
Multitasking without Compromise:
a Virtual Machine Evolution

Grzegorz Czajkowski Laurent Daynès
Sun Microsystems Laboratories

2600 Casey Avenue
Mountain View, CA 94043, USA

+1 650 336 6501 +1 650 336 5101

grzegorz.czajkowski@sun.com laurent.daynes@sun.com

ABSTRACT
The Multitasking Virtual Machine (called from now on simply
MVM) is a modification of the Java™ virtual machine. It enables
safe, secure, and scalable multitasking. Safety is achieved by strict
isolation of applications from one another. Resource control
mechanisms augment security by preventing some denial-of-
service attacks. Improved scalability results from an aggressive
application of the main design principle of MVM: share as much
of the runtime as possible among applications and replicate
everything else. The system can be described as a ‘no
compromise’ approach – all the known APIs and mechanisms of
the Java programming language are available to applications.
MVM is implemented as a series of carefully tuned modifications
to the Java HotSpot™ virtual machine, including the dynamic
compiler.

This paper presents the design of MVM, focusing on several
novel and general techniques: an in-runtime design of lightweight
isolation, an extension of a copying, generational garbage
collector to provide best-effort management of a portion of the
heap space, and a transparent and automated mechanism for safe
execution of user-level native code. MVM demonstrates that
multitasking in a safe language can be accomplished with a high
degree of protection, without constraining the language, and with
competitive performance characteristics.

Keywords
Java virtual machine, application isolation, resource control,
native code execution.

1 INTRODUCTION
It is not uncommon to come across a computer installation where
a majority of executing computations are written in the Java
programming language [1,11]. The Java virtual machine [19] is
used to execute a widely diversified mix of programs – from
applets in Web browsers to standalone applications to Enterprise
JavaBeans™ components executing in application servers. No
matter whether the program is a tiny applet or a complex

application, it effectively views the JVM as an ersatz operating
system (OS). However, the capabilities of the environment fall
short of what an OS should provide to applications. The existing
application isolation mechanisms, such as class loaders [16], do
not guarantee that two arbitrary applications executing in the same
instance of the JVM will not interfere with one another. Such
interference can occur in many places. For instance, mutable parts
of classes can leak object references and can allow one application
to prevent the others from invoking certain methods. The
internalized strings introduce shared, easy to capture monitors.
Sharing event and finalization queues and their associated
handling threads can block or hinder the execution of some
application. Monopolizing of computational resources, such as
heap memory, by one application can starve the others.

Some of these cases of interference are subtle while others are
easy to detect. Some manifest themselves rarely while others are
notorious. All are undesired. Their existence perpetuates the
current situation, where the only safe way to execute multiple
applications, written in the Java programming language, on the
same computer is to use a separate JVM for each of them, and
execute each JVM in a separate OS process. This introduces
various inefficiencies in resource utilization, which downgrades
performance, scalability, and application startup time. The
benefits the language can offer are thus reduced mainly to
portability and improved programmer productivity. Granted, these
are important features, but the full potential of language-provided
safety and protection is not realized. Instead, there exists a curious
distinction between ‘language safety’ and ‘real safety’, where the
first one slips more and more into the academic domain and the
other means hardware-assisted, OS-style multitasking, preferable
for everyday use. While the contributions of related research are
invaluable [2,3,4,5,12,24], from a pragmatic standpoint the
resulting prototypes are often impractical: either the semantics of
the language is constrained, some features or mechanisms are
excluded, performance is unsatisfactory, or all of the above. To a
large extent the proposed techniques and solutions have not yet
translated into an industry-strength, widely used implementation
of a multitasking-safe JVM because of a lack of a complete, well-
performing prototype.

This paper presents MVM, a multitasking version of the JVM.
Applications that run in the MVM are protected from one another,
and sources of inter-application interaction currently present in the
JVM are removed. A very lightweight design promotes sharing of
as much of the runtime as possible among applications, improving
performance and scalability. Unused memory is managed in a
best-effort fashion, further improving performance.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
OOPSLA 01 Tampa Florida USA
Copyright ACM 2001 1-58113-335-9/01/10…$5.00

125

The contributions of this work are: (i) the design of lightweight
isolation, (ii) an approach to best-effort memory management in a
multitasking environment with a shared, garbage-collected heap,
and (iii) a safe method for executing user-supplied native code in
such an environment. MVM demonstrates that it is possible to
build a high quality, full-featured, safe-language multitasking
environment.

The rest of this paper is organized as follows. Section 2 presents
an overview of the goals and design of MVM. Sections 3 through
5 focus on selected details of the system: lightweight isolation,
memory management, and native code execution, respectively.
Selected areas of related work are discussed whenever appropriate
in Sections 2 to 5.

Several recent papers [2,5,6,9] contain an up-to-date overview of
related projects. We will only describe details directly related to
the techniques presented in this paper, and refer interested readers
to the cited work for broader exposition.

Similarly to dispersing the discussion of related work throughout
the paper, the performance issues are analyzed in Sections 3 to 5.
The experimental setup consists of a Sun Enterprise™ 3500 server
with four UltraSPARC™ II processors, with 4GB of main
memory, running the Solaris™ Operating Environment, version
2.8. The Java HotSpot virtual machine [26] (referred to from now
on as HSVM), version 1.3.1, with the JDK™ version 1.3.1, is the
code basis for MVM. The SPECjvm98 benchmarks [25] are used.

2 OVERVIEW OF THE DESIGN
MVM is a general-purpose environment for executing Java
applications, also referred to astasks1. MVM-aware applications,
such as application server engines, can use the provided API to
create tasks, to terminate, suspend and resume them at any point
of their execution, and to control the computational resources
available to tasks. The main task does not have to be a server – it
can be any Java application.

Three goals dictate our design choices: (i) no form of interference
among executing applications should be allowed, (ii) an illusion
of having the JVM (with all core APIs and standard mechanisms)
to itself should be provided for each task, and (iii) MVM should
perform and scale well. The motivation is to make the system
attractive from the practical point of view.

The key design principle of MVM is: examine each component
of the JVM and determine whether sharing it among tasks can
lead to any interference among them. In some cases this approach
yields a clear verdict that the given component can be shared
without jeopardizing the safety of the tasks. Other components are
either replicated on a per-task basis or madetask re-entrant, that
is, usable by many tasks without causing any inter-task
interference. This builds on the ideas described in [6]. The
technique presented in that work – replicating static fields and
class monitors – has been generalized in MVM to classify all
components of the JVM as ‘shareable’ or ‘non-shareable’.

Shareable components, which require some modifications to
become task re-entrant, include the constant pool, the interpreter,
the dynamic compiler, and the code it produces. An arbitrary

1 The termtask is perhaps not the most fortunate one, since it is
already used in other contexts. The JSR 121 [15], under
discussion at the time of this writing, is likely to come up with
better terminology.

number of tasks in MVM can share the code (bytecode and
compiled) of both core and application classes. Non-shareable
components include static fields, class initialization state, and
instances ofjava.lang.Class. Runtime modifications presented in
Section 3 make these replications transparent and ensure that the
garbage collector is aware of them.

The heaps of tasks are logically disjoint, but at the physical data
layout level they may be interleaved. An efficient implementation
of flexible per-task heap memory guarantees, enforceable limits,
and transparent re-use of surplus memory is provided (Section 4).

The separation of tasks’ data sets in MVM implies that tasks
cannot directly share objects, and the only way for tasks to
communicate is to use standard, copying communication
mechanisms, such as sockets or RMI. This is a conscious and long
deliberated decision. Existing models of controlled direct sharing,
such as [2,4,5,12], are not convincing from the practical
standpoint. First, some of them complicate the programming
model, since there are now two kinds of objects – non-shared,
with unconstrained access, and shared, with some restrictions on
their use. Second, some approaches have been implemented only
via bytecode editing, and it is not clear what inter-task
dependencies would arise from the proposed sharing if it were
implemented in the runtime of a complex, high-performance
virtual machine. Such dependencies can greatly complicate
resource reclamation, accounting, and task termination. Finally,
some proposed inter-task communication mechanisms introduce
up-front overheads, affecting all tasks, even those that never
communicate.

