J-Orchestra: Automatic Java Application Partitioning

Eli Tilevich and Yannis Smaragdakis

Center for Experimental Research in Computer Science (CERCS)
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

{tilevich, yannis}@cc.gatech.edu

ABSTRACT tioning can accommodate such requirements without needing to

hand-modify the application code.
J-Orchestra is an automatic partitioning system for Java programs.

J-Orchestra takes as input Java applications in bytecode format and™©r Several tasks, like switching between local and remote sensor
transforms them into distributed applications, running on distinct INPUt, automatic partitioning is without direct competition—all
Java Virtual Machines. To accomplish such automatic partitioning, other alternatives require that the application be hand-modified.
J-Orchestra uses bytecode rewriting to substitute method calls withNevertheless, in the case of user interaction resources (keyboard
remote method calls, direct object references with proxy refer- iNPut, graphical screen output) automatic partitioning finds compe-
ences, etc. Using J-Orchestra does not require great sophisticatiofition in several existing technologies for transparent dlstr_lbut_lon.
in distributed system methodology—the user only has to specify These technologies include Java servlets and text/graphics input/
the network location of various hardware and software resources OUtput redirection protocols like telnet and X-Windows [14]. All of
and their corresponding application classes. J-Orchestra has signiffhe above are rudimentary adaptors for distributed computing: they
icant generality, flexibility, and degree of automation advantages /low executing a program on a different computer than the one
compared to previous work on automatic partitioning. For Mmanaging the mput/ogtput. Neverthe[ess, all application process-
instance, J-Orchestra is guaranteed to correctly partition any Javand Still occurs on a single network site. In contrast, when auto-
program, allowing any application object to be placed on any Matic application partitioning is used, different parts of the
machine, regardless of how application objects access each othe@pPplication can run on different machines in order to minimize net-
and Java system objects. Additionally, J-Orchestra objects canWork traffic or reduce server load. For instance, for graphical out-
migrate in response to run-time events in order to take advantagePut. it is often best to keep the code generating the graphics on the
of locality. J-Orchestra also offers run-time optimizations, like the Same site as the graphics hardware, instead of passing all drawing
lazy creation of distributed objects—objects do not suffer the over- Commands over the network.

head of remote registration until they are about to be accessedyorchestra operates at the Java bytecode level and rewrites the
remotely. application code to replace local data exchange (function calls,

We have used J-Orchestra to successfully partition several realisticdata sharing through pointers) with remote communication
applications including a command line shell, a ray tracer, and sev- (remote function calls through Java RMI [18], indirect pointers to

eral app"caﬂons with native dependencies (Sound’ graphics). mobile ObjeCtS). The reSUlting application is guaranteed to have the
same behavior as the original one. J-Orchestra receives input from
1 INTRODUCTION the user specifying the network locations of various hardware and

software resources and the code using them directly. A separate
Application partitioningis the task of breaking up the functionality profiling phase and static analysis are used to automatically com-
of an application into distinct entities that can operate indepen- pute a partitioning that minimizes network traffic.
dently, usually in a distributed setting. Application partitioning has
been advocated strongly in the computing press [11] as a way to
use resources more efficiently. Traditional partitioning entails re-
coding the application functionality so that it uses a middleware
mechanism for communication between the different entities. In

Past attempts to automatic partitioning have not scaled to industrial
strength applications, for several technical reasons. We argue that
J-Orchestra is the most scalable automatic partitioning system in
existence. J-Orchestra is the first system that imposes no partition-

this paper, we present @utomatic partitioning systerfor Java ing constr_aint_s on appl_ication code: q-Orchestra can partition any
applications. Our system, called J-Orchestra, utilizes compiler Java application, allowing argpplication objecto be placed on

technology to partition existing centralized applications without any maching, regardless 9f how application_objects interact among
manual editing of the application source code. them and with system objects. Asystem objeatan be remotely

accessed from anywhere in the network, although it has to be co-
Automatic partitioning aims to satisfy functional constraints (e.g., located with system objects that may potentially reference it. (We
resource availability). For instance, an application may be getting will later give precise definitions for the terms “application” and
input from sensors, storing it in a database, processing it, and pre-“system” objects, but, roughly, these correspond to instances of
senting the results on a graphical screen. All four hardware regular user classes that do not extend Java system classes, and
resources (sensors, database, fast processor, graphical screen) magva system classes that have native dependencies, respectively.)
be on different machines. Indeed, the configuration may change

