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Abstract
To date, systems offering multitasking for the Java™
programming language either use one process or one class loader
for each application. Both approaches are unsatisfactory. Using
operating system processes is expensive, scales poorly and does
not fully exploit the protection features inherent in a safe
language.  Class loaders replicate application code, obscure the
type system, and non-uniformly treat ‘trusted’ and ‘untrusted’
classes, which leads to subtle, but nevertheless, potentially
harmful forms of undesirable inter-application interaction.
In this paper we propose a novel, simple yet powerful solution.
The new model improves on existing designs in terms of resource
utilization while offering strong isolation among applications.
The approach is applicable both on high-end servers and on small
devices. The main idea is to maintain only one copy of every
class, regardless of how many applications  use it. Classes are
transparently and automatically modified, so that each application
has a separate copy of its static fields.  Two prototypes are
described and selected performance data is analyzed. Various
aspects of the proposed architectural changes to the Java Virtual
Machine are discussed.
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1 INTRODUCTION
The growing popularity of the Java programming language [2]
brings about an increased need for executing multiple applications
written in the language and co-located on the same computer [4].
Ideally, such applications should be protected from one another,
which means that an application should not be able to corrupt the
data of another and should not be able to prevent another
application from performing its activities. At the same time,
marginal system resources needed to start new applications should
be as small as possible so that the number of concurrently
executing applications can be as high as possible.
One approach to multitasking in the Java programming language

is to start each application in a separate copy of the Java Virtual
Machine (JVM™) [21]. This typically requires spawning a new
operating system process for each application and provides strong
separation between applications but uses large amounts of
resources (memory, CPU time) and makes inter-application
communication expensive.
An alternative is to execute applications in the same instance of
the JVM. Typically, each application is loaded by a separate class
loader [20]. This code replication is especially wasteful in the
presence of just-in-time compilers (JITs). Current JVM
implementations separately compile and separately store the JITed
code of each loaded class, regardless of whether the class has
already been loaded by another application or not. This can easily
lead to significant memory footprints since, as [8] indicates, on
the average, a byte of bytecode translates into five to six bytes of
native code. Combined with the safety of the language, this
approach leads to systems where applications are mostly isolated
from one another.  The place where the isolation breaks is the
interaction of applications through static fields and static
synchronized methods of system classes (they are not subject to
per-application replication).
Two current trends make us question the future usefulness of
these approaches. On one end of the computing power spectrum,
high-end high-throughput servers have to deal with large numbers
of concurrently executing programs written in the Java
programming language. Increasingly, in addition to traditional,
large and self-contained applications, other entities, such as
applets, servlets [18], and Enterprise JavaBeans™ components
[17], enter the picture. The process-based approach is
unacceptable in these settings, as it allocates large amounts of
system resources to starting many copies of the JVM and thus
scales very poorly. Using class loaders has the potential to scale
better but typically resources are wasted on replicating application
code when more than one application executes the same class.
Isolation inconsistencies pointed out earlier make this approach
unsafe in general.
On the other end of the spectrum, small-footprint JVMs, targeting
small devices, are emerging. They typically lack many features
available in full implementations of the JVM. An example is the
K Virtual Machine (KVM) [19].  Since the KVM specification
does not require that its implementations provide class loaders,
multitasking in a single instance of the KVM is possible only
when all applications are trusted and guaranteed not to interfere
with one another. Process-based multitasking using the KVM is
also problematic since it is meant for small devices, which do not
necessarily have an OS or a process model with adequately strong
application separation guarantees.
The goal and contribution of this paper is to address the central
problem of multitasking: isolating (protecting) applications from



one another. The approach presented here advocates sharing all
classes among all applications in the same instance of the JVM.
The only non-shared entities are certain static fields and some
monitors.
The idea has been implemented in two ways. The first prototype,
based on bytecode editing, has certain limitations but is portable
and provides a good framework for experimentation. The second
prototype draws upon the lessons learned from the first one but
application isolation is provided through a modified runtime.
Runtime changes lead to a robust and fully functional
environment in which applications can be terminated at any
instant and their resources can be accurately controlled.
Isolating applications from one another enables secure
multitasking in the Java™ platform. However, there are other
important multitasking issues: application termination, inter-
application communication mechanisms, dealing with native code,
and resource control. Some of these topics are the focus of several
projects [3,4,9,16,31] and are beyond the scope of this paper. In
other words, the approach presented in this paper deals only with
the application isolation at the object level. In this respect, it is
general and applicable, not only to the Java programming
language, but to other object-oriented languages with similar
features (e.g. static, or class, fields) as well. In the case of “pure”
implementations, the presented technique may be enough to turn a
language into a multitasking environment. In the case of more
“contaminated” systems, issues such as native code and thread

termination also need to be addressed.
A note on the terminology is appropriate here.  The term
“application” is used in an under-defined but intuitively
understood sense. This is sufficient for the purposes of this paper.
It is important to stress, though, that the mechanism proposed here
can be used to implement protection domains in a broader sense
[16]. An application can be a component, a servlet, a bean, etc.,
and, in these general settings, an application or service can consist
of a collection of cooperating domains.
The rest of the paper is structured as follows. The basic idea is
described in Section 2. Section 3 contains a description of our
bytecode-editing prototype. Possible optimizations are the topic of
Section 4.  Performance data gathered from that prototype are
analyzed in Section 5. The second prototype, based on the KVM
and runtime modifications, is described in Section 6. Section 7
discusses the impact of the proposed architecture on security.
Related work is summarized in Section 8. A summary section
concludes the paper.