Native methods of core classes are well tested and are shared by
all tasks. However, an audit of their sources was necessary to
identify global state, and some global variables are replicated in
MVM. For instance, in the JDK 1.3.1 a global buffer for error
messages generated by native methods of thejava.util.zip package
is declared as:

static char errbuf[256];

In MVM the buffer is replicated so that each task using the
package has its own copy to avoid accidental garbling of error
messages. But two other native global variables, associated with
the same package – a list of currently open zip files and an
associated access lock, are not replicated in MVM, since they are
a part of a global, task-safe service managing zip files. Overall,
global variables in the core native libraries are rather infrequent,
but the role of each of them has to be analyzed before deciding
whether to replicate it or not. User-defined native code is neither
known a priori nor known to be well behaved. Such libraries are
not shared. A new technique to transparently execute them in a
separate process is presented in Section 5.

Global state of Java classes is transparently replicated by runtime
modifications (Section 3). However, an audit of core classes is
still necessary to prevent interference related to using OS services.
In particular, theSystem and Runtime classes of thejava.lang
package define services, which should be customized on a per-
task basis. A case-by-case analysis is necessary. The resulting
modifications are similar to those reported in [3,12], and we will
not describe them here.

Other issues not further discussed in this paper include replicating
event queues to deal with multiple tasks using the graphics
subsystem, equipping each task with its own finalizer thread and
finalization queue in order to avoid ‘hijack the finalizer thread’

126

attacks, and accounting for most resources, since all of them are
rather straightforward when performed in the modified runtime.
The modifications to the bootstrap sequence are also not
discussed, since even though many things happen between
launching of the virtual machine and starting to execute an
application, to a large extent they are implementation-specific and
their description would not convey a general insight.
Asynchronous task termination, available in MVM, is also very
implementation-dependent, but considerably easier than a single
thread termination, since no application state is shared among
tasks. Finally, the issues related to security are beyond the scope
of this paper. Let us only say that each task has its own set of
permissions, and that MVM neither prevents nor clashes with
user-defined class loaders and the notion of protection domains
[10].

2.1 High-Level Design Choices
Such JVM evolution towards multitasking leads to a system in
which the known sources of inter-task interference are removed.
The examination and replication of problematic components
preserves their behavior from the applications’ perspective, and
makes their execution in MVM indistinguishable from their
execution in the standard JVM.

It is illustrative to stress the differences between this work and
other approaches addressing various issues related to multitasking
in the JVM. The results of related projects greatly advanced the
understanding of the potential and limitations of multitasking in
language-based systems. From the practical standpoint, though,
existing research and resulting prototypes exhibit at least one of
the following problems: (i) the black box approach, (ii) using
inferior quality systems, (iii) dropping language features, or (iv)
replicating OS architecture.

The black box approach. Various issues have been addressed via
bytecode editing – for example, resource control [8], isolation
[6,12], and termination [23]. Transforming programs to achieve
desired properties is elegant, portable, and is a great tool for
testing new ideas. However, treating the JVM as a black box has
not yet led to a satisfactory solution to these issues. For instance,
above-the-runtime isolation and resource control are far from
perfect because of various interactions and resource consumptions
taking place in the JVM, and task termination is problematic when
a thread of a terminated task holds a monitor. Moreover, source-
level transformations complicate application debugging.

Using inferior quality systems. The benefits offered by new
functionality of various extensions to the JVM can sometimes
exceed the associated performance and space costs. But this is
often not the case, and it is important to understand the sources of
overheads and the impact on application performance.
Experimenting with an under-performing implementation of the
JVM leads to qualitative understanding of proposed
improvements, but quantitative studies do not necessarily translate
into high-end implementations. Low-quality compilers may make
the performance impact of a particular modification look small or
negligible, and in extreme cases (no compiler, just the interpreter)
the costs of modifications may be completely dwarfed by the
slowness of the runtime. This distorts the cost-benefit calculus
when a given feature is seriously considered for inclusion in the
JVM.

Dropping language features. None of the known to us
multitasking systems based on the JVM safely handles all the

mechanisms of the Java programming language. This is because
certain features, such as non-terminating finalizers or user-
supplied native code, are particularly troublesome to make task-
safe. Many applications will run correctly without these
mechanisms, which is often used as a mandate to ignore or
prohibit some legitimate parts of the language. From the practical
standpoint this cannot be accepted. Otherwise, not all existing
code can be executed in such environments, and new code has to
be constrained to use only the ‘approved’ subset of the language.
A JVM-based multitasking system must be feature-complete to
avoid this.

Replicating OS architecture. Our goal is to turn the JVM into an
execution environment akin to an OS. In particular, the
abstraction of a process, offered by modern OSes, is the role
model in terms of features: isolation from other computations,
resource accountability and control, and ease of termination and
resource reclamation. However, this does not mean that the
structureof modern OSes should be a blueprint for the design of
multitasking in the JVM. The runtimes of safe languages manage
resources differently than an OS: memory management is
automatic and object-centric; memory accesses are automatically
safe; interpreted bytecodes co-exists with compiled code, and the
runtime has control over which form to choose/generate. This can
be taken advantage of, without undue replication of any of the
mechanisms and components of the JVM.

The above are serious concerns for systems aiming at being
practical, full-featured, and scalable, and that is why the design of
MVM avoids all of them.

3 LIGHTWEIGHT ISOLATION
This section presents the details of lightweight task isolation in
MVM. The runtime is modified according to the principle of
sharing as much of it as possible among tasks and replicating
everything else. The sources of complexity are: (i) class
initialization, which must be done once for every task, upon first
use of the class by a task [11], (ii) ensuring that the appropriate
copy of a replicated item is accessed, (iii) efficient retrieval of
per-task information (e.g., static variables and initialization state
of classes), and (iv) making the retrieval scale with the number of
tasks.

The changes affect the runtime class meta-data layout, the runtime
sequence for loading, linking and initializing classes, the
interpretation of a few bytecodes, the compiler, and the garbage
collector. The design of MVM forces all tasks to use the same
source for their bootstrap and application class loaders. This
simplifies sharing of the runtime representation of classes
(including bytecodes and code produced by the dynamic
compiler), which is currently supported only for classes loaded by
a task’s bootstrap or application class loaders. This design choice
does not prevent class loaders from being used in MVM, but it
means that the runtime representation of classes loaded with
application-defined loaders are not shared, and each such class is
separately compiled.

3.1 Runtime Data Structures
The HSVM maintains two representations of a class: a heap-
allocated instance ofjava.lang.Class, and an internal, main
memory representation of the corresponding class file, optimized
for efficient use by both the interpreter and the code generated by
the dynamic compiler. The two representations reference each

127

other, and static variables are embedded in the internal
representation of the class. Synchronization on a class object
(either explicit via certain uses of synchronized blocks or implicit
via synchronized static methods) is performed on the monitor of
the java.lang.Class instance representing this class.

In MVM, all internal class representation information that needs
to be replicated is stored in atask class mirror (TCM)object.
Each TCM contains the static variables, a back pointer to the
java.lang.Class object representing the class for this TCM’s task,
caches for speeding up type check operations, and the
initialization stateof the class (data indicating whether the class
has been loaded, linked, initialized, etc.). Note that interference
between tasks on class monitors is avoided since each task is
provided a separate instance ofjava.lang.Class. A table of TCM
objects is associated with each internal class representation. A
unique task identifier indexes the table, so that each table contains
one entry per task. Each entry in a TCM table consists of two
references to the same TCM: the first one is set at class load-time,
the second once the class is fully initialized. The reason for this
will be clarified later. The internal representation of array classes
is similarly changed.