several times in the lifetime of the application. Automatic parti- To see the scalability advantages of J-Orchestra over prior work,

consider the Addistant system [19]—the most mature and closest
alternative to J-Orchestra in the design space. J-Orchestra has three

advantages over Addistant: a far more general rewrite engine proxy objects—the application can operate as it normally would

allowing arbitrary partitioning of the applicatiorgénerality; a in a centralized environment, except for the parts that need to be
system supporting object mobilityléxibility); and a much lesser accessible remotely. This is a desirable property because proxy
dependence on user input for a correct partitiontegfee of auto- indirection may slow down application execution by a factor of
matior). We examine each of these aspects in turn: some tens of percent. By only rewriting a small portion of the

application, we ensure high-speed local execution without sacri-
ficing remote accessibility. Addistant can provide a similar ben-
efit, but in J-Orchestra this feature is usable automatically with
guaranteed correctness. J-Orchestra provides static analysis
tools that automatically determine the unmodifiable classes that
can potentially be used by an application. This information can
then be used to determine the minimal rewriting actions that
need to be performed to render any subset of the application
remotely accessible.

« Generality Addistant imposes restrictions on what applications
it can partition and how. For instance, Addistant cannot make a
class remotely accessible when the class is unmodifiable and has
unmodifiable clients. (The typical reason for a class to be
unmodifiable is that its implementation is partly in platform-
specific, “native”, code, as is the case for many Java system
classes.) In general, Addistant decides on a technique for dis-
tributing objects on a per-class basis. This means that if even
one of the clients of a class needs to access it directly, all clients
are restricted to accessing the class directly. Instead, J-Orchestrdn this paper, we present the main elements of the J-Orchestra
makes decisions on a per-reference basis. In this way, a singlerewrite engine. We describe the J-Orchestra rewrite algorithm, dis-
object (e.g., an instance of an unmodifiable Java system class,cuss its power and detail how J-Orchestra deals with various fea-
like java.io.FileOutputStream) can be accessed through tures of the Java language. Finally, we examine the optimizations
references of different kinds, depending on the code manipulat- that we have implemented in J-Orchestra and present performance
ing each reference. Specifically, the object is accessed directly measurements that demonstrate the advantage of J-Orchestra over
by other unmodifiable system classes but is accessed through anput/output redirection with X-Windows.
proxy object by regular (modifiable) application classes. The J-
Orchestra rewrite ensures that when a reference is passed fron2 REWRITE STRATEGY OVERVIEW
an application class to a system class, it is “unwrapped”, to pro-)]]))
duce a direct reference so that the system code can access th# this section, we give a high-level overview of the J-Orchestra
object directly. Similarly, when a reference is passed from sys- rewrite glgorlthm. In our dlscusspn, we assume that a.II objeqts in
tem code to application code, the object is “wrapped”: a refer- thg appllcatloq are.to be turned into remotely accessmlg objects.
ence to a proxy is generated, so that the application code This assumption s_lmpllfles our_argument of the generallty of J-
accessing the object can migrate anywhere on the network. ThisOrchestra. In Section 4.1, we will discuss how the assumption can
mechanism is responsible for the generality of J-Orchestra: any P& safely relaxed.
application object can be on any machine, regardless of what . .
other objects it references. 2.1 Main lnSIthS

« Flexibility: Addistant does not allow object mobility. Objects are J-Orchestra creates an abstraction of shared memory by allowing
created and are used on the same network site. In contrast, Jfeferences to objects on remote JVMs. That is, the J-Orchestra
Orchestra application objects can freely migrate to different net- réwrite converts all references in the original application inth-
work sites at run-time—e.g., to take advantage of locality. This T€Ct references-i.e., references tproxy objectsThe proxy object
makes J-Orchestra a much more flexible system: migration poli- hides the details of whether theT actual object is local or remote. If
cies can be put in place and get activated in response to run-time'®mote methods need to be invoked, the proxy object will be
events, instead of fixing object locations once and for all. For esponsible for propagating the method call over the network. The
instance, a method call may cause the arguments of the methodnvariant maintained is that clients never get d!rect references to
to migrate to the site where the method code is executed. objects that can potentially be remote—access is always through a