2 THE BASIC APPROACH
This section gives a high-level overview of the proposed
protection model in the JVM and the intuition behind it. A simple
way of explaining the model is to first think of a straightforward
approach to multitasking in the Java™ application environment:
all applications share all classes. The essential observation at this
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Figure 1. The naïve approach to Java multiprocessing (“share everything”) is shown at the left; the center shows
the class loader based solution; the right shows the new model. Shaded parts are shared by all applications; all
other pieces are owned exclusively by a single application.



point is that a safe language already has some built-in support for
isolating applications: data references cannot be forged, unsafe
casting is not allowed, and jumping to an arbitrary code location is
impossible. Consequently, the only data exchange mechanism
(barring explicit inter-application communication) is through
static fields. This can only occur either by explicit manipulation of
static fields or by invoking methods which access these fields. It
can lead to unexpected and incorrect behavior depending on how
applications use the same class with static fields.
The above observation suggests an approach for achieving
isolation among applications: to maintain a separate copy of the
static fields for each class, one copy per application that uses the
given class. However, only one copy of the code of any class
should exist in the system, regardless of how many applications
use it, since methods cannot transfer data from one application to
another once the static fields communication channel is removed.
(Dealing with covert communication channels is beyond the scope
of this paper). Our proposal effectively gives each application the
illusion that it has exclusive access to static fields while in reality
each application has a separate copy of these fields.
In class loader based isolation, each application has a separate
copy of the application classes (with static fields) but all system
classes are shared. Two observations are important in this case.
First, typically class loaders do not share enough: they replicate
the code of application classes. Second, class loaders share too
much: they share static fields of system classes. Addressing these
two issues leads to the same model as above: all classes are shared
but there is a per-application copy of each static field. Figure 1
contrasts the sharing and isolation in the most straightforward but
simplistic approach, class loader based isolation, and the proposed
model.
Our model combines the best features of the process and the class
loader based approaches. First, many applications can execute in a
single JVM. This has all the advantages of class loaders over
processes: (i) switching from one application to another does not
require a costly process context switch, (ii) startup time is faster,
and (iii) the applications share the runtime resources, which
improves the overall system scalability. Second, only one copy of
a class is loaded into the system, regardless of how many
applications use it. This improves over both existing approaches
in terms of saved code space and saved repeated JIT compilation
time. Third, applications are isolated from one another – they
cannot exchange data through shared variables of any class. This
is a vast improvement over what class loaders can offer. Finally,
no new programming convention is introduced. In particular, the
bytecode of existing applications does not have to be modified.

3 DETAILS
There are a number of details that need to be addressed to turn the
idea presented above into a workable system. This section
discusses a hypothetical source-to-source transformation
implementation. Our first prototype, the performance of which is
described in Section 5, performs these transformations but at the
bytecode level. Bytecode-to-bytecode transformation is preferable
over source-to-source transformation because often the source is
not available. The source-to-source level is most appropriate for
explaining the approach, though. Section 6 discusses functionally
equivalent runtime modifications.
The general idea is to extract all static fields from each class and
to transparently create a separate copy of these fields for each

application. Consider a class X, containing static fields. It is split
into three classes: the original one but without the static fields, a
new class X$sFields containing all the static fields (which are now
instance fields in X$sFields), and a new class X$aMethods.
X$aMethods maintains an instance of X$sFields for each
application; the methods of X$aMethods access the correct
instance of X$sFields based on the application id extracted from
the current thread.  Only one copy of modified X and X$aMethods
is present in the JVM regardless of the number of applications
using the original class.
As an example, consider the following class:

class Counter {
  static int cnt;

  static {
    cnt = 7;
  }

  static void add(int val) {
    cnt = cnt + val;
  }
}

The transformations produce the three classes listed in Figure 2.
The transformations affect only static fields and the way they are
accessed. The first new class, Counter$sFields, contains all the
static fields of Counter. The modifiers static, final, private,
protected and public are removed from the fields so that they have
package access. Thus, all static fields of Counter become instance,
non-final, package-access fields of the new class Counter$sFields.
The second generated class is Counter$aMethods. It contains a
table mapping application identifiers onto per-application copies
of Counter$sFields. For each field from Counter$sFields there is a
pair of get$() and put$() methods in Counter$aMethods. In our
particular case there is only one static field and thus
Counter$aMethods has two such access methods: put$cnt() and
get$cnt(). Each of them looks up the copy of Counter$sFields
corresponding to the current application and then accesses the
named field. If the lookup does not succeed it means that this
application’s copy of Counter$sFields has not been generated yet
and that the appropriate initialization has to be taken care of.
Let us note here that the field sfArr and the methods of
Counter$aMethods could be stored in the original class file of
Counter. This is possible for concrete classes only; interfaces
cannot have non-abstract methods. In our base transformation, all
class files are treated uniformly, though, and both the proper
classes and interfaces are correctly taken care of.
The original class, Counter, undergoes the following
modifications. All static fields are removed from Counter. A new
method, hidden$initializer(), is added. It contains a modified code
of the static initializer of Counter. It is invoked whenever a new
application uses static fields of Counter for the first time.
Once these modifications are performed, the code of each has to
be inspected (either off-line or at load time). Each access to a
static field has to be replaced with the appropriate get$() or put$()
method. At the bytecode-to-bytecode transformation level this
becomes a replacement of each getstatic or putstatic with
appropriate get$() or put$(), respectively.