Threads are augmented with a field indicating the identifier of the
task on behalf of which they execute. The identifier is also used as
an offset into TCM tables for fast retrieval.

Additionally, MVM maintains a table ofvirtual machineobjects,
each containing a copy of the global variables previously
maintained by HSVM, and which must be replicated for each task
in MVM. Examples of such global variables include references to
special objects (e.g., instances of common runtime errors and
exceptions such asjava.lang.OutOfMemoryError), counters of
daemons and live threads, etc. Figure 1 illustrates the organization
of MVM. All TCM tables, as well as the table of virtual machine
objects, initially have the same size and reflect the current
maximum number of concurrent tasks that MVM can support.
This maximum can be adjusted at runtime to respond to peak
loads.

For each class HSVM maintains a constant pool cache, which is a
compact representation of the original constant pool, optimized
for the interpreter and the dynamic compiler. Constant pool
caches are built at class link time. MVM modifies the entries
corresponding to static methods and static variables as follows:
direct references to the internal representation of the class are
replaced with direct references to their TCM table; offsets to static
variables are changed to refer to offsets relative to TCMs. The
interpreter uses this organization of runtime data structures to
access static variables and to invoke static methods (Section 3.4).

Note that the only outgoing pointers from the shared runtime data
structures to heap data of a particular task come from the objects
in TCM tables, the table of virtual machine objects, and from the
system dictionary (a mapping of class names to shared class
representations).

3.2 Fast Class Loading and Linking
Before being used, a class must first be loaded, linked and
initialized. Since in MVM most of the class representation is
shared, so is the class loading and linking effort. Not all loading
and linking steps can be entirely eliminated though: the JVM
needs, at least, to keep track of the initialization state of a class for
each task, and to carry the class loader information of a class from
the time the class has been loaded. Static variables must also be
accessible from other classes before the class is initialized, in
order to support some legal circularity in the sequence of class
initialization (it is possible for a class to see an non-initialized, but
prepared, static variable of another class during the execution of a
static initializer [19]).

Loading of a class consists essentially of fetching a class file from
a specified source and parsing its content in order to build a main-
memory representation adequate for the JVM. This needs to be
done only once, by the first task to load the class, regardless of
how many tasks use the class. This one-time loading sequence
creates the internal representation of a class, which, in MVM, is
shared by all classes, and comprises a TCM table. All the entries
of the TCM table are initially set to a null value.

The task-specific part of class loading creates a
TCM, prepares its static variables, enters its
reference at the proper entry of the TCM table,
and marks the TCM as “loaded”. Class loading
for all but the first task to load a class is reduced
to setting up a TCM as just described.

Substantial parts of class linking can be
eliminated too. Linking consists mainly of class
verification, checking and updating of loader
constraints, and, in the case of HSVM, building
a constant pool cache for the class and rewriting
its bytecodes so that they refer to the entries of
the cache instead of entries of the original
constant pool. In MVM all these steps need to be
done only by the first task to link this class. For
all other tasks, linking requires only verifying
that the class and all its dependents have already
been linked, and then marking the TCM
“linked”.

TaskX’s
class
mirror
for A

A’s instance of
java.lang.Class

instance
of A

Internal shared
representation
of A

B’s constant
pool cache

TaskY’s
class
mirror
for A

A’s instance of
java.lang.Class

instance
of A

var offset
var holder

Internal shared
representation
of B

TaskX’s
class
mirror
for B

B’s instance of
java.lang.Class

X Y

X

Task X Task Y

Shared
JVM
runtime

Task class
mirrors
table

Figure 1. Organization of MVM.

128

3.3 Class Initialization and Resolution
Barriers

JVM implementations commonly use dynamic code rewriting
techniques, such as bytecode quickening [18] and native code
patching, to dynamically removeclass initializationandsymbolic
link resolution barriers. A class initialization barrier tests whether
a class has been initialized and triggers its initialization if it has
not. Similarly, a symbolic link resolution barrier test whether a
symbolic link (i.e., an entry in a class constant pool) has been
resolved, and if not, proceeds to resolve it. Both types of barriers
always succeed except the first time the barrier is encountered,
hence the use of code rewriting techniques to remove them.

These barriers cannot always be eliminated in MVM because both
bytecodes and the code generated by the dynamic compiler are
shared by multiple tasks, which may each be at different stages of
initialization for a given class. More precisely, a class
initialization barrier must be executed at least once per task per
class. However, most link resolution barriers need only be
executed once in MVM: in order to resolve a symbolic link, the
class this symbol refers to (directly or indirectly) must be loaded
and linked; but, for a given class, only one link resolution can
trigger its loading and linking. MVM needs a link resolution
barrier for a symbol already resolved by another task only if the
barrier may trigger a class load. Most bytecode instructions that
require a link resolution barrier cannot trigger a class load or link
by themselves, either because they are always preceded by
another instruction that must have already done it (e.g., both
getfield and putfield must have been preceded by anew of the
corresponding object), or because they refer to constants of the
current class (e.g.,ldc) which must have been loaded and linked
prior to the execution of the method that contains this instruction.
Thus, most link resolution barriers need to be executed only once
by MVM, and most of HSVM’s bytecode and native code
rewriting can remain unchanged.

When modifying HSVM runtime data structures, special attention
was paid to minimize the overhead of both class initialization
barriers and access to static variables.

Testing whether a task has initialized a class amounts to checking
if the entry in the TCM table of that class for that task is non-null.
On a SPARC V9 platform [30], the testing part of the class
initialization barrier takes three instructions: two loads and one
branch on register value.

ld [gthread + task_id_offset], task_id
ld [tcm_table + task_id], tcm
brnz,pt,a,tcm end_barrier
<delay slot filled with something useful>
call task_class_initialization_stub
nop
end_barrier:

The first load fetches a unique internal task identifier from the
current thread data structure (a register is allocated to permanently
store the address of this structure). The task identifier is then used
as an index into the TCM table, to fetch the address of the
corresponding TCM (second load). A null address means that the
class has not yet been initialized by the current task, and a branch
on null register value appropriately dispatches to the interpreter
runtime for initializing the class for the current task.

Augmenting TCMs with fields recording the initialization status
of the class and the thread initializing this class for the

corresponding task is enough to make the existing HSVM code
task-re-entrant. The main issue is to locate the TCM of the
initializing task. The entry in the TCM table cannot be used to
store the TCM created by the task during class load but before the
class is initialized for this task, because this would invalidate the
null pointer test performed upon a class initialization barrier. This
is why the TCM table holds two references to the same TCM for
each task. As illustrated by Figure 2, each reference is set up at a
different time: the first one is set up during class loading, whereas
the second one is set up once the class is fully initialized. Class
initialization barriers test the first entry only: when the test
performed by the barrier fails, the TCM for the current task can be
obtained simply.

3.4 Bytecode Interpretation
MVM leaves the interpretation of all standard bytecodes
unchanged. Changes are required only for the interpretation of
some of the quick versions of standard bytecodes, and for the
handling of synchronized static methods, which requires finding
the instance ofjava.lang.Class that represents the class for the
current task in order to enter its monitor.

Quickened bytecodes result from the execution of standard
bytecodes that require a link resolution or a class initialization
barrier. The interpretation of such standard bytecodes happens
only once and typically consists of executing a barrier, rewriting
the bytecode instruction with a quick version of it, and executing
the quick version. In particular, the standardgetstatic andputstatic
bytecodes don’taccess static variables; this is done by their quick
versions.

As explained in section 3.3, all class initialization barriers that are
eliminated by bytecode quickening need to be re-introduced. This
affects four bytecodes only: the quick versions ofnew,
invokestatic, getstatic, andputstatic. The first two require an extra
load instruction before the barrier code described in section 3.3, in
order to fetch the task table of the class. This increases the path-
length of these bytecodes with 4 instructions. The quickened
versions ofgetstatic and putstatic need, in addition to the class
initialization barrier, access to the TCM of the current task to
access the static variables of the class. A cost-free side effect of
the barrier is to set a register to the TCM of a class. Thus, once the
barrier is passed, the static variable can be obtained with a single
memory load. This adds 3 instructions to the path-length of
getstatic andputstatic.

