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Abstract. Recent work in P2P overlay networks allow for decentralized object
location and routing (DOLR) across networks based on unique IDs. In this paper,
we propose an extension to DOLR systems to publish objects using generic fea-
ture vectors instead of content-hashed GUIDs, which enables the systems to lo-
cate similar objects. We discuss the design of a distributed text similarity engine,
named Approximate Text Addressing (ATA), built on top of this extension that lo-
cates objects by their text descriptions. We then outline the design and implemen-
tation of a motivating application on ATA, a decentralized spam-filtering service.
We evaluate this system with 30,000 real spam email messages and 10,000 non-
spam messages, and find a spam identification ratio of over 97% with zero false
positives.
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1 Introduction

Recent work on structured P2P overlay networks ([5, 18], [15], [11], [10]) utilize scal-
able routing tables to map unique identifiers to network locations, providing interfaces
such as Decentralized Object Location and Routing (DOLR) and Distributed Hashtables
(DHT). They allow network applications such as distributed file systems and distributed
web caches to efficiently locate and manage object replicas across a wide-area network.

While these systems excel at locating objects and object replicas, they rely on
known Globally Unique IDentifiers (GUID) for each object, commonly generated by
applying a secure hash function to the object content. This provides a highly specific
naming scheme, however, and does not lend itself to object location and management
based on semantic features.

To address this problem, we propose an approximate location extension to DOLR
systems to publish and locate objects using generic feature vectors composed of a num-
ber of values generated from its description or content. Any object can be addressed
by a feature vector matching a minimal threshold number of entries with its original
feature vector. Based on this extension, we propose an Approximate Text Addressing
(ATA) facility, which instantiates the approximate location extension by using block
text fingerprints as features to find matches between highly similar text documents. To
validate the ATA design as well as the approximate object location extension, we de-
sign a decentralized spam-filtering application that leverages ATA to accurately identify
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Fig. 1. Tapestry routing example. Path taken by a message from node 5230 for node 8954 in
Tapestry using hexadecimal digits of length 4 (65536 nodes in namespace).

junk email messages despite formatting differences and evasion efforts by spammers.
We evaluate the accuracy of our fingerprint vector scheme via simulation and analysis
on real email data, and explore the trade-offs between resource consumption and search
accuracy.

The rest of this paper is as follows: Section 2 briefly describes existing work in P2P
overlays. Section 3 presents our approximation extension to DOLR systems and a pro-
totype implementation. Section 4 describes the design of ATA and Section 5 discusses
the design of the decentralized spam filter. Section 6 presents simulation and experi-
mental results, followed by a discussion of related work in Section 7 and status and
future work in Section 8. Finally, we provide a mathematical analysis of the robustness
of text-based fingerprinting in Appendix A.

2 Background: Structured P2P Overlays

In this section, we first present background material on structured P2P overlays. Differ-
ent protocols differ in semantics details and performance objectives. While we present
our work in the context of Tapestry for performance reasons, our design is general, and
our results can be generalized to most structured P2P protocols.

2.1 Routing

Tapestry is an overlay location and routing layer first presented in [18], with a rigorous
treatment of dynamic algorithms presented in [5]. Like other structured P2P protocols,
object and node IDs are pseudo-randomly chosen from the namespace of fixed-length
bit sequences with a common base (e.g. Hex). Tapestry uses local routing tables at each
node to route messages incrementally to the destination ID digit by digit (e.g., 4***
��� 45** ��� 459* ��� 4598 where *’s represent wildcards). A node � has a
neighbor map with multiple levels, where each level represents a matching prefix up to
a digit position in the ID. Each level of the neighbor map contains a number of entries

2



197E

4BF4

4361

437A

4664

43FE

4A6D

39AACE75

4377

4228

(4378)

(4378)

Fig. 2. Publication in Tapestry. To publish ob-
ject 4378, server 39AA sends publication re-
quest towards root, leaving a pointer at each
hop. Server 4228 publishes its replica simi-
larly. Since no 4378 node exists, object 4378
is rooted at node 4377.
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Fig. 3. Object Location in Tapestry: Three dif-
ferent location requests. For instance, to locate
GUID 4378, query source 197E routes to-
wards the root, checking for a pointer at each
step. At node 4361, it encounters a pointer to
server 39AA.

equal to the base of the ID, where the ����� entry in the ����� level is the location of the
node closest in network latency that begins with prefix �	��
� ������� .

To forward on a message from its ����� hop router, Tapestry examines its ��������� level
routing table and forwards the message to the link corresponding to the �������� digit in
the destination ID. This routing substrate provides efficient location-independent rout-
ing within a logarithmic number of hops and using compact routing tables. Figure 1
shows a Tapestry routing mesh.