3.1 Thread Safety and Performance
Considerations

The code presented in Figure 2 synchronizes on every static field
access. Depending on the implementation of monitors, this can be

expensive. Because of a subtlety in the memory model of the JVM
[23], using the double-check idiom:

sFields = sfArr[id];
if (sFields == null) {
  synchronized(Counter$aMethods.class) {
    if (sFields == null) {
      sFields = new Counter$sFields();
      sfArr[id] = sFields;
      Counter.hidden$initializer();
    }
  }
}

in order to limit synchronization to only when sFields is actually
constructed is not guaranteed to work. For details, see the
discussion of double check and lazy instantiation idioms and of
problems with volatile in [24]. In short, the problem boils down to
the fact that memory updates performed in a synchronized section
are not guaranteed to appear in their syntactic order to other
threads. Whether this problem manifests itself or not depends on
the particular JVM implementation. Interested readers are referred
to [23].
Our first prototype, based on bytecode editing, has an option
determining whether classes should be rewritten according to the
pattern presented in Figure 2 or using the optimized code,
presented above. Implementing the proposed isolation mechanism
directly in the JVM may avoid entirely excessive synchronization.

3.2 Static Synchronized Methods
Suppose that add() of Counter is a synchronized method. This may
lead to the following problem in the transformed code: one
application calls add() and while the calling thread executes the
body of the method, it is suspended by another thread from the
same application. This is a serious denial-of-service problem since
the suspended thread still holds a monitor and no other application
is able to execute Counter.add(). Another scenario leading to the
“capture” of a class monitor is an infinite loop in a static
synchronized method. This problem does not exist if applications
using the class Counter are loaded by separate class loaders.
These examples demonstrate that in the new isolation model, there
is a need to have a separate monitor for each application.  The
objective is to ensure that proper mutual exclusion takes place
among the threads of each application but one application cannot
prevent another from using a given static synchronized method.
A relatively simple transformation, performed prior to the one
shown in Figure 2, handles this problem. Implicit synchronization
for static methods is replaced by explicit synchronization on the
corresponding $sFields object owned by the current application.
For example,

static synchronized void add(int val) {
  cnt = cnt + val;
}

is replaced by

class Counter$sFields {
  int cnt;
}

class Counter$aMethods {

  static Counter$sFields[] sfArr =
    new Counter$sFields[MAX_APPS];

  static Counter$sFields getSFields(){
    int id = Thread.currentAppId();
    Counter$sFields sFields;
    synchronized (Counter$aMethods.class) {
      sFields = sfArr[id];
      if (sFields == null) {
        sFields = new Counter$sFields();
        sfArr[id] = sFields;
        Counter.hidden$initializer();
      }
    }
    return sFields;
  }

  static int get$cnt() {
    return getSFields().cnt;
  }

  static void put$cnt(int val) {
    getSFields().cnt = val;
  }
}

class Counter {

  static void hidden$initializer() {
    Counter$aMethods.put$cnt(7);
  }

  static { hidden$initializer(); }

  static void add(int val) {
    int tmp = Counter$aMethods.get$cnt();
    tmp += val;
    Counter$aMethods.put$cnt(tmp);
}

Figure 2. Three classes generated from the example
class Counter .



static void add(int val) {
  Object sync;
  sync = Counter$aMethods.getSFields();
  synchronized(sync) {
    cnt = cnt + val;
  }
}

before it is subject to the static field replication.

3.3 Correctness and Security Issues
Since the transformations remove final and access control field
modifiers when moving static fields into $sFields classes, it is
important to ensure that the original program’s semantics are
preserved under the transformations. To this end, let us note that
during the original compilation process, before the
transformations, the source program has no knowledge of the
$sFields and $aMethods classes and direct references to them will
cause compilation errors. Reflection and handcrafted bytecode are
the only ways via which the property of, for instance, being final
or private can be violated. It is quite easy, though, to include
appropriate checks in the implementation of reflective methods so
that they cannot access generated classes. The reflection system
can even be modified so that it behaves exactly as it did with the
unmodified classes. Similarly, load-time checks can quickly
detect and reject code that attempts to directly access the
generated classes.
It is also important to make sure that the transformations preserve
the property that a class is initialized before using of any of its
instances. This is accomplished by inserting into the constructor
code that makes sure the corresponding static initializer has been
invoked. The code is similar to the getSFields() method in Figure
2. The double check optimization (Section 3.1) can be optionally
applied.

3.4 Compatibility with Class Loader Based
Multitasking

It is important to ensure that that static initializers are invoked in
the same order and the same number of times as in class loader
based multitasking. Compatibility reasons are not the only ones.
For instance, static initializers of application classes may open
network connections or load new (native) libraries. This may
happen without accessing any static fields. This simple class
below illustrates the problem:

class Test {
  static {
    System.out.println(‘’Here’’);
  }
  static void dummyMethod() {}
}
Suppose two applications call Test.dummyMethod(). In a class
loader based system, ‘’Here’’ would be printed out twice. When
executed in the isolation model proposed so far, the program
would print the string only once.
To address this issue our current prototype invokes a static
initializer of a class C when (i) the class C is loaded for the first
time, and when another (i.e. not the one that caused (i))

application either (ii) accesses a static field of C for the first time
or when it (iii) invokes a static method on C for the first time. The
code for (ii) is shown in Figure 2; (iii) is accomplished by a flag
check.
Another important property required by the language specification
is that all superclasses are initialized before a class is initialized.
This is accomplished by making sure that hidden$initializer()
methods check whether the superclass has been initialized.

3.5 Atypical Cases
In several cases, the automatic transformations described above
have to be augmented with manual re-coding of classes. Let us
consider System.out. In most implementations of the JVM, this
field is initialized by the runtime. It is important to ensure that
each application has an access to the actual System.out (if a
security policy of a given environment allows this) and that, at the
same time, this static field is not directly shared by the
applications.
In general, resources that must be shared by all classes have to be
identified for each particular JVM. Manually dealing with them
seems to be necessary for a handful of system classes only and
wrapping selected classes with multiplexing/de-multiplexing code
may be the most effective solution. For instance, in this prototype,
each application sees a separate copy of System.out, but internally
this print stream is implemented as prefixing each new line with
the id of its application.