3.5 Sharing Compiled Code
Although our practical experience is based on theclient compiler
of HSVM (known as Compiler 1, or C1), the principles described
below are generally applicable to most runtime compilers. HSVM
invokes C1 to compile a method to native code once the method

Figure 2. Fast initialization testing.

Internal
representation
of a class

class’s task table

task class mirror

loaded

loading linking initializing

linked initialized

129

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

h
sv

m 0 1 2 3 1
0

5
0

h
sv

m 0 1 2 3 1
0

5
0

h
sv

m 0 1 2 3 1
0

5
0

kB

Space needed to support 768 additional tasks
Space needed to support 192 additional tasks
Permanent generation (64 tasks)
Code Cache

raytrace(13%) db (6%) javac(10%)

Figure 3. Memory footprint of MVM runtime. Numbers in brackets indicate the percentage of the
total footprint attributed to report the percentage the code cache and permanent generation

has reached some usage
threshold (expressed as a
number of method
invocations). The threshold
itself is chosen to
correspond to a trade-off
between the cost of
compilation and the
perceived performance
pay-off. C1 operates in
two steps. First, it
generates, into a code
buffer, a version of the
code that assumes that all
classes used by the method
have been resolved and
initialized. This means that
the code thus produced
does not contain any link
resolution or class
initialization barriers. The
second step scans the code
buffer and evaluates the
assumptions made. If the
assumption is invalid (e.g.,
the class has not been
initialized), the optimized
code is copied into a
special area at the end of the generated code and then replaced
with a call to a patching stub that will properly call the JVM
runtime. Patching stubs arrange for proper saving of registers and
enforce runtime calling conventions, such as setting up garbage-
collection safe-point information. Calls to the JVM runtime from
a patching stub resume by atomically writing back the optimized
code.

This code patching mechanism is problematic in MVM because it
dynamically eliminates class resolution and initialization barriers.
As discussed earlier in section 3.3, the elimination of some of
these barriers by one task may be incorrect for another one. We
opted for a simple solution whereby class initialization barriers
are always planted in the generated code. Only those link
resolution barriers that could trigger class loading and linking are
inserted (Section 3.3). These barriers are planted even for classes
that are already loaded and initialized at the time the method is
being compiled. Behind its apparent simplicity, this approach has
a major advantage over more complex schemes that allow
elimination of class initialization barriers: because the generated
code is re-entrant, new tasks entering the system can immediately
start executing the native code of a method already compiled by
other tasks, without having to interpret the method at all. The
downside is that the compiled code is sub-optimal because of the
barriers left in it.

Under this approach, making HSVM task re-entrant requires only
three types of changes to the code generated by the compiler.
First, manipulation of static variables is changed to include the
level of indirection introduced by multitasking. Second, code
generated to enter/exit the monitor of a class is modified to locate
the appropriate instance ofjava.lang.Class. Third, for all bytecode
instructions that require a class initialization or link resolution
barrier systematically, the compiler has been modified to generate
code that handles two different cases: (i) at compile time, the class

has never been loaded by any task, and (ii) the class has already
been loaded by at least one task. The sequence of instructions
generated for the first case is essentially a call to a patching stub
that will be overwritten at runtime with another sequence of
instructions handling the second case, using the patching
mechanisms already used by HSVM. The difference is that this
time, the code generated by the patching stub includes a barrier.
The code for a barrier, and for accessing static variables, is the
same for the interpreter and the compiled code, and has been
described in Section 3.3.

3.6 Performance
Two performance goals have steered the design of lightweight
isolation: (i) reducing the per-program footprint of the JVM
runtime in order to better scale with the number of tasks; and (ii),
amortizing across program executions the overhead incurred by
the runtime itself, principally virtual machine startup, dynamic
loading, and runtime compilations.

The bulk of the runtime data of HSVM resides in two memory
areas: the code cache, where native code produced by the dynamic
compiler is stored, and a portion of the heap known as the
permanent generation, which mainly holds the runtime
representation of class files (class metadata, constant pool,
bytecode, etc.) and other runtime data structures. MVM’s design
of lightweight isolation seeks to share between tasks the parts of
both areas that correspond to core and application classes (i.e.,
classes whose defining loader is not an application-defined class
loader). Figure 3 compares the memory footprint of MVM with
that of HSVM for three benchmarks from SPECjvm98 (raytrace,
db, javac). Each bar reports the accumulated sum of the code
cache size and the permanent generation size for execution of a
benchmark with HSVM (bars labeled “hsvm”), or for execution of
multiple instances of the same benchmark by concurrent tasks
with MVM (bars labeled with a numeric value indicating the

130

number of tasks; a value of 0 means that
the program was run as the main task; a
value n>0 means that an application
manager task controls the execution ofn
programs, each executed as a task). MVM
is started with a parameter indicating the
initial number of tasks it can support. This
parameter determines the default size of
the TCM tables that are part of the runtime
representation of classes in MVM. Three
configurations were used for our
measurements: 64, 256, and 1024. The
permanent generation portion of each bar
includes the whole of the permanent
generation sized for 64 tasks. The two
topmost components of bars related to
MVM indicate how much additional space
is needed to support, 256 and 1024 tasks
(i.e., 64+192, and 64+192+768 tasks,
respectively). TCM tables only consume
this additional space. Since none of the
benchmarks uses application-defined class
loaders, the numbers reported for MVM reflect exactly the size of
the shared part of both the permanent generation and code cache.

Several observations based on Figure 3 can be made. First, the
code cache can contribute to up to 36% (javac) of HSVM runtime
footprint, and is therefore worthwhile to share. Second, the size of
MVM’s shared code cache increases with the number of program
executions, as the number of compiled methods increases,
although this increase is very modest. Similarly, the size of the
permanent generation also slightly increases with the number of
running tasks. This increase corresponds to the TCM objects
(mostly, storage for static variables) added by each running task.
Although these are allocated in the old generation, we reported
them here for comparison with HSVM, which holds the
corresponding information in its permanent generation.

In contrast, runningn programs with HSVM would requiren
times the amount reported on Figure 3 for HSVM. The space
saving with MVM is immediate: as soon as 2 programs are
executed when MVM is sized for 256 tasks or less, and as soon as
4 programs are executed when MVM is sized for 1024 tasks.
Savings in space quickly reaches one order of magnitude as the
number of programs increases.

These numbers have to be contrasted with the overall footprint of
a program (total heap + code cache): across the benchmarks used
for Figure 3, the runtime data of HSVM (code cache + permanent
generation) amounts to between 6% (db) to 13% (raytrace) of the
program maximum memory footprint.

Sharing the JVM runtime can also improve performance in many
ways. First, application startup time is improved when compared
to HSVM, because several steps necessary to launch an
application are substantially shortened (e.g., loading and linking
of all the bootstrap classes), or completely eliminated (e.g., the
initialization of many internal runtime structures, such as heap,
dictionary of loaded classes, etc). Only the first application,
typically an application manager, will pay all these costs. The
application execution time, defined here as time needed to execute
the staticmain method (the application entry point), also benefits
from similar savings (i.e., loading and linking of classes already
loaded and linked by other tasks is faster). More importantly,
sharing compiled code means that a task can immediately re-use

the code of methods compiled by other tasks, thus shaving off
compilation and interpretation costs from its execution time.
Furthermore, in MVM, methods infrequently executed by a single
execution of a program may still be compiled after several
executions of the same or other programs. This is so because
method invocation counters are global in MVM. Thus, the code
quality may be continually improving, amortizing earlier efforts.
This benefits code of popular applications as well as frequently
used core classes.