2.2 Data Location

In Tapestry, a server � makes a local object � available to others by routing a “publish”
message to the object’s “root node,” the live node � ’s identifier maps to. At each hop
along the path, a location mapping from � to � is stored. Mappings for multiple replicas
are stored sorted according to distance from the local node. See Figure 2 for an example
of object publication. Here two replicas of the same object are published. A client routes
a query message towards the root node. The message queries each hop router along the
way, and routes towards � when it finds the � to � location mapping. Note that for
nearby objects, query messages quickly intersect the path taken by publish messages,
resulting in quick search results that exploit locality [18]. See Figure 3 for an example
of object location. Notice how locality is exploited by directing location requests to
nearby replicas.

3 Approximate DOLR

DOLR systems like Tapestry provide deterministic, scalable, and efficient location and
routing services, making them attractive platforms for deploying wide-area network
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Fig. 4. Location of an approximate object. Client node wants to send a message to all objects
with at least 2 feature in

�
fv1, fv2, fv3 � . It first sends lookup message to feature fv1,

fv2 and fv3. fv2 does not exists. A Location Failure message is sent back. fv1 is
managed by object node X. It sends back a list of IDs of all objects having feature fv1, which is�
guid1 � . Similar operation is done for feature fv3, whose IDs list

�
guid1, guid4 � . Client

node counts the occurrence of all IDs in all lists and finds out guid1 to be the ID it is looking
for. It then sends the payload message to object guid1 using Tapestry location message.

applications. Files, in particular, can be located efficiently if their canonical name is
known. Previous approaches, however, generate Globally Unique IDentifiers (GUID)
by a secure hash (e.g. SHA-1) of the content. This approach significantly limits the
usability of the system in scenarios where users do not known exact names of objects,
but rather perform searches based on general characteristics of the system. In particular,
these scenarios might include searches for data that closely approximates, or is similar
to known data with certain properties. Examples might include searching for audio or
video that matches existing works in content features, or searching or lightly modified
replicas of existing data.

3.1 Approximate DOLR Design

Here we propose an extension to DOLR, Approximate DOLR, as a generic framework
to address some of the needs of these applications. In an ADOLR system, we apply
application-specific analysis to given objects to generate feature vectors that describe
its distinctive features, and provide a translation mechanism between these application-
driven features and a traditional GUID obtained from a secure content hash of the object
contents.

This query ability on features applies to a variety of contexts. In the world of multi-
media search and retrieval, we can extract application-specific characteristics, and hash
those values to generate feature vectors. Any combination of field to value mappings
can be mapped to a feature vector, given a canonical ordering of those fields. For ex-
ample, this can be applied to searching for printer drivers given printer features such as
location, manufacturer, and speed. If features are canonically ordered as [location,
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manufacturer, speed], then an example feature vector might be [hash(443
Soda), hash(HP), hash(12ppm)].

Each member of the vector, a feature, is an application-specific feature encoded as
a hashed identifier. For each feature f, an object (feature object) is stored within the
network. The feature object is a simple object that stores the list of GUIDs of all objects
whose feature vectors include f. Clients searching for objects with a given feature set
finds a set of feature objects in the network, each associated with a single feature, and
selects the GUIDs which appear in at least T feature objects, where T is a tunable thresh-
old parameter used to avoid false positives while maintaining the desired generality of
matches.

The “publication” of an object � in an ADOLR system proceeds as follows. First,
its content-hash derived GUID is first published using the underlying P2P DOLR layer.
This assures that any client can route messages to the object given its GUID. Next,
we generate a feature vector for � . For each feature in the vector, we try to locate its
associated feature object. If such an object is already available in the system, we append
the current GUID to that object. Otherwise, we create a new feature object identified by
the feature, and announce its availability into the overlay.

To locate an object in an ADOLR system, we first retrieve the feature object asso-
ciated with each entry of the feature vector. We count the number of distinct feature
objects each unique GUID appears in, and select the GUID(s) that appear in a number
greater than some preset threshold. The GUID(s) are then used to route messages to the
desired object.

The ADOLR API is as follows:

– PublishApproxObject (FV, GUID). This publishes the mapping between the fea-
ture vector and the GUID in the system. A feature vector is a set of feature values
of the object, whose definition is application specific. Later, one can use the feature
vector instead of the GUID to search for the object. Notice that PublishApprox-
Object only publishes the mapping from FV to GUID. It does not publish the object
itself, which should be done already using publish primitive of Tapestry when Pub-
lishApproxObject is called.

– UnpublishApproxObject (FV, GUID). This removes the mapping from the FV to
the GUID if this mapping exists in the network, which is the reverse of PublishAp-
proxObject.

– RouteToApproxObject (FV, THRES, MSG). This primitive routes a message to
the location of all objects which overlap with our queried feature vector FV on more
than THRES entries. The basic operations involve for each feature, retrieving a list
of GUIDs that share that feature, doing a frequency count to filter out GUIDs that
match at least THRES of those features, and finally routing the payload message
MSG to them. For each object in the system with feature vector ����� , the selection
criterion is:

� ��� ��� ��� �	��
����� ��� ������� 
����� ��� � ��� �
The location operation is deterministic, which means all existing object IDs match-
ing the criterion will be located and be sent the payload message. However, it is
important to notice that this does not mean every matching object in the system
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will receive the message, because each object ID may correspond to multiple repli-
cas, depending on the underlying DOLR system. The message will be sent to one
replica of each matching object ID, hopefully a nearby replica if the DOLR utilizes
locality.