3.6 Shortcomings of Bytecode Editing
The prototype presented in this section treats the JVM as a “black
box” and performs all the described actions at the bytecode level.
This makes the prototype portable, but causes several problems as
well.
Some issues are related to sharing of certain data structures by the
runtime. For instance, typically there is a single internal string
table. This can lead to unexpected sharing. Another instance of
problematic sharing is finalization. In fact, finalizers are the only
place we are aware of where the semantics of a program is not
preserved by the bytecode-editing prototype. This is the case
when finalization code uses static variables. Devising a general
solution without modifying the runtime and without adding a field
to each object seems to be difficult.
Finalizers that never terminate (e.g. because of an infinite loop)
are another problem. Such behavior would capture the finalizer
thread and would not allow it to finalize objects of other
applications. Again, runtime modifications (e.g. separate per-
application finalizers) seem to be necessary to address this
problem in its generality.
Native code leads to another set of difficult issues, which can not
be dealt with via bytecode editing. First, native methods may
preserve state between invocations. This state may have to be
replicated on a per-application basis in order to avoid clashes
among applications. Second, application-defined native code has
to be either well behaved, disallowed, or contained (e.g. in a
separate process or via binary rewriting [31].) Everything
executes in the same address space and unconstrained native code
has unconstrained access to all data of other applications.
Another topic in this category is resource control. Isolation alone
does not prevent denial-of-service attacks. To some extent,
resources can be controlled through bytecode editing [9], but this



is not a complete approach. For instance, neither CPU usage nor
memory allocated internally by some core classes can be
controlled via bytecode rewriting only.
Our general approach does not preclude finalization or string
interning. Neither does it imply giving up on user-defined native
code or on resource control capabilities. The goal of the bytecode-
editing experimental prototype is to explore some of the issues
related to multitasking in the Java platform. In our opinion, a
robust implementation addressing all of the problems mentioned
in this subsection is possible, but requires runtime modifications.

4 OPTIMIZATIONS
The basic scheme described above has one very useful property:
classes are modified one-by-one - there is no need to analyze
another class before ending the modifications to the current class.
Another property is portability. In this section, several simple
optimizations are presented. They can be performed as source-to-
source transformations. As such, they do not break portability but
some may require analyzing more than one class before
modifications to a particular class can be completed.
An important category of optimizations is preserving selected
static final fields in their original classes. In such cases original
getstatic (and, in initialization code, putstatic) instructions are left
unmodified whenever accessing such preserved fields. This avoids
having to look up the current application identifier and then to
find the corresponding $sFields object.
Static final fields of primitive types can be preserved in their
original classes since this cannot lead to any inter-application
interference. The optimization makes it necessary to scan the
bytecode of referenced classes in order to decide whether a field
named in getstatic/putstatic is final or not.
Preserving static final strings in their original classes seems like
another good candidate for an optimization. Strings are immutable
so their fields or methods cannot act as a data communication
channel between applications. However, if an application uses a
static final string as a monitor object for a synchronized statement,
another application may compete for the same monitor. Thus,
preserving static final strings may lead to unwanted interference at
the level of accessing mutual exclusion code.
Objects can be preserved in their original classes only if they are
not used as synchronization objects and if they are immutable.
Arrays of primitive types are a particular example. As will be
shown later, leaving such immutable arrays in the original class
may lead to significant performance gains. However, detecting
array immutability (after its initialization in a static initializer) is
impossible in general.
It is also important to point out that static final fields (both of
primitive types and objects) can be preserved in their original
classes only if they are initialized by constant values. This is a
very typical case for primitive types and strings and is easy to
detect. To see why this is important, let us consider this simple
program:

public class C {
  final static String startTime =
    new java.util.Date().toString();

  public static void main(String[] args)
  {
    System.out.println(startTime);

...
  }
}
Preserving startTime in its original class (and, in effect, not
replicating this field) would lead to the following behavior: any
invocation of this program would print out the date of when the
first copy of C was executed.  This is different from the intended
behavior to print out the starting time of the current instance of the
program. Although programs are typically not written this way,
our optimizations must not change the behavior of any program
and thus the requirement that only constant-initialized static final
fields can be preserved in their original classes.
Some further optimizations are possible. For instance, for actual
classes (i.e. not interfaces) the new get$() and put$() methods can
be added to the original class itself. This effectively merges the
$aMethods classes into original classes. Initial experiments with
this optimization did not indicate any performance gains or
significant space savings and was not pursued further.

5 PERFORMANCE ISSUES
We implemented a prototype system based on bytecode editing.
Bytecode is modified according to the transformations described
in Section 3. The modifications can take place either off-line or at
load time. The resulting bytecode is successfully verified by the
verifier [21]. Since the prototype does not require any runtime
changes, it effectively is a portable and transparent multitasking
layer for the Java programming language. Portability of such a
layer may be very valuable. As discussed below, our experience
with the prototype is positive and the lessons learned easily
translate into design decisions guiding runtime customization
(Section 6.)
The experimental setup consists of a single processor
UltraSPARC™ 167MHz, with 400 MB of RAM, running the
Solaris™ Operating Environment, version 2.6. The Sun
Microsystems Laboratories’ Virtual Machine for Research1

(ResearchVM) with 256MB of heap was used. Bytecode rewriting
took place off-line (readers interested in rewriting classes on-line
are referred to [9] for performance measurements of the bytecode
editor used.) For the performance discussion, we have chosen six
benchmarks from the JVM98 SPEC suite v. 1.03 [27]: db is a
database application; jack is a parser generator; javac is the
jdk1.0.2 compiler; jess is an expert system; mpegaudio is an audio
file decompression tool; and raytrace is a raytracer (currently the
JVM98 SPEC includes mtrt, which is a modified version of
raytrace.)
Because of the VM’s bootstrapping structure and complex
interactions between the runtime and some classes, about two
dozen system classes were not considered for rewriting (System,
Thread, etc.) This small departure from rewriting all system
classes can be avoided through a careful design of the
bootstrapping process. It does not have any impact on the reported
performance numbers.

