and for

more direct modeling of object-oriented systems. Object-
Z [32], for example, extends the Z specification language [33]
with a new kind of schema in which operations may be as-
sociated with instances of a class. Object-Z is not used as
an annotation language, and is not amenable to automatic
analysis.

Objects and inheritance have also been added to declara-
tive languages. For example, Prolog++ [28] extends Prolog.
OOLP+ [3] aims to integrate object-oriented paradigm with
logic programming by translating OOLP+ code into Prolog
without meta-interpretation.

Keidar et al. [16] add inheritance to the IOA language [23]
for modeling state machines, which enables reusing simula-
tion proofs between state machines. This approach allows
only a limited form of inheritance, subclassing for exten-
sion: subclasses can add new methods and specialize in-
herited methods, but they cannot override those inherited
methods, changing their behavior arbitrarily. AAL allows
subclasses that arbitrarily change the behavior of inherited
methods, as illustrated with the equals methods.

7 Conclusions
The key idea in this paper is that a simple logic with rela-
tional operators suffices as a semantic basis for an annotation
language. The choice of this logic was motivated by the de-
sire for fully automatic analysis of object-oriented programs.
The logic, due to its relational operators, has a direct appeal
from a specification viewpoint also. Navigation expressions
(especially those involving transitive closure) are succinct
and easy to write; witness the red-black tree invariants of
Section 3.

The analysis upon which our scheme relies has two proper-
ties that make it well suited to analysis of object-oriented
programs. First, a huge space of cases can be covered; the
analysis therefore tends to find subtle problems much more
readily than testing. Second, when a claim does not hold,
the analysis produces a counterexample: one or more con-
figurations of the heap that show why the claim is invalid.

Our examples have shown that this approach can be ap-
plied to program structures that are known to be a cause of
complexity and errors. Currently, our translations are done
systematically but manually; the analysis is performed fully
automatically by the Alloy Analyzer (and counterexamples
are displayed using its visualization facility). We are now
implementing the translation outlined in this paper in order
to build a comprehensive tool. We expect that the tool will
work well for modular analysis of even quite complex classes;
how well it scales for analyses amongst classes, and whether
it will be economical enough for everyday use, remains to be
seen.

Acknowledgments
We would like to thank Matthias Felleisen, Viktor Kuncak,
and Gregory Sullivan for discussions on AAL and comments
on an earlier draft of this paper. This work was funded
in part by ITR grant #0086154 from the National Science
Foundation.

References
[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, 2000.

[2] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis
of pointers and structures. In Proc. ACM
SIGPLAN’90 Conference on Programming Language
Design and Implementation (PLDI), pages 296–310,
White Plains, N.Y., June 1990.

[3] M. Dalal and D. Gangopahyay. OOLP: A translation
approach to object-oriented logic programming. In
Proc. First International Conference on Deductive and
Object-Oriented Databases (DOOD-89), pages
555–568, Kyoto, Japan, Dec. 1989.

[4] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. Research Report 159,
Compaq Systems Research Center, 1998.

[5] J. Earley. Toward an understanding of data structures.
Communications of the ACM, 14(10):617–627, 1971.

[6] R. Findler and M. Felleisen. Contract soundness for
object-oriented languages. In Proc. ACM SIGPLAN
2001 Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 1–15, Oct. 2001.

[7] R. Helm, I. M. Holland, and D. Gangopadhyay.
Contracts: Specifying behavioral compositions in
object-oriented systems. In Proc. of the
OOPSLA/ECOOP-90: Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 169–180, Ottawa, Canada, 1990.

[8] M. Huisman, B. Jacobs, and J. van den Berg. A case
study in class library verification: Java’s Vector class.
Software Tools for Technology Transfer, 2001.

[9] D. Jackson. Automating first-order relational logic. In
Proc. 8th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), San
Diego, CA, November 2000.

[10] D. Jackson. Micromodels of software: Modelling and
analysis with Alloy, 2001. Available online:
http://sdg.lcs.mit.edu/alloy/book.pdf.

[11] D. Jackson. Alloy: A lightweight object modeling
notation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 11(2), Apr. 2002.