With this interface, we reduce the problem of locating approximate objects on P2P
systems to finding a mapping from objects and search criteria to feature vectors. The
mapping should maintain similarity relationships, such that similar objects are mapped
to feature vectors sharing some common entries. We show one example of such a map-
ping for text documents in Section 4.

3.2 A Basic ADOLR Prototype on Tapestry

Here we describe an Approximate DOLR prototype that we have implemented on top
of the Tapestry API. The prototype serves as a proof of concept, and is optimized for
simplicity. The prototype also allows us to gain experience into possible optimizations
for performance, robustness and functionality.

The prototype leverages the DOLR interface for publishing and locating objects,
given an associated identifier. When PublishApproxObject is called on an object � , it
begins by publishing � ’s content-hashed object GUID using Tapestry. Then the client
node uses Tapestry to send messages to all feature objects involved. Tapestry routes
these messages to the nodes where these feature objects are stored. These nodes then
add the new object GUID to the list of GUIDs inside the feature object. If any feature
object is not found in the network, the client node receives a LocationFailure
message, creates a new feature object containing the new object, and publishes it.

For the RouteToApproxObject call, the client node first uses Tapestry location
to send messages to all feature objects, asking for a list of IDs associated with each
feature value. Nodes where these feature objects reside receive these messages, do the
lookup in their maps and send back the result. LocationFailure messages are sent back
for nonexistent feature objects, and are counted as an empty ID list. The client node
counts the occurrence of each GUID in the resulting lists. GUIDs with less than the
threshold number of counts are removed. Finally, the message in this call is sent to
the remaining object GUIDs An example of executing a RouteToApproxObject call is
shown in Figure 4.

Note that an analogous system can be implemented on top of a distributed hash ta-
ble (DHT) abstraction on P2P systems. Instead of routing messages to previously pub-
lished feature objects, one would retrieve each feature object by doing a get operation,
appending the new GUID, and putting the object back using put.

3.3 Optimizing ADOLR Location

Our initial description of the RouteToApproxObject operation involves several round-
trips from the client node to nodes where the feature objects are stored. We propose two
optimizations here that eliminates a network round-trip, reducing overall latency to that
of a normal RouteToObject in a DOLR system at the cost of keeping a small amount of
state on overlay nodes. The first optimization involves a client node caching the result
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Fig. 5. Optimized ADOLR location. Client node wants to route a message to a feature vector�
fv1, fv2, fv3, fv4 � . It sends message to each identifier fv1, fv2, fv3, fv4. fv2

doesn’t exist, so no object node receives this message. When object node X receives the messages
to fv1, fv3 and fv4, it scans its local storage for all IDs matching fv1, fv3 and fv4, which
is guid1. Then, object node X sends msg to guid1.

of translating a feature vector to a GUID. now all future messages to the same feature
vector are routing to the cached GUID.

The second optimization is more complex, and illustrated in Figure 5. Normally,
the client node retrieves a set of feature objects, counts GUID occurrences locally, then
routes a message to the resulting GUID(s). The intuition here is that if features are
identified as hashed keys with reasonably low collision rates, each feature will likely
only identify a small number (one or two) of objects with that feature. Furthermore,
multiple feature objects are likely to be colocated together along with the object they
identify, because new feature objects are created by the same node where the object is
stored. Another way to look at this is that the feature object is in most cases published
at the same time with the object itself by the same node. This implies we can route the
application-level message to each feature in the feature vector, and expect it to arrive at
the node where the desired object is stored.

The key change here is that any node that is storing a feature object, (a file providing
a mapping from a feature to all GUIDs that share that feature), also stores the feature
vectors of each of those GUIDs. Routing a message to a feature vector 	�
��������� means
sending the message to each identifier 
 , � , and � . Each message also includes the
entire feature vector we’re querying for. When a node receives such a message, it im-
mediately scans its local storage for all feature objects matching 
 , � , or � . For each
GUID in these feature objects, the node determines the amount of overlap between its
feature vector and the queried feature vector. If the overlap satifies the query threshold,
the message is delivered to that GUID’s location.

This implies that any of the query messages contains enough information for a node
to completely evaluate the ADOLR search on local information. If any locally stored
feature objects contain references to matching objects, they can be evaluated immedi-
ately to determine if it satisfies the query. Because each message contains all necessary
information to deliver the payload to the desired GUID, the set of messages sent to 
 ,
� , and � provide a level of fault-resilience against message loss. Finally, the determi-
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nation of the desired GUID can occur when the first message is received, instead of
waiting for all messages to arrive.