                                                            
1 The same VM is embedded in Sun’s Java 2 SDK Production
Release for the Solaris Operating Environment, and is available at
http://www.sun.com/solaris/java.



5.1 Time Overheads
In addition to running the benchmarks transformed with the basic
modifications, several optimizations were implemented. First,
static final fields of primitive types were preserved. Then, in
addition, static final strings were
preserved. Finally, immutable arrays of
primitive types were preserved.
Figure 3 shows the overhead of running
a single copy of a benchmark measured
against the execution time of the
unmodified program. The overheads for
jack, jess, javac, db, and raytrace are
less than 18% in the basic version of
transformations; for mpeg, the
overheads are 157%. Figure 3 separates
out the costs of synchronization of each
static field access (Section 3.1) and new
object creation (Section 3.3). If the
double check idiom (Section 3.1) is
used, these synchronization overheads
disappear. Figure 4 uses the
experimental results of running the
benchmarks with the double check
idiom enabled as a starting point and
then successively shows the
improvements resulting from applying
optimizations discussed in Section 4.
Static final fields of primitive types are
a relatively frequent construct. In
addition to eliminating additional access
code, preserving them in their original
classes allows the JIT to perform
constant propagation. Preserving these
fields brings about the biggest gains for

these five benchmarks. Preserving static final
strings has impact on jack and javac, which use
many java.lang.String objects. For benchmarks
other than mpegaudio, the first two optimizations
reduce the overheads to between 0.2% (db,
raytrace) to about 5% (javac, jess).
The mpegaudio benchmark, subject to our basic,
unoptimized transformation, performs much
worse than any other program we used to test our
system. The reason is that mpegaudio relies
heavily on static final arrays of floating point
numbers. Bytecode inspection reveals that some
of them are immutable.  Preserving them in their
original classes and accessing them via the
unmodified getstatic instructions leads to a 24-
fold overhead reduction – from 69.3% to 2.9%.
All the overheads include the JVM startup time
and are reported as measured against the
unmodified benchmarks. In particular, the
benchmarks use the implicit system class loader.
If it is replaced by an explicit, user-defined one,
the performance of the original benchmarks
worsens. When measured against such a lower
reference point, the relative overheads reported
for our model are lower by 15%, on the average,
when compared to the overheads in Figure 4. The
reason is that the necessary bookkeeping and file

reading is slower through Java™ class libraries (java.io classes)
than when performed by well-tuned native code.
Statistical information on executed bytecode instructions helps to
interpret overhead data. The selected execution time statistics are
contained in Table 1. When analyzed together with Figure 4, this
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data confirms the expected result: the runtime overheads are
proportional to the number of getstatic and putstatic instructions
replaced in the original programs.
In particular, the “basic transformation” column reports the total
number of getstatic and putstatic instructions as the percentage of
the total number of executed bytecodes. All these instructions are
replaced by the basic transformation (Figure 2). On the average,
22 bytecodes (out of which three are method invocations) replace
each getstatic and each putstatic. The last three columns in Table 1
contain the percentage of getstatic and putstatic instructions still
emulated by the substituted replicating code under the
optimizations (i.e. referring to fields not preserved by the
optimizations).

5.2 Scalability
The data presented so far show the overheads of running a single
application in our isolation model. Another insight into the
performance of the new model is to run multiple copies of the
same application.

5.2.1 Comparison
with Class Loaders
First, the benchmarks
were executed under the
proposed isolation
scheme and then under
the class loaders control.
Figure 5 shows typical
results of such
experiments. For
reporting, we have
chosen raytrace and jess
– the benchmarks with
the lowest and highest
overheads, respectively,
after the optimizations
are applied. The total
execution times of
running multiple copies

of the benchmarks are normalized to the execution time of a
single copy of a benchmark loaded by a custom class loader. All
implemented optimizations as well as the double check idiom are
applied in the new model executions. Other benchmarks show
very similar scalability behavior, but not all of them can be run
with a substantial number of copies while using class loaders. For
instance, only three copies of the jack benchmark can be run
concurrently using class loaders; an attempt to run the fourth one
is aborted because of the lack of space for the JITed code in the
standard configuration of the chosen JVM. For raytrace, an
attempt to execute 81 copies triggers the same abort message; for
jess, it was possible to run only 18 copies.
For raytrace, the performance gap shows that the new model,
initially about 4% slower than class loaders, is about 10% faster
when 80 applications are executed simultaneously. This is not a
surprising result and shows how much time is saved when no
repeated compilations of the same classes are performed. The jess
benchmark behaves similarly.

Figure 5. Performance of multiple simultaneous executions of raytrace and jess with isolation provided by the new
model (solid line) and by class loaders (dotted line). The numbers are normalized to the single instance of an
application loaded by a custom class loader. Lower is better.
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Preserving primitive
types, strings and
immutable arrays

jack 0.1483 0.1293 0.1146 0.1146

jess 0.1313 0.1313 0.1294 0.1294

javac 0.1228 0.0630 0.0235 0.0235

db 0.0047 0.0004 0.0004 0.0004

raytrace 0.0019 0.0018 0.0018 0.0018

mpegaudio 1.3547 1.3547 1.3547 0.0001

Table 1. Selected dynamic execution profiles.