))]) proxy. Application code needs to be rewritten to maintain this

* Degree of AutomatianAddistant requires user input for every jnyariant: for instance, alhew statements have to be rewritten to
application and system class. The user input determines thecreate a proxy object and return it, an object has to be prevented
semantics of remote object access. For instance, the Addistantygm passing direct references to itself (as the value oftiifse
user has to explicitly specify whether instances of an unmodifi- expression) to other objects, etc. If other objects need to refer to
able class are created only by modifiable code, whether an gata fields of a rewritten object directly, the code needs to be
unmodifiable class is accessed by modifiable code, whether eyyitten to invoke accessor and mutator methods, instead. Such
instances of a class can be safely passed by-copy, etc. (As indi-nethods are generated automatically for every piece of data in
cated above, the list is not exhaustive: there are cases that theyppication classes. For instance, if the original application code

Addistant arsenal of rewrite techniques does not cover.) In con- yieq to increment a field of a potentially remote object directly,
trast, J-Orchestra does not require the user to know how classesike in o1.a field++ the code will have to change into

are implemented and what their referencing behavior is. This 41 set a field(o1.get_a_field()+1) _ This rewrite will

elevates the degree of automation in the system—the user per-ycqyally occur at the bytecode level.

forming the partitioning no longer needs to have a sophisticated

understanding of the application semantics. The above indirect reference techniques are not novel (e.g., see
. . o JavaParty [8], as well as the implementation of middleware like

Furthermore, J-Orchestra offers the ability to rewrite a limited y,,5 R [18]). The problem with indirect reference techniques,

portion of the appllcgtlon to make it remotely access!ble. In this however, is that they do not work well when the remote object and

way, not all application classes need to be accessible throughyne cjient objects are implementedinmodifiable codeTypically,

code is unmodifiable because it is in a platform-specific or “native” reference, that reference needs tovirapped a new indirect
form—the implementation of Java system classes falls in this cate- reference (i.e., reference to a proxy object) is created and
gory. Unmodifiable code may be pre-compiled to refer directly to returned instead.

another object’s fields, thus rendering the proxy indirection invalid.
One of the major novel elements of J-Orchestra is the use of indi-
rect reference techniques even in the presence of unmodifiable
code.

Essentially, instead of the usual call-by-value semantics of Java
method calls, our proxies implement call-by-value-convert
semantics, where the references passed as arguments are auto-
matically converted exactly when (and if) needed.

2.2 Handling Unmodifiable Code A consequence of the J-Orchestra rewrite algorithm is that is sup-
ports object mobility. If an object can only be referenced through
proxies, then its location can change transparently at run-time.
Thus, for instance, regular application objects in a “pure Java”
application can migrate freely to other sites during application exe-
cution. The reason is that such objects cannot be referenced
directly by unmodifiable code. (An exception is the case of appli-
cation classes that extend system classes other than
« If the client code (i.e., user of a reference) of a remote object is java.lang.Object —we will discuss such complications in our

not modifiable, but the code of the remote object is modifiable, detailed presentation of the J-Orchestra rewrite model.) In contrast,

then we can use “name indirection”: the proxy class can assumeinstances of Java system classes are remotely accessible but typi-

the name of the original remote class, and the remote class cancally cannot migrate, as they may be accessed directly by other

be renamed. This is the “replace” approach of the Addistant sys- system objects.

tem [19]. The problem is that the client may expect to access

fields of the remote object directly. In this case, the approach 3 REWRITE MECHANISM

breaks.

To see the issues involved, let us examine some possible
approaches to dealing with unmodifiable code. We will restrict our
attention to Java but the problem (and our solution) is general: pre-
compiled native code that accesses the object layout directly will
cause problems to indirect reference approaches in any environ-
ment.