The translation from the feature vector to one or more GUIDs occurs in the network,
not the client node. This provides significant communication savings.

Nodes need to keep more state to support this optimization, however. In addition to
storing feature objects (that keep the mapping between feature values and GUIDs), they
also need to keep track of previously resolved feature vectors in order to drop additional
requests for the same feature vector. This state can be stored on a temporary basis, and
removed after a reasonable period of time (during which any other requests for the same
feature vector should have arrived).

3.4 Concurrent Publication

There is one problem with the PublishApproxObject implementation described above.
The lookup of feature objects and publication of new feature objects are not atomic.
This can result in multiple feature objects for the same feature value being published if
more than one node tries to publish an object with this feature value concurrently.

We propose two solutions. First, we can exploit the fact that every object is mapped
to a unique root node and serialize the publication on the root node. Every node is
required to send a message to the root node of the feature value to obtain a leased lock
before publishing the feature object. After the lock is acquired by the first node, other
nodes trying to obtain it will fail, restart the whole process, and find the newly published
feature object. This incurs another round-trip communication to the root node.

In a more efficient “optimistic” way to solve this problem, the client node always
assumes the feature object does not exist in the network. It tries to publish the object
without doing a lookup beforehand. When the publication message travels through the
network, each node checks whether it knows about an already published feature object
with the same feature value. If such an object does exist, some node or at least the root
will know about this. The node who detects this then cancels this publication and sends
an message to the existing feature object to “merge” the new information. This process
is potentially more efficient since conflicts should be rare. In general, the operation is
accomplished with a single one-way publication message.

This optimistic approach can easily be implemented on top of DOLRs such as
Tapestry using the recently proposed common upcall interface for peer to peer (P2P)
overlays [2]. This proposed upcall interface allows P2P applications to override local
routing decisions. Specifically, a node can “intercept” the publication message and han-
dle conflicts as specified above.

4 Approximate Text Addressing

In this section, we present the design for the Approximate Text Addressing facility
built on the Approximate DOLR extension, and discuss design decisions for exploring
trade-offs between computational and bandwidth overhead and accuracy.
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Fig. 6. Fingerprint Vector. A fingerprint vector is generated from the set of checksums of all
substrings of length � , post-processed with sort, selection and reverse operations.

4.1 Finding Text Similarity

Our goal is to efficiently match documents distributed throughout the network that share
strong similarities in their content. We focus here on highly similar files, such as modi-
fied email messages, edited documents, or news article published on different web sites.

The algorithm is as follows. Given a text document, we use a variant of block text
fingerprinting first introduced in [7] to generate a set of fingerprints. The fingerprint
vector of a document is used as its feature vector in publication and location, using the
Approximate DOLR layer.

To calculate a block text fingerprint vector of size � for a text document, we divide
the document into all possible consecutive substrings of length � . A document of length
� characters will have ������� � ��� such strings. Calculating checksums of all such
substrings is a fast operation which scales with � . We sort the set of all checksums by
value, select a size � subset with the highest values, and reverse each checksum by
digit (i.e. ����� � �	� � ). This deterministically selects a random set without biasing the
ID for prefix or numerical routing.

� is a parameterized constant chosen for each application to tune the granularity of
similarity matches. For example, a size � of 50 might work well for email, where com-
plete sentences might account for one substring; but less well for source code, where
code fragments are often much longer in length. Figure 6 illustrates the fingerprint pro-
cess. The calculation is not expensive. Our Java prototype has a processing throughput
of 
 ���������� for � ��� � on a 1Ghz PIII laptop.

4.2 Trade-offs

There are obvious trade-offs between network bandwidth used and the accuracy of the
search. First, the greater the number of entries � in a vector, the more accurate the
match (less false-positives), and also the greater number of parallel lookup requests
for each document. Next, the distance each lookup requests travels directly impacts
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bandwidth consumption on the overall network. ATA-enabled applications 1 can bene-
fit from exploiting network-locality by matching against similar documents nearby in
the network via a DOLR/DHT with object location locality such as Tapestry. Finally,
a trade-off exists between the number of publishers (those who indicate they have a
particular document), and the resources required for a client to find a match in their
query. Bandwidth and accuracy can be tuned by placing a Time-to-Live (TTL) field on
the lookup query, constraining the scope of query messages. Clients who fail to find
a match may publish their own documents, improving lookup performance for other
clients. These are explored in detail in Section 6.

5 Decentralized Spam Filtering

Spam, or unsolicited email, wastes time and valuable network resources, causing headaches
for network administrators and home users alike. Currently the most widely-deployed
spam filtering systems scale to a university- or company- wide network, and use key-
word matching or source address matching [13]. Although easy to deploy and manage,
these systems often walk a fine line between letting spam through and blocking legit-
imate emails. Our observation is that human recognition is the only fool-proof spam
identification tool. Therefore, we propose a decentralized spam filter that pools the col-
lective spam recognition results of all readers across a network.