5.2.2 Running Many Applications
The proposed model can actually support concurrent execution of
many more applications than is possible with class loaders. For
instance, we were able to run a thousand copies of raytrace. This
was also possible for jess, but the benchmark had to be modified
slightly in order to avoid having more files open that the
underlying OS allows for a single process.
Figure 6 shows the total execution time. Each plot is normalized
to the execution time of one copy of a benchmark. The upward
curving means that the time to complete an instance of a
benchmark increases with the number of applications executing
now in the system. This is not surprising – for instance, managing
threads becomes more expensive as their number grows.

5.2.3 New Model vs. Process-Based Model
The process-based approach scales poorer than class loaders based
approach. Typically, running more than one JVM, each executing
a single copy of a benchmark, results in about 10-15% overhead
when compared to the new model. This may be acceptable in
many cases. However, the main problem with the scalability of
the process-based approach is that the maximal number of
concurrently executing JVMs/applications is either small. For
instance, on our software and hardware configuration at most up
to 30 JVMs can run concurrently, each of them executing the
same benchmark, for each benchmark.

5.3 Space Overheads
In order to estimate the space overhead issues, all classes from the
JVM98 SPEC benchmarks were statically analyzed. 14.1% of all
classes have static fields. 5.7% of all classes have static non-final
fields. The first number indicates how many $aMethods and
$sFields classes are typically generated from a JVM98 SPEC
program in the absence of any optimizations.  The second number
is an estimate of how many such classes will be generated with all
possible optimizations applied.
The size of an average $sFields generated from an application
class is about 4.9 fields with no optimizations and 3.1 fields if all
final fields can be preserved. For system classes these numbers
can be higher. Code statistics obtained from the JDK1.2 classes
show that 28.8% of classes have static fields; the average number

of static fields per class that has them is
5.7. Similarly, 10.2% of all classes have
static non-final fields and the average
number of such fields is 2.7.
On the average, the static frequency of
getstatic is 0.77% (about half of this on
non-final fields); for putstatic this number
is 0.15%. These numbers suggest how
many method code transformations should
be expected. Very similar frequencies can
be found in the code of system classes.

5.4 Synchronized Static
Methods
The time overhead introduced by the
synchronized static method transformation
is insignificant. Only ten bytecode
instructions are added to each such

method. The associated code expansion is also negligible since
only 1.6% of all JVM98 SPEC classes have static synchronized
methods and each such class has, on the average, only two such
methods.
Even better news (statistically) is the analysis of the frequency of
classes with static synchronized methods but without any static
fields. Field-less $sFields have to be generated for such classes to
replicate monitors. Only about 0.5% of classes from the JDK 1.2
qualify for this transformation. There is no such class in the whole
JVM98 SPEC suite. Overall, this transformation does not lead to
noticeable space or time overheads.

6 IN-RUNTIME IMPLEMENTATION
The overheads introduced by the portable prototype described
above are on the order of ten per cent when measured on a high-
performance JVM. Implementing the replication of static fields
and monitors in the runtime instead of doing it at the bytecode
level can improve performance. We did not go through this
exercise for the ResearchVM for two reasons. First, we were
content with the current overheads and removing the few percent
did not justify a significant implementation effort, involving,
among others, the JIT. We expect that putting the isolation into a
high-performance JVM runtime can reduce the current overheads
by an order of magnitude, down to a fraction of one per cent. This
belief is based on our experiences with JRes [9], where
performance overheads of memory accounting were an order of
magnitude lower in an in-runtime prototype than for bytecode-
editing.
Instead, we focused on providing multitasking for the KVM for
the 3COM Palm Connected Organizer. Running concurrent
multiple copies of the KVM was not feasible on the Palm. This
combined with the lack of class loaders made our approach the
only approach at all that enables multitasking in the Java
programming language on the Palm. However, the low computing
power of the device (2.7 MIPS at 16.6MHz processor clock) and
the size of the current KVM heap (64KB) did not allow our rather
complex bytecode editor to be run on the KVM/Palm. Running it
off-line was also not desirable since it introduces additional
software to be installed on a PC and the KVM would no longer be
self-contained. The remaining option was to implement the
isolation in the runtime.
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   Figure 6. Total execution time of many copies of raytrace and jess.



The runtime modifications operate as follows. At load time, each
class is examined and each static field is replicated n times (n is
the maximum allowed number of applications). Similarly, class
monitors for classes with static synchronized methods are
replicated. No optimizations are performed for two reasons. First,
on such a slow device they would significantly add to an
application startup time. Second, the optimizations are less
important when the runtime is modified. This is because getstatic
and putstatic are implemented as well-tuned C code. Fetching an
application id and using it to index an array of copies of a static
field translates into less than ten machine instructions and no
procedure calls. This compares with twenty-two bytecode
instructions (three of which are method invocations) in the
bytecode-editing prototype. This explains why there is virtually
no performance degradation in this prototype. However, on a high
performance JVM, where the overhead caused by our
modifications are not dwarfed by the general slowness of the
runtime (the KVM currently has no JIT, for instance) we expect
the performance penalties to be less than one per cent.
When an application gets loaded into the modified KVM, it is
assigned an application id or is rejected if no more application
slots are available at the moment. Whenever a class is used by this
application for the first time, the static initializer is run (when
present), initializing the correct replicas of static fields.
It is important to stress a difference between the two prototypes
we have built. The bytecode-editing system was constructed
primarily as a portable reference implementation. It isolates
applications, is easy to explain and modify in order to test out new
concepts, and gives insight into sources of performance
overheads. However, it tackles only isolation at the object and
method level. As such, it is a useful research vehicle but
impractical for some realistic applications, since it does not
address native code issues, application termination, resource
control, and inter-application communication.
The KVM-based prototype, on the other hand, is a fully functional
multitasking JVM. In particular, applications can be stopped and
killed without affecting the others, a copy-based inter-application
communication interface is provided, and a JRes-like resource
control API is present. The relative simplicity of the threading
model (e.g. context switch can never happen before in the middle
of the execution of a bytecode instruction) of the current version
of the KVM proved to be very helpful during the implementation.
However, the crucial enabling piece of technology was the
isolation idea presented in this paper.