On the other hand, multitasking introduces class initialization
barriers, and a level of indirection when accessing static variables.
The code produced by the dynamic compiler is typically bigger in
MVM than in HSVM, because of barriers and the associated stubs
to call the runtime. Since the costs of some of the compiler
operations depend on the number of these stubs and the size of the
code produced, MVM indirectly increases the costs of dynamic
compilation.

Figure 4 reports results from experiments that illustrate the trade-
off between the costs of making the JVM task re-entrant and the
performance benefits of multitasking. The experiments consisted
of executing a program repeatedly as a sequence of tasks. For
each sequence, measurements are reported as time overhead (or
improvement) relative to HSVM. Bars labeled with 0 report the
overhead of running one instance of a benchmark in MVM as a
main application. Bars labeled with a valuen>0 report the
overheads of runningn benchmarks asn tasks started by a simple
application manager (the manager is the main application in this
case). Whenn>0, the data reported is the overall execution times
of MVM divided by n. In other words, the overhead reported
includes the overhead of the application manager task. When only
one task is executed, the overhead of the application manager task
is not amortized, and performance is usually worse than when no
application manager is used (bars corresponding to “0 tasks”).

The overheads of this initial prototype of MVM are within 1-7%
when only one instance of a given benchmark is run. As soon as
more instances of the same code are executed, though, MVM
outperforms HSVM in several cases, and remains under 2% of
overhead in all cases. The performance gain grows with the
number of executed applications, mainly because of the

-16%

-12%

-8%

-4%

0%

4%

8%

co
m

p
re

ss

ra
yt

ra
ce d
b

ja
va

c

m
p

eg
au

di
o

m
tr

t

ja
ck

0 tasks

1 task

2 tasks

3 tasks

4 tasks

5 tasks

10 tasks

50 tasks

Figure 4. The performance of MVM. Time overheads are reported as relative to
iHSVM.

131

elimination of runtime compilation and interpretation due to the
immediate availability of compiled code. After 50 tasks, the
averageexecution time can decrease by as much as 16%.

4 MEMORY MANAGEMENT
An ability to manage computational resources is necessary to
guarantee certain amounts of resources needed for tasks, and to
foil certain denial-of-service attacks. Controlling and managing
heap memory is one of the hardest problems, if not the hardest
one, in this area, mainly because of the difficulties associated with
revoking or reclaiming the resource from an uncooperative task.

In MVM, all memory of a task is reclaimable once the task has
completed. Each task has a guaranteed amount of memory. Tasks
are not allowed to allocate more memory than their guaranteed
limit. The only exception to this is temporary, transparent use of
surplus memory (i.e. memory not backing up any guaranteed
amount – Section 4.1). Reclamation of surplus memory from a
task is transparent, non-disruptive, and efficient. Accounting for
memory consumption, needed for enforcing the limits, is accurate
and introduces neither performance nor space overheads (Section
4.4).

The associated API allows privileged tasks, such as an application
manager, to set limits on how much memory a task can use. The
limits can be dynamically changed, in order to improve overall
memory utilization. A privileged task can also set overuse
callbacks [8], which are triggered whenever a particular task
attempts to violate its memory limit. The callbacks decide what to
do next with an offending task; one option is instantaneous
termination. Privileged tasks can control the amount and the
recipients of surplus memory, by assigning surplus memory
priorities to tasks.

Only minor modifications to HSVM’s heap management were
necessary to incorporate the mechanisms needed for memory
accountability, flexible management of surplus memory, and per-
task garbage collections. In HSVM the application portion of the
heap is organized as two generations, old and new. The new
generation follows a design suggested in [28], and is sub-divided
into the creation space (eden) and aging space, which consists of a
pair of semi-spaces –to and from. New objects are allocated in
eden, except for large arrays, which are allocated directly in the
old generation. When the new generation is garbage collected
(scavenged), the survivors from eden and the objects from the
from-space whose age is below a certain threshold are copied into
the to-space. Mature objects (i.e. with age above or equal to the
threshold) are copied to the old generation. The age of each object
remaining in to-space is incremented. Finally, the roles of to-
space and from-space are swapped. Whenever the old generation
fills up, a global four-phase pointer-forwarding mark-and-
compact collection is triggered.

MVM gives to each task its own private new generation,
consisting of the to-, from-, and eden spaces. The old generation
remains shared among all tasks. The rationale for these choices is
that most action takes place in the young generation – the vast
majority of objects are allocated there, and garbage collection
happens there much more frequently than in the old generation.
Multiplying the number of young generations is simple and
eliminates most of the heap-related interference between tasks.

The implications of this decision are further discussed in Section
4.3.

4.1 Management of Surplus Memory
Surplus memory is memory not used at the moment as a part of
guaranteed heap space for any task. Using it may improve
application performance. For short-lived tasks, adding memory
can postpone GC until after the task completes and all of the
task’s memory can then be quickly reclaimed, potentially
avoiding any GC activity. For long-lived, non-interactive
programs, additional memory can reduce the frequency of GC.
Using surplus memory may thus improve performance but can
also lead to increased collection pause times. This is undesirable
for some applications, such as the interactive ones, and may be
avoided by assigning an appropriate surplus memory priority.

Modern automatic memory management systems typically copy
data to make allocation faster and to improve data locality. This is
often combined with generational techniques, where long-lived
(also known as old or tenured) data is moved around less
frequently, and new (young) objects are allocated in the new
generation, where they either die quickly or are copied and finally
get promoted (tenured) to the old generation. Such designs
optimize for the weak generational hypothesis, which states that
most objects die young [28]. The new generation is a good
candidate for receiving surplus memory. Since allocations take
place there, more memory available means more allocations
without triggering a collection. Less frequent collections allow
more objects to die before collections, which can improve
performance. Surplus memory can be easily integrated into, used
by, and promptly cleared of data and taken away from the new
generation.

The memory for new generations is under the control of the New
Space Manager (NSM). NSM ensures that each newly started task
has a new generation, and is in charge of the best-effort
management of currently unused memory. Whenever an
allocation fails because of eden being full, instead of triggering
new generation collection, NSM may give the allocating task
another memory chunk, extending eden. Thus,each new
generation now consists of a from-space, to-space, and a linked
list of eden chunks. The last chunk is calledcurrent eden, and new

F

T

F

T

F

T

E - c h u n k 1

E - c h u n k 1 E - c h u n k 2

E - c h u n k 1 E - c h u n k 2 E - c h u n k 3

Figure 5. Extending eden in MVM. Dark shade shows live
objects; light shade shows objects that died and did not
have to be copied because of best-effort surplus memory
management in MVM.

132

Figure 6. Task’s memory usage counter includes the size of
new generation (to, from, and initial eden chunk). An
allocation of an object in eden does not change the usage
(top), but an allocation in the old generation does (bottom).

old from to new

usage

limit

limit

usage

object allocations are performed there.

The ability to grow eden may postpone the need for a scavenge,
letting more objects become garbage before a collection takes
place. Figure 5 explains this: a full initial eden chunk is extended,
avoiding a scavenge (top of the figure). When the second chunk is
full (middle), a third one is given to the task, further postponing
the collection. Finally, the third chunk fills up and NSM either
does not have more chunks or the task’s surplus memory priority
does not allow further extensions. The scavenge is necessary
(bottom). Delaying a collection until then avoids the copying of
objects that have been live after the first or second extension but
died before the scavenge, and avoids copying some non-tenured
objects back and forth between from-space and to-space, because
the scavenge did not take place twice. The age of objects is
adjusted accordingly (e.g. in our example the ones in from-space
will age by 3, the ones in the first chunk by 2, etc), but only
during the actual copying of objects out of eden or out of from-
space. Extending eden ages objects implicitly, based on what
chunk they are in.

Because the cost of scavenging depends on the number of live
objects and not on the eden size, this scheme can improve the
performance by decreasing the total time spent in scavenging. It
can also increase the times of those scavenges that actually take
place. Also, since this scheme spreads the objects to be scavenged
over a larger memory area, different locality properties with
respect to caches hold than in the original scheme, which can
degrade performance. For these reasons a task can opt out of this
scheme.