There already exist centralized collaborative spam filtering systems, such as Spam-
Net [14], which claims to be peer-to-peer but actually uses a Napster-like architecture.
To our knowledge ours is the first attempt to build a truly decentralized collaborative
spam filtering system. Compared to alternative university-wide centralized collaborated
designs, the most important benefit of our wide-area decentralized design lies in the fact
that the effectiveness of the system grows with the number of its users. In such a sys-
tem with huge number of users world-wide, it is highly probable that every spam email
you receive has been received and identified by somebody else before because of the
large number of users. The deterministic behavior of DOLR systems will prove use-
ful, because when any single peer publishes information about a specific email, that
piece of information can be deterministically found by all clients. Therefore we can
expect this system to be more responsive to new spam than systems in which different
nodes publish/exchange spam information at certain intervals, such as [3]. Additionally,
decentralized systems provide higher availability and resilience to failures and attacks
than similar centralized solutions such as SpamNet.

5.1 Basic Operation

The decentralized spam filtering system consists of two kinds of nodes, user agents
and peers. User agents are extended email client programs that users use. They query
peers when new emails are received and also send user’s feedback regarding whether a
certain email is or is not spam to peers. A peer is a piece of long-running software that

1 Some example applications include spam filters, plagiarism detection and news article cluster-
ing.

10



is installed typically on a university, department or company server that speaks to other
peers worldwide and forms a global P2P network.

When an email client receives a message from the server, the user agent extracts the
body of the mail, drops format artifacts like extra spaces and HTML tags, generates a
fingerprint vector, and sends it to a peer in the DOLR system. The peer in turn queries
the network using the Approximate DOLR API to see if information on the email has
been published. If a match is found, and it indicates the email is spam, the email will
be filed separately or discarded depending on user preference. Otherwise, the message
is delivered normally. If the user marks a new message as spam, the user agent marks
the document, and tells the peer to publish this information into the network.

5.2 Enhancements and Optimizations

The basic design above allows human identification of spam to quickly propagate across
the network, which allows all users of the system to benefit from the feedback of a few.
There are several design choices and optimizations which will augment functionality
and reduce resource consumption.

Our fingerprint vectors make reverse engineering and blocking of unknown emails
very difficult. With the basic system, however, attackers can block well known messages
(such as those from group mailing lists). We propose to add a voting scheme on top of
the publish/search model. A count of positive and negative votes is kept by the system,
and each user can set a threshold value for discarding or filing spam using the count as
a confidence measure. A central authority controls the assignment and authentication of
user identities. A user agent is required to authenticate itself before being able to vote
for or against an email. Thus we can restrict the number of votes a certain user agent
can perform on a certain email.

Another type of attack is for spammers to find arbitrary text segments with check-
sum values more likely to be selected by the fingerprint selection algorithm. By append-
ing such “preferred” segments to their spam emails, spammers can fix the resulting
email fingerprint vectors to attempt to avoid detection. Note that this attack can only
succeed if a continuous stream of unique text segments are generated and an unique
segment is appended to each spam message. This places a significant computational
overhead on the spammer that scales with the number of spam messages sent. Addi-
tionally, mail clients can choose randomly from a small set of fingerprint calculation
algorithms. Different fingerprinting methods can include transforming the text before
calculating the checksums, changing the checksum method, or changing the fingerprint
selection method. To circumvent this, the spammer would need to first determine the
set of fingerprint algorithms, and then append a set of preferred segments, each segment
overcoming a known selection algorithm. While different fingerprint algorithms gener-
ate distinct spam signatures for the same spam, partitioning the user population and
reducing the likelihood of a match, it also requires significantly more computational
overhead to overcome.

Optimizations can be made for centralized mail servers to compute fingerprint vec-
tors for all incoming messages. These vectors can be compared locally to identify “pop-
ular” messages, and lookups performed to determine if they are spam. Additionally, the
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server can attach precomputed fingerprint vectors and/or spam filtering results as cus-
tom headers to messages, reducing local computation, especially for thin mail clients
such as PDAs.

6 Evaluation

In this section, we use a combination of analysis, experimentation on random docu-
ments and real emails to validate the effectiveness of our design. We look at two aspects
of fingerprinting, robustness to changes in content and false positive rates. We also eval-
uate fingerprint routing constrained with time-to-live (TTL) fields, tuning the trade-off
between accuracy and network bandwidth consumption.

6.1 Fingerprint on Random Text

We begin our evaluation by examining the properties of text fingerprinting on randomly
generated text. In particular, we examine the effectiveness of fingerprinting at matching
text after small modifications to their originals, and the likelihood of matching unrelated
documents (false positive rate).

Robustness to Changes in Content We begin by examining the robustness of the
fingerprint vector scheme against small changes in a document, by measuring the prob-
ability a fingerprint vector stays constant when we modify small portions of the doc-
ument. We fix the fingerprint vector size, and want to measure the robustness against
small changes under different threshold constants (THRES).