7 DISCUSSION
As has been argued, applications can be protected from one
another both at the level of data access and at the level of access
to static synchronized methods.  The implications of the proposed
architecture reach beyond providing inexpensive isolation. This
section discusses these issues.

7.1 Subsuming the Role of Class Loaders
Class loaders provide multiple name spaces – two classes loaded
by different class loaders are treated as distinct types even if they
have the same name (and even if they come from the same file.)
The goal is application isolation. The proposed new model
achieves this isolation without incorporating the loader of the
class into the type system. Since class loaders are not needed for
separating name spaces anymore, it is natural to question other

aspects of their usefulness in a system where isolation is provided
by our new model.
Liang and Bracha [20] describe in detail the benefits of having
class loaders in the JVM: lazy loading, type-safe linkage, user-
definable class loading policy, and multiple name spaces. Lazy
loading happens in our model as well but only once for each class.
The linkage is as type safe in our model as when class loaders are
used. Whenever a class loader would load a second copy of the
same class, our model at most initializes corresponding copies of
static fields of the class using its static initializer. The proposed
model does not prevent users from defining policies concerning
where from and how to fetch class files.
A deficiency of our approach when compared with class loaders is
that only one version of any given class can be loaded into the
system. Thus, dealing with changing class implementations and
dynamically loading new versions of them for new instances of
applications is impossible in our current design. However, in
many cases versioning is not as important as scalability and full
separation. Moreover, although it is sometimes possible to bypass
problems with class versioning using class loaders, in general this
issue cannot be solved so simply [20]. In the past, class loaders
were a source of subtle but dangerous security problems [20,25].
Let us consider a JVM without class loaders but with the proposed
isolation model. An advantage would be to have a much simpler
type system. Security implications, described below, do not seem
to indicate that removing class loaders from the Java
programming language should lead to security problems. Overall,
reducing class loaders to what their name suggests –   fetching
classes – appears to be acceptable. Of course, the details require
more work. Moreover, we currently consider the proposed model
as a replacement for class loaders with respect to isolation and
security; the implications of having both class loaders and the
proposed isolation model in the same JVM require more
investigation.

7.2 Impact of the Proposed Architecture on
Security

Class loaders are extensively used in the JVM to detect whether a
given method call has originated from a class loaded by a
particular class loader (which may indicate that the code can not
be trusted) or whether no such class-loader-loaded method is on
the call stack (which means that all the methods are from trusted
classes).
Removing class loaders from the type system and reducing their
language security role does not mean that classes can no longer be
tagged with their origin, though. Tags can still be present, but in
our opinion, moving from code-based to thread-based security
may both simplify security in the Java programming language and
simplify its use. In our second prototype, each thread belongs to
one application or is a system thread. The application identifier
determines the set of actions a given thread can perform. Our
initial experience with this security model for multitasking on the
Java platform is encouraging. A more detailed discussion is
beyond the scope of this paper. It must be stressed here, though,
that backward compatibility with existing APIs is an important
concern.



7.3 Communication
The proposed isolation model does not imply any particular
communication mechanism for applications executing in the same
instance of the JVM. For the KVM prototype, we have
implemented a simple copy-only interface. Objects are passed
between applications by deep copy, which prevents any sharing.
While it can be argued that sharing of objects may be useful in
certain situations (for instance, sharing large files), copying of
data may be acceptable in many cases, since non-communicating
or rarely communicating applications are common [28].
Sharing of object references would make our model less simple.
Moreover, well-known and difficult application termination
problems and resource accounting issues would have to be
addressed. The experience of the J-Kernel project [16], where
most of the implementation effort went into providing secure and
controlled sharing, indicates further that copy-only
communication mechanisms may be preferable over sharing from
the code maintenance and development effort perspective.

8 RELATED WORK
Currently available multitasking solutions for the Java
programming language can be categorized as (i) ones that use the
OS process model for protecting applications from one another,
(ii) ones that modify the JVM runtime to emulate OS processes,
and (iii) ones utilizing an abstraction of class loaders. Related
projects are discussed below in their corresponding categories.

8.1 Process-Based Protection
Typically, resorting to an OS for protection implies running
multiple copies of the JVM, one per application. This is expensive
in terms of virtual memory resources and application startup time
and scales poorly. However, applications are totally isolated from
one another (although they can communicate for instance via
sockets, RMI, etc).
Improving scalability within the process-based framework is a
goal of a recent project carried out at IBM [10]. Multiple JVMs
execute in separate processes but they share a memory region to
store data that can be reused across multiple JVMs. This shared
memory region is used by all JVMs to load, link, verify, and
compile classes. None of these has to be repeated for a class that
has already been loaded by another JVM. In particular, loading,
linking, verifying, and compiling of system classes happens only
once, for the first JVM on a given computer. Reusing JVMs is
another improvement proposed in [10]. The main idea is that
whenever an application has terminated without leaving any
residual resources behind (e.g., threads, open file descriptors, etc)
its JVM does not terminate but cleans up its state and is ready to
run another application.
Advocates of process-based application separation in the Java
application environment point out that a failure of one process
terminates only this particular application and may potentially
affect other applications only through an absence of service.
Common wisdom states that processes are more reliable than
implementations of JVMs. This reasoning implies that executing
multiple applications in a single copy of the JVM puts them at a
risk of being abruptly terminated because another application
triggers an action that would cause the whole JVM to go down.
However, it does not necessarily have to be so. Processes still
execute on top of an underlying operating system and no major