4.2 Memory Accounting
The memory usage counter of a task keeps track of the amount of
the old generation occupied by the objects of this task. It also
includes the sizes of from-space, to-space, and the initial eden
chunk of the task, regardless of how many objects are in the new
generation, because these spaces are always reserved for the task.
The value of the counter is incremented only during large array
allocations or upon promotion of young objects to the old
generation during a scavenge, since only then does the volume of
the task’s data in the old generation increase. It is decremented
during global collections, to reflect the actual space taken by lived
tenured objects of that task. The sizes of eden extensions
introduced by surplus memory management are not included in
the usage counter because they are temporary and meant to
improve performance when there is no contention for memory.

MVM isolation properties guarantee that data sets of different
tasks are disjoint. Thus, the collection roots of different tasks are
disjoint too. The garbage collector is restructured to take
advantage of this property. During global collections the marking
starts from all the roots of the first task, then the second task’s
objects are marked, and so on. It is thus inexpensive to determine
how much live data the task has after the collection. New
generation collections do not need any additional re-ordering –
whenever an object is tenured, it is known which task’s new
generation is collected, and the appropriate counter is
incremented. No accounting takes place at object allocation time
(Figure 6), since the size of the new generation is already included
in the value of the usage counter.

Whenever the usage counter is incremented, it is compared
against the task’s heap memory limit. An old generation collection
is started when this increase makes the usage counter exceed the

limit. If after the collection the new allocation would still exceed
the limit, an overuse callback is triggered. Similarly, when during
surplus memory reclamation it is discovered that the total size of
task’s data is larger than the limit, the overuse callback is
triggered.

4.3 Interference among Tasks
MVM is free of two memory management-related interference
issues troubling the JVM: a task cannot hijack the finalizer thread
(finalizer queues and finalizer threads are replicated in MVM),
and it cannot monopolize heap memory (Section 4.1). Sinceeach
task has its own new generation, allocations there are independent
of these performed by other tasks. The surplus memory
management introduces one shared service, NSM. This also does
not lead to inter-task interference, since NSM is called
infrequently (to request or return an eden chunk); the calls are
non-blocking (simple management of relatively large chunks);
and requests for chunks return immediately when no surplus
memory is available.

Interferences due to allocations in the shared old generation are
not a concern, because the old generation is compacted, which
enables very fast linear allocation with non-blocking
synchronizations. Moreover, allocations in the old generation
happen in bursts and infrequently, since they result from typically
rare promotions that take place during scavenges.

Scavenges and global collections cause interference because they
currently require all threads to be suspended. In principle, this is
not required for scavenges, since only threads of the task being
scavenged really need to be suspended. Ideally an incremental
collector should be used for the old generation in MVM, in order
to enable independent collections. For instance, a train algorithm
[14] seems like a good match, since each car could be indivisibly
allocated to a task and independently collected.

4.4 Performance
Performance overheads introduced by memory management in
MVM are minimal, and come from three sources. First, the

133

Figure 7. Execution time as a function of an eden size in
MVM.

95%

96%

97%

98%

99%

100%

1 6 11 16

Number of eden chunks

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

jack

jess

db

javac

raytrace

mpeg

0 5 10 15 20

overheads of replicated new generations are virtually zero (they
do not record in our measurements). This is so since only one
indirection, to fetch a reference to the task’s new generation, is
added to object allocations. Second, the overheads introduced by
memory accounting do not exceed 0.5% for any benchmark. The
overheads are proportional to the number of promoted objects –
each promotion includes adding the already computed (HSVM)
object size to a per-task counter and then comparing the new
value with a limit. Most objects get promoted injavac(almost two
million for 2MB of eden space) and the overheads incurred in this
case are 0.5%. Many fewer objects are promoted in other
benchmarks – from a few thousand (compress, mpeg) to about
half a million (jack), which explains why the overheads are
negligible. Finally, the costs of extending eden and associated
aging-related bookkeeping during promotions are also low.
Overall, total memory-related overheads do not exceed 1% of
execution time.

To quantify the benefits of surplus memory management, all
benchmarks were run with an MVM eden chunk size equal to
512KB (larger sizes yield similar results; smaller are impractical).
It is also the initial size of eden. The parameter of the experiment
was the number of chunks the application can use. The maximum
number of chunks was fixed for the whole run of the benchmark,
so effectively the union of all eden chunks formed eden, managed
by NSM.

The execution times are presented in Figure 7 (mtrt is omitted,
since it is similar toraytrace; compressis omitted, since the
results were very similar tompegaudio). Each benchmark was run
in MVM, and the baseline for comparisons was the run with one,
initial chunk only, but including all the costs of memory
accounting.

The unsurprising conclusion is that the execution time can benefit
from larger edens. The gains can be as high as 4% (javac, jess),
but, as surplus memory insensitive mpeg shows, they may just not
exist.

A task can get more eden space for only a portion of its execution
time, and still benefit from it, although less than if the eden was
permanently extended. Overall, the scheme is simple and
inexpensive, and may bring about a few per-cent performance
improvements when there is surplus memory available. In view of
the fact that HSVM is very well tuned, an ability to gain even 2%
improvement is attractive.

5 USER-LEVEL NATIVE CODE
The coexistence of programs written in a safe language with user-
supplied, unsafe (native) code is convenient (it enables direct
access to hardware and OS resources and can improve application
performance). But the inherent lack of memory safety in native
code may break the contract offered by a safe language. In the
case of a single application executing in the JVM, a bug in an
application (user-level) native library will disrupt or abnormally
terminate this particular application only. The consequence of an
errant native library carelessly loaded into MVM can be much
more serious. In addition to causing malfunctioning of the loading
application, such a library may corrupt the data of other
applications or crash the whole virtual machine. Worse yet, an
uncontrolled malicious native library may read the data of other
applications, perhaps leaking out privileged information.

Several techniques for ensuring memory safety have been
proposed, such as augmenting native code with safety-enforcing
software checks [29], statically analyzing it and proving it safe
[21], or designing a low-level, statically typed target language to
compile native code to [20]. Although these approaches have their
success stories, and at the current state of the art they are practical
in many circumstances, their usefulness for addressing problems
with an arbitrary native library is rather limited. In particular,
ensuring memory safety with these techniques requires source
code of native libraries [20], generating safety proofs [21], which
is impossible in general, or may incur non-negligible performance
penalties [29].

Memory safety is not the only issue, though. Guaranteeing the
safe use of system resources by the JVM and native code is
equally important. Native code is written against two interfaces:
the Java Native Interface (JNI) [17], which is its sole interaction
with the JVM and the application, and the host OS interfaces,
involving the usual libraries for I/O, threading, math, networking,
etc. The latter is also the interface against which the JVM is
written, and therein lies a problem. The JVM makes certain
decisions regarding the use of the host OS interface and of
available resources. Examples include the following: signal
handlers may need to be instantiated to handle exceptions that are
part of the operation of the JVM (e.g., to detect memory access
and arithmetic exceptions, etc.); the JVM must choose a memory
management regime for its own purposes, such as the allocation
of thread stacks and red zones; threads accessible in the language
are typically mapped onto the underlying system's threading
mechanism; the JVM adopts a convention to suspend threads for
garbage collection; the JVM decides how to manage I/O (e.g.,
using blocking or non-blocking calls).

Few, if any, of these mechanisms arecomposable, in the sense
that it is not possible to take an arbitrary Java program and a user-
supplied native library, put them together into one virtual
machine, and expect the resulting system to work correctly. The
implicit conventions in which the JVM uses system resources are
rarely documented, are highly dependent on the implementation
decisions, and are usually thought of as private to the JVM. Thus,
while programmers may have very legitimate reasons, for
instance, to customize signal handling in a native method, doing
this may interfere with the JVM, depending on unknown
implementation details.