[12] D. Jackson. Object models as heap invariants. In
C. Morgan and A. McIver, editors, Essays on
Programming Methodology. Springer Verlag, 2002. (to
appear).

[13] D. Jackson and A. Fekete. Lightweight analysis of
object interactions. In Proc. Fourth International
Symposium on Theoretical Aspects of Computer
Software, Sendai, Japan, Oct. 2001.

[14] D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. In Proc. 9th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), Vienna, Austria, Sept. 2001.

[15] D. Jackson and M. Vaziri. Finding bugs with a
constraint solver. In Proc. International Symposium on
Software Testing and Analysis (ISSTA), Portland, OR,
Aug. 2000.

[16] I. Keidar, R. Khazan, N. Lynch, and A. Shvartsman.
An inheritance-based technique for building simulation
proofs incrementally. In Proc. 22nd International
Conference on Software Engineering (ICSE), pages
478–487, Limerick, Ireland, June 2000.

[17] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proc. 29th Annual ACM Symposium on the Principles
of Programming Languages (POPL), Portland, OR,
Jan. 2002.

[18] G. T. Leavens. An overview of Larch/C++:
Behavioral specifications for C++ modules. In
H. Kilov and W. Harvey, editors, Specification of
Behavioral Semantics in Object-Oriented Information
Modeling, pages 121–142. Kluwer Academic
Publishers, 1996.

[19] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report TR 98-06i,
Department of Computer Science, Iowa State
University, June 1998. (last revision: Aug 2001).

[20] K. R. M. Leino. Data groups: Specifying the
modification of extended state. In Proc. ACM
SIGPLAN 1998 Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), volume 33, pages 144–153, Oct. 1998.

[21] T. Lev-Ami and M. Sagiv. TVLA: A system for
implementing static analyses. In Proc. Static Analysis
Symposium, Santa Barbara, CA, June 2000.

[22] D. C. Luckham and F. von Henke. An overview of
Anna, a specification language for Ada. In IEEE
Software, volume 2, pages 9–23, Mar. 1985.

[23] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[24] D. Marinov and S. Khurshid. TestEra: A novel
framework for automated testing of Java programs. In
Proc. 16th IEEE International Conference on
Automated Software Engineering (ASE), San Diego,
CA, Nov. 2001.

[25] D. Marinov and S. Khurshid. VAlloy: Virtual functions
meet a relational language. In Proc. Formal Methods
Europe (FME), Copenhagen, Denmark, July 2002.

[26] B. Meyer. Eiffel: The Language. Prentice Hall, New
York, N.Y., 1992.

[27] A. Moeller and M. I. Schwartzbach. The pointer
assertion logic engine. In Proc. SIGPLAN Conference
on Programming Languages Design and
Implementation, Snowbird, UT, June 2001.

[28] C. Moss. Prolog++ The Power of Object-Oriented and
Logic Programming. Addison-Wesley, 1994.

[29] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens.
Modular specification of frame properties in JML.
Technical Report 02-02, Iowa State University, Feb.
2002.

[30] M. Roulo. How to avoid traps and correctly override
methods from java.lang.Object.
http://www.javaworld.com/javaworld/jw-01-1999/

jw-01-object.html.

[31] M. Sagiv, T. Reps, and R. Wilhelm. Solving
shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming
Languages and Systems (TOPLAS), January 1998.

[32] G. Smith. The Object-Z Specification Language.
Kluwer Academic Publishers, 2000.

[33] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice Hall, second edition, 1992.

[34] Sun Microsystems. Java 2 Platform, Standard Edition,
v1.3.1 API Specification.
http://java.sun.com/j2se/1.3/docs/api/.

[35] J. van den Berg and B. Jacobs. The LOOP compiler
for Java and JML. In Proc. Tools and Algorithms for
the Construction and Analysis of Software (TACAS),
(Springer LNCS 2031, 2001), pages 299–312, Genoa,
Italy, Apr. 2001.

[36] M. Vaziri. Finding bugs with a constraint solver. PhD
Thesis Proposal, Dept. of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 2002.