operating system kernel is guaranteed to be bug-free.  Ultimately,
one trusts software, whether it is an OS or a runtime of a safe
language. The reliability issues of the Java platform and of an OS
kernel are essentially the same, although so far much more effort
was put into testing and debugging of OS kernels than into these
of JVMs. Moreover, programs written in a safe language have less
potential for crashing because of software problems.
Our idea of separating static data out of classes has its operating
system predecessor and analogue.  For a long time [1] UNIX®
programs have been divided into data and code segments. Code
segments can be shared between applications but data segments
are replicated for each application that executes the code. An
example of a non-UNIX commercial operating system where
similar design principles have been applied is Windows NT [26].
An example of a safe language approach to designing operating
systems is SPIN [5], written almost entirely in a safe subset of
Modula-3 [22]. Software protection protects the OS kernel from
dynamic extensions. We share the view of the SPIN authors that
protection is a software issue [6]. In fact, with a well-designed
inter-application isolation in a safe language, there should be no
need for hardware protection.

8.2 Runtime Modifications
A project at the University of Utah [3], resulted in two operating
systems, demonstrating how a process model can be implemented
in the JVM. The first system, GVM, is structured much like a
monolithic kernel and focuses on complete resource isolation
between processes and on comprehensive control over resources.
A GVM process consists of a class loader-based name space, a
heap, and a set of threads in that heap. Each process has its own
heap and all processes can access a special shared heap. For every
heap, GVM tracks all references leading to other heaps and all
references pointing into it. This information is used to implement
a form of distributed garbage collection. The CPU management in
GVM combines CPU inheritance scheduling [11] with the
hierarchy introduced by thread groups: thread groups within
processes may hierarchically schedule the threads belonging to
them.
The second system, Alta, closely models a micro-kernel model
with nested processes, in which a parent process can manage all
resources available to child processes. Memory management is
supported explicitly, through a simple allocator-pays scheme. The
garbage collector credits the owning process when an object is
eventually reclaimed. Because Alta allows cross-process
references, any existing objects are logically added into the parent
memory. This makes the parent process responsible for making
sure that cross-process references are not created if full memory
reclamation is necessary upon process termination. Both GVM
and Alta are implemented as considerable modifications to the
JVM.
NOMADS [29] is a mobile agent system. A custom JVM runtime
supports the mobility of executing programs resource control.
Each agent executes in a separate virtual machine, but all virtual
machines are running in the same process, which leads to the
sharing of all of the virtual machine code.
The isolation idea presented in this paper is more lightweight than
the above designs. In particular, in our basic design the heap is
physically shared by applications (although logically it contains
disjoint graphs of objects belonging to different applications.)
However, when scaling up to large heaps, physically disjoint per-



application heaps may become a better choice, depending on the
garbage collector design. More study is needed in this area.

8.3 Class Loader Based Protection
A simple example of multitasking that utilizes class loaders is
Echidna [15]. It is a class library, which, with a reasonable degree
of transparency, allows multiple applications to run inside a single
JVM. Applications can cleanly dispose of important resources
when they are killed. For example, when a process is killed all its
windows are automatically removed.
A more complex example of a class loader based approach to
application protection is the J-Kernel [16]. The J-Kernel adds
protection domains to the Java programming language and makes
a strong distinction between objects that can be shared between
tasks, and objects that are confined to a single task. Each domain
has its own class loader. The system, written as a portable Java
library, provides mechanisms for clean domain termination (e.g.
no memory allocated by the task is “left over” after it is
terminated) and inter-application communication (performed via
deep object copies of method arguments and return values).
JavaSeal [7] is a library defining a secure mobile agent kernel. It
provides a set of abstractions for constructing agent applications.
Class loaders are used to provide separate name spaces and agent
isolation. The second use of class loaders is to perform additional
class verification (for instance, classes with finalizers containing
loops are disallowed). Communication is accomplished by object
serialization.
Balfanz and Gong based their design of a multitasking JVM on
class loaders [4]. Their goal was to explore the use of the security
architecture to protect applications from each other. The proposed
extensions enhance the standard JVM so that it can support
multitasking. An important part of the work is the clear
identification of several areas of the JDK that assume a single-
application model.

9 SUMMARY
The ability to execute multiple applications written in the Java
programming language safely and efficiently on the same
computer is becoming increasingly important. The shortcomings
of current solutions have been discussed in detail in the paper.
Their analysis led to a new approach to multitasking on the Java
platform. Design and technical issues have been presented. A
portable bytecode-editing prototype has been used to prove the
concept and to understand some performance issues.
This prototype serves as a good experimental platform to learn
about design tradeoffs and performance issues, and can be used as
a portable multitasking platform. The lessons learned from the
implementation are important when adding our isolation
mechanisms to the JVM runtime. Incorporating our approach in
the runtime (i) reduces the overheads, (ii) simplifies the
implementation, and (iii) removes bytecode editing from the
critical “fetch class file-load-execute” path. In particular, the
experience gained with this first prototype was very valuable
during the design and implementation of the KVM-based
prototype, where the isolation model is implemented entirely in
the runtime.
Our isolation mechanism can be readily used on a whole range of
computer systems. On large servers, one big JVM can contain
many applications, which conserves system resources and helps

scalability. On small systems, minimizing memory footprint is
vital, and depending on the virtual machine and OS features no
other multitasking alternative may be available.
For a pure and reliable Java programming language
implementation, without features such as native code, the
techniques presented in this paper lead to inter-application
isolation equaling that of an operating system but without
scalability penalties of process-based multitasking. For high-
performance implementations with native code, JIT, and complex
thread implementations, our techniques offer a core isolation
framework but certain VM-specific issues have to be separately
addressed to achieve the desired protection, resource control, and
scalability levels.
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