In MVM user-supplied native code is executed in a separate
process. Each task that needs this and has the necessary
permissions has one such process. This means that the only

134

interface between the JVM and native libraries becomes JNI.
There is then no implicit contract concerning memory
management, threading, signal handling, and other issues. This
solves the composability problem neatly. The native code in a
separate process has full control of its own resources. There are
no unexpected interactions with MVM via memory, signals,
threads, and so on.

The challenges were to make this execution of native code in a
separate process transparent to the native libraries and to tasks.
We also wanted to avoid any modifications to the JVM, so that
our design can be easily reused in contexts other than
multitasking.

5.1 JNI Essentials
JNI interacts with the JVM viadowncalls (when a Java
application calls a native method) andupcalls (when a native
method calls up to the JVM). Upcalls enable accessing static and
instance fields and array elements, invoking methods, entering
and exiting monitors, creating new objects, using reflection, and
throwing and catching exceptions. Downcalls result in calls to C
or C++ functions, the names of which are generated, according to
a known convention, from the names of Java methods declared as
native. Upcalls are invoked via aJNI environmentinterface, a
pointer to which is always passed as the first argument to all JNI
upcalls and downcalls. Objects, classes, fields, and methods are
never accessed directly, but via appropriate opaque references or
identifiers. These references are meaningful only to the JNI
functions, and shield native code from the details of particular
implementations of JNI.

5.2 The Design of Native Code Isolation
Native code isolation works by interposing an isolation layer
between the JVM and native method libraries such that native
methods are transparently executed in a process different from the
process executing the JVM. For simplicity of exposition, let us
call the formern-process, and the latter thej-process. Figure 8
gives a high-level view of the interposition mechanisms. The
interposition layer maintains one n-process per task actually
issuing native method calls, and directs all native calls issued
from a task to its correspondingn-process. Let us assume a simple
scenario where one task performs calls to one native library,
called hereafterl-orig.

A native library with the same name and exported symbols asl-
orig is produced so that it can be loaded by the Java application
executing in j-process. Let us call this library l-proxy. It is

generated through an automated analysis of the symbol table ofl-
orig. All extracted function names that comply with the downcall
naming convention are used to generate a source file in which
these functions are redefined to ship their arguments, along with
an integer uniquely identifying the function, ton-process. Upon
receipt of such a message,n-processexecutes the requested
function with the supplied arguments. Prior to that,n-process
replaces the first word in the list of received arguments with its
own version of the JNI environment pointer. This custom JNI
environment redefines all JNI functions so that each of them ships
all of its arguments along with its unique identifier back toj-
process, where the upcall is dispatched to the original JNI method.
Generating proxy libraries and replacing the original JNI
environment pointer with a custom one are two main techniques
making the resulting interposition mechanism transparent to the
JVM and to native libraries.

Implementing the upcalls in the custom JNI environment interface
is straightforward for those taking a fixed, known number of
arguments of primitive or opaque reference or identifier types.
Invoking methods or constructors is handled by JNI upcalls that
expect a variable number of arguments. Each such upcall has
three forms: (i) using the “…” construct of the C programming
language, (ii) expecting arguments as a variable-length list
(va_list), and (iii) expecting a vector of unions of a JNI-
defined type, each of which holds one argument for the upcall.
Computing the number of the upcall’s arguments at call time by
analyzing the current stack call frame is possible only in the first
case.

An elegant, portable, and uniform solution applicable to all three
cases takes advantage of the following fact. Before invoking a
Java method via a JNI upcall, the method identifier has to be
obtained first. This is done by calling a JNI upcall (e.g.
GetMethodID) and supplying it with the signature of the Java
method or constructor to be executed by the upcall. The number
and size of arguments is obtained by analyzing the signature after
successfully obtaining the method identifier. The original method
identifier and the computed argument information are then cached
by n-processfor later use.

It is important to ensure that upcalls be handled in the context of
the thread that originally issued the downcall. For instance, an
exception thrown in an upcall has to be dispatched to the thread
that caused the downcall; requests to obtain a stack trace should
look identical to those generate by traditional JNI systems;
monitor acquisitions by native code should be done in the context
of the same thread that issued the downcall, or synchronization
between native and Java code may be impossible. How this is
guaranteed depends on the inter-process communication chosen.
Details on this aspect of native method isolation are extensively
discussed in [7].

5.2.1 Portability
The implementation of native code isolation is highly portable
across different hardware/OS platforms. There are two places,
which require platform-specific code: (i) determining how many
arguments are passed to a downcall inj-process, and (ii) returning
the correct value after executing the original native method inn-
process. The reason is that in general neither the number of
arguments nor the type of return value of a native method can be
inferred from the native library. On our platform, the first issue is
handled by analyzing the stack frame of a downcall. The second is
dealt with by obtaining, after executing a downcall inn-process,

JNI

OS Interface

JNI

OS Interface OS Interface

System Resources

Native
Code

Native
Code

MVM

System
Resources

System
Resources

MVM

Task2Task1 Task1 Task2

Figure 8. Various conflicts are possible between user-
supplied native code and the JVM (left). In MVM, the
native code isolation scheme prevents them (right).

n-processj-process

135

0%

1000%

2000%

3000%

4000%

5000%

6000%

0%
10%
20%
30%
40%
50%
60%
70%

20 40 60 80 100

Figure 9.The overheads of squaring a matrix in a native
method in a separate process, as a function of matrix
dimension, relative to standard, in-proc JNI.

0 25 50 75 100

JNI in-proc JNI out-of-proc

Downcall 0.136ÿs 54ÿs

Downcall + upcall 0.163ÿs 106ÿs

Table 1. Overheads of executing native code in a separate
process.

the contents of both registers (%o0and%of) that may contain the
return value of the downcall. These values are then restored inj-
process,after a return from the proxy call. Since the calling
convention requires spilling of these two registers before function
calls, this approach is correct.

5.3 Performance
A key factor for the performance of native method isolation is the
inter-process communication mechanism chosen between the
JVM process and the native method servers. Our implementation
usesdoors [13], a fast inter-process communication mechanism
available on the Solaris Operating Environment. Doors achieve
low latency by transferring control back and forth between the
caller's and the callee's threads directly, without passing by the
scheduler.

Table 1 summarizes the overheads. The “downcall” column
reports the cost of a trivial downcall (no arguments, immediate
return), while “downcall + upcall” additionally issues the
GetVersionupcall, which returns immediately with an integer
specifying the JNI version. The 54µs overhead of a downcall
breaks down as follows: 18.5µs is taken by a door call and return,
30.8µs is the cost of twoucontextswaps and the rest (4.7µs) are
various bookkeeping and data copying overheads. Similar analysis
applies to the overheads associated with upcalls. This number
would be much higher if sockets were used – a one-word round-
trip message takes about 128µs.

The overheads (about 400 times higher than the plain in-proc JNI
downcall) seem very large. And they are large indeed, for
downcalls that do not compute much. To see how quickly the
overheads become tolerable, let us analyze a simple program that
performsA = A2 for a floating-point matrix A. The squaring
requires one downcall (to initiate the native call) and two upcalls
(to fetch the matrix entries and to set the computed result). Figure
9 summarizes the overheads as a function of array size (e.g. size
25 means a 25x25 array). For small arrays the overheads are
prohibitive. For 40x40 arrays they become tolerable, and virtually
disappear when the array size approaches 90. These numbers are
no substitute for more realistic benchmarks, but serve as a useful
estimate of the costs of this approach. Overall, the overheads
depend on the frequency of native calls issued by an application.

The proposed scheme enables safe, reliable, and interference-free
composition of native libraries and the MVM runtime. No
changes to the MVM were necessary as the infrastructure is
transparent to and independent of the implementation of the JVM,
its vendor or version. The transparency and automation of the
presented technique are major improvements over such designs
Microsoft’s Common Object Model (COM) [22], where
components can execute in the same process or in a separate
process. This is accomplished with the help of an interface
definition language (IDL), used to describe data passed into and

out of out-of-proc components.