In this section, we discuss in concrete detail the J-Orchestra

* If the client code (i.e., user of a reference) of a remote object is reyyrite model. Several elements that were previously elided are
modifiable but the code of the remote object is not, then we can resented thoroughly.

change all clients to refer to the proxy. This is the “rename” -) _ o . .
approach of the Addistant system. This case does not present/Ve will first give precise definitions of our terminology in order to
any problems, but note that the Addistant approach is “all-or- classify the different types of classes J-Orchestra deals with.

none”. All clients of the unmodifiable class must be modifiable, . 5 -hestra converts all objects of an application irgmote-

or references cannot _be freely passed around _(since_ one C"enEapableobjects. Remote-capable objects can be accessed from a
will refer to a proxy object and another to the object directly). remote site. We distinguish three kinds of remote-capable object
« If the client code (i.e., user of a reference) of a remote object is classes: mobile classes, anchored unmodifiableclasses, and
not modifiable and the code of the remote object is also not anchored modifiableclasses. The “anchored/mobile” attribute
modifiable, no solution exists. There is no way to replace direct refers to run-time behaviorAnchoredclasses can be accessed
references with indirect references. Nevertheless, the key obser-emotely but cannot move through the netwdvlabile classes can
vation is that the remote object can be referred to directly by migrate at will.
unmodifiable clients and indirectly by modifiable clients. In this
way, although unmodifiable objects cannot be placed on differ-
ent network sites when they reference each other, modifiable
objects can be on a different site than the unmodifiable objects
that they reference. This is the approach that J-Orchestra fol-

We should emphasize that the mechanismela$sificationand
translationof classes are entirely separate. J-Orchestra uses a con-
servative algorithm to determine whether an object should be
anchored or mobile. This algorithm could change in the future,
. affecting the way classes are categorized. Nevertheless, the transla-
lows. A dlre_ct consequenc_e 'S. that (unlike the Ad(_jlstan_t_rewrlte) tion mechanism for mobile classes, anchored unmodifiable classes,
the semantics of the application does not affect its ability to be . -

and anchored modifiable classes can stay the same. Similarly, the

EI"; r;gl)ozzg.bén ;{;{;Iéce;t;]on ﬁgscén('i]hs;a:g;vg:kar;n(;?g;:ieOftranslation mechanism for the three categories of classes can
; P anyw » €9 change, even if the way we determine the category of a class
which Java system objects it accesses and how.

remains the same.
For this approach to work, it should be possible to create an . . . s
bp P In the following sections, we will blur the distinction between

indirect reference from a direct one and vice versa, at applica- . A
.) . classes and their instances when the meaning is clear from context.
tion run-time. The reason is that references can be passed from” ™" . .

For instance, we may write “clagsrefers to clas®” to mean that

modifiable to unmodifiable code and vice versa by using themas ~ . .
arguments to a method call. Fortunately, this conversion is easy'sln instance ok may hold a reference to some instanc. of
to handle since all method calls are done through proxies. Prox- 3.1 Classification

ies for unmodifiable classes are the only way to refer to unmodi-

fiable objects from modifiable code. Thus, when a method of For simplicity in our classification, we assume that the application
such a proxy is called, the reference arguments need to beto be partitioned is written in pure Java (i.e., the only access to
unwrappedbefore the method call is propagated to the target native code is inside Java system classes). This is the standard sce-
object. Unwrapping refers to creating a direct reference from an nario where J-Orchestra is used. Our observations can be straight-
indirect one. Similarly, when a method of such a proxy returns a

forwardly generalized to applications that include some native boundary. As long as no referencesctor its superclasses (other
codel thanjava.lang.Object) or to arrays of these types appear in the
signatures of methods in anchored system classes, it is safe to cre-
In principle, classes need to be anchored when they provide ate a mobile “application-only” version. (Interface access or access
abstractions for machine-specific services and resources such agrough orjava.lang.Object references is safe—a proxy object
threading java.lang.Thread) or I/O (java.io.ObjectOut- is indistinguishable from the original object in these cases.) As a
putStream). Other classes may need to be anchored because ofconsequence, the categorization of system classes into mobile and
the way they interact with anchored classes. For instance, if ananchored is robust with respect to future changes in the implemen-
anchored class directly accesses the fields of another object, thatation of Java library classes—the partitioning remains valid as
object should also be anchored. In fact, such accesses may not bgyng as the interfaces are guaranteed to stay the same.
apparent to the Java code as they may occur in native code. There-
fore, we often need to be conservative and assume that native codé'S an advanced technical note, we should mention that less con-

can potentially directly reference the fields of all parameters Servative rules can also be applied to guarantee that more system
passed to it. classes can be made mobile. For instance, if a system class never

accesses native code, never has its fields directly referenced by
The J-Orchestra classification algorithm for the vast majority of giner system classes (i.e., all access is through methods), and its
classes can be summarized as follows. (Some exceptions will bejnstances are passed from application classes to system classes but
discussed individually.) not the other way, then the class can be mobile by using a “sub-
type” approach. Specifically, a subtype of the system class can be
created in an application package. The subtype is used as a
proxy—none of its original data fields are used. Nevertheless, the
subtype object can be safely passed to system code when the
supertype is expected. The subtype object itself propagates all
method calls to an actual mobile object. This technique is applica-
ble as long as the original system class isfireti . We already
use this technique in J-Orchestra but not automatically in all appli-
cable cases—manual intervention is required to enable this trans-