In experiments, we take 2 sets of random text documents of size 1KB and 5KB,
which match small- and large-sized spam messages respectively, and calculate their
fingerprint vectors before and after modifying 10 consecutive bytes. This is similar to
text replacement or mail merge schemes often used to generate differentiated spam. We
measure the probability of at least


��� � � out of
� ��� � fingerprints matching after

modification as a function of threshold (

 ��� � � ) and the size of the document (1KB

or 5KB). Here, fingerprint vector size is 10,
� ��� � � � � . We repeat that experiment

with a modification of 50 consecutive bytes, simulating the replacement of phrases or
sentences and finally modifying 5 randomly placed words each 5 characters long.

In addition to the simulated experiments, we also developed a simple analytical
model for these changes based on basic combinatorics. We present this model in detail
in Appendix A. For each experiment, we plot analytical results predicted by our model
in addition to the experimental results.

In Figure 7, we show for each scenario experimental results gathered on random-
ized text files, by comparing fingerprint vectors before and after modifications. From
Figure 7, we can see the model in Appendix A predicts our simulation data almost
exactly under all three patterns of modification. More specifically, modifying 10 char-
acters in the text only impacts 1 or 2 fingerprints out of 10 with a small probability. This
means setting any matching threshold below 8 will guarantee near 100% matching rate.
When we increase the length of the change to 50 characters, the results do not change
significantly, and still guarantee near perfect matching with thresholds below 7. Finally,
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Fig. 7. Robustness Test (Experimental and Analytical). The probability of correctly recognizing a
document after modification, as a function of threshold. � ���������
	 .

we note that multiple small changes (in the third experiment) have the most impact on
changing fingerprint vectors. Even in this case, setting a threshold value around 5 or
less provides a near perfect matching rate.

Avoiding False Positives In addition to being robust under modifications, we also want
fingerprint vectors to provide a low rate of false positives (where unrelated documents
generate matching entries in their vectors). In this section, we evaluate fingerprint vec-
tors against this metric with simulation on random text documents. In Section 6.2, we
present similar tests on real email messages.

First, we generate 100,000 random text files and find document pairs that match
1 out of 10 fingerprint entries. This experiment is done for different file sizes ranging
from 1KB to 64KB. Figure 8 shows the resulting false positive rate versus the file size.
While the results for one fingerprint match are already low, they can be made statisti-
cally insignificant by increasing the fingerprint matches threshold (


��� � � � ) for a
“document match.” Out of all our tests ( ��� � �� pairs for each file size), less than 25
pairs of files (file size 
 32K) matched 2 fingerprints, no pairs of files matched more
than 2 fingerprints. This result, combined with the robustness result, tells us that on
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Fig. 9. Spam Mail Sizes. Size distribution of the
29996 spam email messages used in our experi-
ments, using both histogram and CDF represen-
tations.

randomized documents, a threshold from 2 to 5 fingerprints gives us a matching mech-
anism that is both near-perfect in terms of robustness against small changes and absence
of false positives.

6.2 Fingerprint on Real Email

We also repeat the experiments in Section 6.1 on real emails. We collected 29996 total
spam email messages from http://www.spamarchive.org. Histogram and CDF represen-
tations of their size distribution are shown in Figure 9.

In order to get an idea of whether small modifications on spam email is a common
practice of spammers, we used a variant of our fingerprint techniques to fully categorize
the email set for uniqueness. We personally confirmed the results. We found that, out of
all these 29996 junk emails, there are:

– 14925 unique junk emails.
– 9076 modified copies of 4585 unique ones.
– 5630 exact copies of the unique ones.

From statistics above, we can see that about 1/3 junk emails have modified ver-
sion(s), despite that we believe the collectors of the archive have already strive to elimi-
nate duplicates. This means changing each email they sent is really a common technique
used by spammers, either to prevent detection or to misdirect the end user.

We did the robustness test on 3440 modified copies of 39 most “popular” junk
emails in the archive, which have � ������ copies each. The standard result is human
processed and made accurate. The fingerprint vector size is set to 10,

� ��� � � � � . We
vary threshold of matching fingerprint from 3 to 5, and collect the detected and failed
number. Table 6.2 shows the successful detection rate with


 ��� � � � � �
	 � � are
satisfying.

For the false positive test, we collect 9589 normal emails, which is compose of
about half from newsgroup posts and half from personal emails of project members.
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THRES Detected Failed Total Succ. %
3 3356 84 3440 97.56
4 3172 268 3440 92.21
5 2967 473 3440 86.25

Table 1. Robustness Test on Real Spam
Emails. Tested on 3440 modified copies of 39
emails, 5629 copies each. � ���������
	 .

Match FP # of Pairs Probability
1 270 1.89e-6
2 4 2.79e-8�
2 0 0

Table 2. False Positive Test on Real
Spam Emails. Tested on ���������	��
�����������
������������������� � pairs. � ��� � � � 	 .
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Fig. 10. Finding an Ideal TTL. A graph that shows, for a “marked” document, the correlation
between TTL values on queries, probability of a successful search, and percentage of nodes in
the network who “marked” it.