The utility of our approach reaches beyond MVM [7]. For
instance, we are using it for mixed-mode debugging, where a
C/C++ debugger (e.g. gdb) executesn-processand the Java code
is debugged with a Java debugger (e.g. Forte™ for Java [27]).

6 CONCLUSIONS
MVM is a complete system, where any existing Java application
can execute and can use all abstractions, mechanisms, and
standard libraries of the JVM. Known sources of inter-task
interference, present in the JVM, are removed in MVM. The
safety, scalability and uncompromising approach to offering each
feature of the language make MVM an attractive platform for
environments that require the execution of numerous programs
written in the Java programming language, such as, application
servers, extensible web servers, or even user desktop
environments.

Special attention has been paid to three issues. First, sharing the
native code that results from runtime compilation of methods of
both core and application classes. This is crucial for performance,
since it amortizes compilation costs across all tasks, and
scalability, since it increases the shareable portion of a program
memory footprint. Second, heap memory, a resource notorious for
unaccountability and irrevocability in the JVM, is subject to
explicit guarantees and is inexpensively accounted for. Moreover,
surplus memory is transparently given to task whenever available,
to improve overall performance. Third, native libraries – a feature
typically forbidden in safe language multitasking environments –
can be safely used by tasks, and transparently execute in a
separate OS process, to prevent any interference with MVM.

The code base for implementing MVM is the Java HotSpot virtual
machine. The overheads introduced by multitasking rapidly
disappear or, in many cases, are replaced by significant
performance gains, as repeated executions of methods enjoy
accumulated compilation effort.

This paper is an initial report on MVM. The system has just
become operational, and more study is needed (and planned!) to
evaluate various aspects of its performance and functionality,

136

especially under very large workloads such as those incurred by
application servers.

7 ACKNOWLEDGEMENTS
The authors are grateful to Godmar Back, Dave Dice, Robert
Griesemer, Wilson Hsieh, Mick Jordan, Hideya Kawahara, Peter
Kessler, Doug Lea, Tim Lindholm, Nate Nystrom, Fred Oliver,
Glenn Skinner, Pete Soper, Ricky Robinson, Pat Tullman, Dave
Ungar, and Mario Wolczko for their comments, suggestions and
help.

8 TRADEMARKS
Sun, Sun Microsystems, Inc., Java, JVM, Enterprise JavaBeans,
HotSpot, and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc., in the United States and other countries.
SPARC and UltraSPARC are a trademarks or registered
trademarks of SPARC International, Inc. in the United States and
other countries. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through X/Open
Company, Ltd.

9 REFERENCES
[1] Arnold, K., and Gosling, J. The Java Programming

Language. 2nd Edition. Addison-Wesley, 1998.

[2] Back, G., Hsieh, W., and Lepreau, J. Processes in
KaffeOS: Isolation, Resource Management, and
Sharing in Java. 4th Symposium on Operating Systems
Design and Implementation, San Diego, CA, 2000.

[3] Balfanz, D., and Gong, L. Experience with Secure
Multi-Processing in Java. Technical Report 560-97,
Department of Computer Science, Princeton
University, September, 1997.

[4] Bryce, C. and Vitek, J. The JavaSeal Mobile Agent
Kernel. 3rd International Symposium on Mobile
Agents, Palm Springs, CA, October 1999.

[5] Bryce, C. and Razafimahefa C. An Approach to Safe
Object Sharing. ACM OOPSLA’00, Minneapolis, MN,
October 2000.

[6] Czajkowski, G. Application Isolation in the Java
Virtual Machine. ACM OOPSLA'00, Minneapolis,
MN, October 2000.

[7] Czajkowski, G., and Daynès, L., and Wolczko, M.
Automated and Portable Native Code Isolation. Sun
Microsystems Laboratories Technical Report, TR-01-
96, April 2001.

[8] Czajkowski, G., and von Eicken, T. JRes – A Resource
Accounting Interface for Java. ACM OOPSLA’98,
Vancouver, BC, October 1998.

[9] Dillenberger, W., Bordwekar, R., Clark, C., Durand, D.,
Emmes, D., Gohda, O., Howard, S., Oliver, M.,
Samuel, F., and St. John, R. Building a Java virtual
machine for server applications: The JVM on OS/390.
IBM Systems Journal, Vol. 39, No 1, 2000.

[10] Gong, Li. Inside Java 2 Platform Security. Addison
Wesley, 1999.

[11] Gosling, J., Joy, B., Steele, G. and Bracha, G The Java
Language Specification. 2nd Edition. Addison-Wesley,
2000.

[12] Hawblitzel, C., Chang, C-C., Czajkowski, G., Hu, D.
and von Eicken, T. Implementing Multiple Protection
Domains in Java. USENIX Annual Conference, New
Orleans, LA, June 1998.

[13] Hamilton, G., and Kougiouris. The Spring Nucleus: a
Microkernel for Objects. Summer USENIX
Conference, June 1993.

[14] Hudson, R., and Moss, E. Incremental Collection of
Mature Objects. International Workshop on Memory
Management, September 1992.

[15] Java Community Process. JSR-121: Application
Isolation API Specification. jcp.org/jsr/detail/121.jsp.

[16] Liang S., and Bracha, G. Dynamic Class Loading in
the Java Virtual Machine. ACM OOPSLA'98,
Vancouver, BC, Canada, October 1998.

[17] Liang, S. The Java Native Interface. Addison-Wesley,
June 1999.

[18] Linholm, T., and Yellin, F. The Java Virtual Machine
Specification. 1st Ed. Addison-Wesley, 1996. Also:
java.sun.com/docs/books/vmspec. Discusses bytecode
quickening.

[19] Lindholm, T., and Yellin, F.. The Java Virtual
Machine Specification. 2nd Ed. Addison-Wesley, 1999.

[20] Morrisett, G., Crary, K., Glew, N., Grossman, D.,
Samuels, R., Smith, F., Walker, D., Weirich, S., and
Zdancewic, S. TALx86: A Realistic Typed Assembly
Language. ACM SIGPLAN Workshop on Compiler
Support for System Software, Atlanta, GA, May 1999.

[21] Necula, G., and Lee, P. Safe Kernel Extensions
without RuntimeChecking. 2nd Symposium on
Operating Systems Design and Implementation,
Seattle, WA 1996.

[22] Rogerson. D. Inside COM. Microsoft Press, 1997.

[23] Rudys, A., Clements, J., and Wallach, D. Termination
in Language-based Systems. Network and Distributed
Systems Security Symposium, San Diego, CA,
February 2001.

[24] Suri, N., Bradshaw, J., Breedy, M., Groth, P., Hill, G.,
Jeffers, R., and Mitrovich, T. An Overview of the
NOMADS Mobile Agent System. 2nd International
Symposium on Agent Systems and Applications,
ASA/MA2000, Zurich, Switzerland, September 2000.

[25] Standard Performance Evaluation Corporation. SPEC
Java Virtual Machine Benchmark Suite. August 1998.
http://www.spec.org/osg/jvm98.

137

[26] Sun Microsystems, Inc. Java HotSpot™ Technology.
http://java.sun.com/products/hotspot.

[27] Sun Microsystems, Inc. Forte™ Tools: Forte™ for
Java™. http://www.sun.com/forte/ffj.

[28] Ungar. D. Generational Scavenging: A Non-Disruptive
High Performance Storage Reclamation Algorithm.
ACM SIGPLAN Notices, 19(5), April 1984.

[29] Wahbe, R., Lucco, S., Anderson, T., and Graham, S.
Efficient Software Fault Isolation. 14th ACM
Symposium on Operating Systems Principles,
Asheville, NC, December 1993.

[30] Weaver, D., and Germond, T. The Sparc Architecture
Manual – Version 9. Prentice Hall, 1994.

138