Mobile ClassesMobile classes are all classes that do not fall in formation on a case-by-case basis when it seems warranted. A
either of the above two categories. All classes in a pure Java appli-900d example is thgava.lang.Vector class. Vectors are used
cation that do not extend system classes are mobile. Note, how-Very often to pass data around and it would be bad for performance
ever, that Java system classes can also be mobile, as long as thelp restrict their mobility: vectors should migrate where they are

do not call native code and they cannot be passed to/from anchored’€eded. Nevertheless, many graphical applications pass vectors to
system classes. anchored system classes in the Swing system library—for instance

the javax.swing.table.DefaultTableModel class has meth-
The interesting distinction in the above classification is between gs that expect vectors. All the aforementioned conditions are true
system classes that are mobile and system classes that argyr vectors: thevector class has no native methods, classes in the
anchored. Note that even classes thahdoreference native code sying library do not access fields of vector objects directly (only
and arenotreferenced by native code may need to be anchored, aSthrough methods), and vectors are only passed from application to
long as their instances are passed to/from anchored system classegystem code, but not the other way. Thereforegtor can be
For example, J-Orchestra’s rewrite engine deems safely turned into a mobile class in this case.

Anchored Unmodifiable (System) Classe#\ system classC is
anchored unmodifiabli it depends on native code (i.e., has native
methods), or references @objects can be passed between appli-
cation code and an anchored unmodifiable class.

Anchored Modifiable (Application) ClassesA class isanchored
modifiableif it is a modifiable application class that extends an
anchored unmodifiable class (other tfgsa.lang.Object).

java.lang.ThreadGroup anchored because a reference to a o
ThreadGroup can be passed to the constructor of class FOr a more accurate determination of whether system classes can
java.lang.Thread . which has native methods. be made mobile, data flow analysis should be employed. In this

way, it can be determined more accurately whether (and which)
Java system classes are mobile, if they do not call native code andjpstances of a class flow from application code to system code. So
they cannot be passed to/from anchored system classes. In thigay we have not needed to exploit such techniques in J-Orches-
case, instances of the system class are used entirely in “applicationa_the type system has been a powerful enough ally in our effort
space” and are never passed to unmodifiable code. The implemeny, getermine which objects can be made mobile. The only excep-
tation of such classes can be replicated in a different (non-system)tjon has to do with arrays and will be discussed in Section 3.3.4.
package and application code can be rewritten to refer to the new
class? The system class can be treated exactly like a regular appli-
cation class using this approach.

Note that static inspection can conservatively guarantee that refer-
ences to a system class never cross the system/application

1. If the application includes native code, our guarantees will need 2. It is not clear whether this replication is allowed under the legal

to be similarly adjusted. For an extreme example, if native conditions of JDK usage. In the long run, if replication turns
code in a single method accesses fields of all application out to be impossible, an inheritance approach is feasible, but
classes directly, then no partitioning can be done, since all requires more engineering work (because of the lack of multi-

application classes will need to be anchored on the same site. ple inheritance).

3.2 Translation plished by consistently changing the constant pools of all the
application binary class files. The following example demonstrates
3.2.1 Anchored System Classes the effect of those changes as if they were done on the source code

) level for clarity reasons.
System classes are anchored in groups: an anchored system class

needs to be co-located with all related anchored system classes//Original code: client of java.lang.Thread

Unrelated anchored classes, however, can be located on differeniava.lang.Thread t = new java.lang.Thread (...);

machines. In practice, anchoring system classes together withvoid f (java.lang.Thread t){ t.start (); }

other related system classes typically does not inhibit the meaning-//,vlodified code

ful partitioning of _s_ystem resources. F_or instance, we have ‘_Jsed_J'anchored.java.lang.Thread t=