Before doing the experiment, we expect collisions to be more common, due to the use of
common words and phrases in objects such as emails. We do a full pair-wise fingerprint
match (vector size 10) between these 14925 unique spam emails and 9589 legitimate
email messages. Table 2 shows that only 270 non-spam email messages matched some
spam message with 1 out of 10 fingerprints. If we raise the match threshold



to 2

out of 10 fingerprints, only 4 matches are found. For match threshold more than 2, no
matches are found. We conclude that false positives for threshold value


 
 � are very
rare ( ! � � �#" ) even for real text samples.

6.3 Efficient Fingerprint Routing w/ TTLs

We want to explore our fingerprint routing algorithms in a more realistic context. Specif-
ically, we now consider the additional factor mark rate, which is the portion of all users
in the network that actively report a particular spam. A user who “marks” a spam mes-
sage actives publishes this fact, thereby registering that opinion with the network. For
example, a 10% mark rate means that 10% of the user population actively marked the
same message as spam.
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To simulate the trade-off between bandwidth usage, “mark” rate, and search suc-
cess rate, we simulate the searching of randomly generated fingerprints on transit-stub
networks, and vary the required number of overlay hops to find a match, as well as the
mark rate. We assume users marking the spam are randomly distributed. With an effi-
cient DOLR layer, the more users who mark a document as spam, the fewer number of
hops we expect a query to travel before finding a match. We can set a TTL value on
queries to conserve bandwidth while maintaining a reasonably high search success rate.

We performed experiments on 8 transit stub topologies of 5000 nodes, latency cali-
brated such that the network diameter is 400ms. Each Tapestry network has 4096 nodes,
and each experiment was repeated with 3 randomized overlay node placements. By
aggregating the data from all placements and all topologies, we reduced the standard
deviation below 0.02 (0.01 for most data points).

The results in Figure 10 show the expected latency and success probability for
queries as a function of the number of hops allowed per query (TTL). Since there is
a high correlation between the TTL value and the network distance traveled in ms, we
plot both the TTL used and the associated network distance. For example, we see that
queries with TTL of 2 on these topologies travel a distance of approx. 60ms. Further,
at 10% publication rate, we expect those queries to be successful 75% of the time. We
note that a Time-to-Live value of 3 overlay hops results in a high probability of find-
ing an existing document even if it has only been reported by a small portion of the
participating nodes (2-5%).

7 Related Work

There has been a large amount of recent work on structured peer to peer overlays [18, 5,
11, 15, 10, 8, 4]. Recent work [2] has tried to clarify the interfaces these protocols export
to applications, including distributed hash tables (DHTs) and decentralized object loca-
tion and routing (DOLRs) layers. While our proposal is designed for DOLR systems,
it can also be implemented on top of DHTs with minor modifications. Furthermore,
protocols like Tapestry that use network proximity metrics to constrain network traffic
will benefit the most from our performance optimizations.

Recent work [6] discusses the feasibility of doing keyword-based web search in
structured P2P networks, which can be thought of as an instantiation of our ADOLR
proposal applied to text documents with keywords used as features. Both their scheme
and our work use inverted indices of keywords/features assigned to different nodes and
maintained using structured overlay location and routing primitives. Finally, this work
tries to gauge feasibility, rather than to propose any specific implementation.

In the context of approximate text addressing, centralized text similarity search is
a well-studied problem. Comprehensive discussion can be found in [17]. It includes
discussion about using ”n-grams” to do similarity search using exact search facility.
One specific technique within this category [7] forms the basis of our approach of using
checksum based fingerprints.

In [1], Broder examined the probability of two different strings colliding to an iden-
tical single fingerprint. In contrast, we focus on the collision probability of entire finger-
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print vectors. In Appendix A, we also consider the probability of changes in a fingerprint
vector under different document modification patterns.

Many spam filtering schemes have been proposed and some deployed. Schemes
based on hashing and fuzzy hashes [16, 14, 3], including our proposal, are collaborative
and utilize community consensus to filter messages. These systems include two main
components: one or more hash functions to generate digests of email messages, and a
repository of all known digests and whether the corresponding emails are spam. Our
system differs from others in this group in that the digest repository is fully decentral-
ized, and queries are deterministic by default (i.e. all existing results will be found no
matter where it is). This ensures both scalability and accuracy.

Another big family of spam filtering schemes are machine learning-based [12, 9].
These schemes filter incoming messages based on symptoms or trails of spam emails
identified explicitly or implicitly by the training process. They can be personalized ac-
cording to user preferences and email content and therefore perform well on client ma-
chines. However, because the filters these systems use are only based on per-user local
information and do not allow cross-user collaboration, they have difficulty in identify-
ing new spam emails that are very different from those seen before by the local user.

8 Ongoing and Future Work

We have implemented the basic Approximate DOLR and Approximate Text Address-
ing prototype on a Java implementation of Tapestry, and are exploring additional op-
timizations and extensions. A prototype of the proposed P2P spam filtering system,
SpamWatch, is implemented and available, including a per-node component imple-
mented as a Tapestry application and the user interface implemented as a Microsoft
Outlook plug-in 2. One direction for future work is to deploy SpamWatch as a long-
running service, both to provide a valuable service and also to collect valuable trace
data. We are also considering extending the system to handle predicate queries.

In conclusion, we proposed the design of an approximate location extension to
DOLR systems and described an Approximate Text Addressing facility for text-based
objects. We discuss issues of data consistency and performance optimizations in the
system design, and present a decentralized spam filtering system as a key application.
We validate our designs via simulation and real data, and show how to tune the fin-
gerprint vector size and query TTL to improve accuracy, reduce bandwidth usage and
query latency, all while keeping a low false positive rate.
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A Analysis of Robustness of Text Fingerprinting

Here we give mathematical analysis of how to compute the probability distribution of
number of unchanged fingerprints of a text document after small modifications.

We define:

� : the original document� �

: the original document after modifications
� : the document is divided in consecutive substrings of length L characters
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� : the set of checksums calculated from all substrings in �
� : the set of checksums calculated from all substrings in � �


 : ��� � , checksums from � which are not present in checksums of � �

� : � � � , checksums from � �

not present in original checksums of ���� � � � : the fingerprint vector generated from checksums of � , such that��� � � ��� � ,
� ��� � � � � � ���� � � � : the fingerprint vector generated from checksums of � �

, such that��� � � ��� � ,
� ��� � � � � � �� � � : if � is a set or vector,

� � � represents the size of �� :
� ��� � � � � ��� � � � � , number of checksums in new fingerprint vector which are not
in the old fingerprint vector

Refer to Figure 11 for an illustration of 
 , � , � and � .

Let’s define �
	 ��� � as the probability that � out of � checksums in ��� � � � are
obsolete, that is, not in � ; define � 	 �� � as the probability that  out of � checksums in��� � � � are newly generated, that is, not in � . We have:

��� ����� � ��� � � � � ��� ��� � ������� �
�
� � ���� � � � � ��� � � �� ������

� � �� � (1)

��� ����� � ��� � � � � ��� ����� � � ��� �
�
� � �� � � � � � �!� � � �� ��� ��

� � �� � (2)
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If:

1. � � � � ���  � � (that is, � 
  ): ��� � � � is composed of � � � � � checksums
from ��� � � � , y checksums from newly generated set � , and others from � � � .
That is, the  checksums from � and others from � � � are the new checksums in��� � � � since ��� � � � . Then, � � � � � � � � � � � .

2. � � � � ���  � � (that is,  � � ): ��� � � � is composed of  checksums from � ,
other checksums from ��� � � � � 
 . That is, the  checksums from � are new
checksums in ��� � � � since ��� � � � . Then, � �  .

So, when � 
  , � � � ; when  � � , � �  . That is, � ����� � � � �  � . Then,� � ��� � � � � ��� ��� � 	
 � �� � � ��� � � ��� � � ������� � 	
 � �� � � ��� � � � � � � ��� ��� � � � ��� ��� � (3)

Let’s define
� � � � � ��� � � � � ��� � ������� to be the probability that at least � checksums are in

common between fingerprint vector of new document and of old document. We have:� � � � � � ��� � � � � ��� � ������� � � � � � � � ��� ��� � � ��� � ��� � ����� �������
 � �� � � ����� � � (4)

Knowing of
� 
 � and

� � � , we can apply results in equation (1)-(3) to equation (4), and
then get the probability of the number of unchanged fingerprints after modification of
the document.

While
� 
 � and

� � � are related to modification pattern, we can further consider how to
get
� 
 � and

� � � . 
 � � 
"! and � � � �#! , where 
"! and �#! are changes made to
checksums because of one modification operation � .

We have three types of operations:

Update d characters :
� 
 ! � � � � � ��$ , � � ! � � � ��� ��$ . This is illustrated in

Figure 12.
Insert d characters :

� 
 ! � � � ��� , � � ! � � � ��� ��$ . This is illustrated in Figure 13.
Delete d characters :

� 
 ! � � � ��� ��$ , � � ! � � � � � . This is illustrated in Figure 14.


 equals the union of each 
%! and � equals the union of each �&! . So, if there is only
one modification, we can exactly compute

� 
 � and
� � � . If there are more than one

modification,
� 
 � ranges from ��� �'! � 
"! � to ( ! � 
"! � , � � � ranges from ��� �#! � ��! � to( ! � �#! � . We can compute approximate average

� 
 � and
� � � for a specific pattern of

modification operations according to equations above.

Thus, we can use equation (4) to compute the probability distribution of number of
unchanged fingerprints in fingerprint vector.
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