Orchestra to partition several applications so that the graphics dis- new anchored.java.lang. Thread (...);

play on one machine, while disk processing, sound output, key- void f (anchored.java.lang.Thread t){ t.start(); }

board input, etc. are provided on remote computers. This is

possible because the Java Development Kit (JDK) supports hierar-All the object parameters to the methods of a proxy are either
chical organization through the concept of packages. A Java pack-immutable classes such sa.lang.String or other proxies.

age contains classes that share common functionality. JDK classesThe rewrite strategy ensures that proxies for anchored system
within the same package reference mostly each other and Veryclasses do not reference any other anchored system classes directly
rarely instances of the system classes from other packages. Thiut rather through proxies.

property means that anchoring group boundaries commonly oin- 6 o1y data member of an anchored system proxy is an interface

Ck']d? with packagi boundartljes. Fohr exgmpler; all the classhe;s fr?]mreference to the remote application-system translator class. A typi-
thejava.awt - package can be anchored on the same machine that, proxy method delegates execution by calling an appropriate

handles the user interface part of an application. This arrangement .« 4 in the remote instance member and then handles possible
allows anchored system classes to access each other directly Wh”‘?emote exceptions. For instance, eePriority method for the

being remotely accessible by application classes through proxies. proxy ofjava.lang.Thread is:

J-Orchestra does not modify anchored system classes but produces
two supporting classes per anchored system class. These are 8 try {

proxy class and aemote application-system translat¢or just remoteRef.setPriority (arg0);
application-system translathrA proxy exposes the services of its } catch (RemoteException €) {
anchored class to regular application classes. A remote applica- e.printStackTrace ();
tion-system translator enables remote execution and handles the }

translation of object parameters between the application and sys-}

tem Iayer33. Both proxy classes and remote application-system

translator classes are produced in source code form and translate
using a regular Java compiler. We will now examine each of these fi
supporting classes in greater detail.

ublic final void setPriority(int arg0){

he _remoteRef member variable can point to either the remote
pplication-system translator class itself or its RMI stub. In the
rst case, all method invocations will be local. Invocations made
through RMI stubs go over the network, eventually getting handled

A proxy is a front-end class that exposes the method interface of by the system object on a remote site.

_thte ct)rzlglnal SySteT class. tlrt] WOL."(.j ble |m$ossul)le tf) pu; a prloxy Application-system translators enable remote invocation by
into the same package as Ihe original system class. system classe tending java.rmi.server.UnicastRemoteObject . Addi-

lrestlde dm sy§tem palc kag(;je; thﬁf J-O:cheslira doeg hnot mOdI];y'tionally, they handle the translation of proxy parameters between
nstead, proxies are placed In a cilierent package and have no refasy, application and user layers. Before a proxy reference is passed
tionship to their system classes. Proxy haming/package hierarchie

- hic to thei di ‘ | F | S0 a method in a system class, it needs to be unwrapped. Unwrap-
are isomorp |cfo elrcorlresp_?: |ndg system classes. orltlexglmp eping is the operation of extracting the original system object
a proxy or Java.fang.1hrea IS cale pointed to by a proxy. If a system class returns an instance of

apt;:lhorel(li.javzi..lantg.;.Thr?ad th.tTO fmake retrr:]ote‘e?(eclutlo? posl- another system class as the result of a method call, then that
sible, al application classes that reterence the original System Class, 1o ce needs to be wrapped before it is passed to the application
have to now reference the proxy class instead. This is accom-

layer. Using wrapping, J-Orchestra manages to be oblivious to the

way objects are created. Even if system objects are created by

3. The existence of a separate application-system translator is arunmodifiable code, they can be used by regular application classes:
implementation detail—under different middleware, the trans- they just need to be wrapped as soon as they are about to be refer-
lator functionality could be folded inside the proxy. J-Orches- enced by application code.
tra currently uses Java RMI as its distribution middleware.
Under RMI, classes need to explicitly declare that they are
remotely accessible (e.g., by inheriting from classcas-
tRemoteObject). Therefore, unmodifiable system classes
cannot be made remotely accessible, but their translator can.public void setForeground
Separate application-system translators simplify our imple- (anchored.java.awt.Color arg0)
mentation because system classes wrapped with an applica{

tion-system translator can be treated the same as application _localClassRef.setForeground
classes. ((java.awt.Color)Anchored.unwrapSysObj (arg0));

The following example demonstrates how “wrapping-unwrapping”
works in methodssetForeground and getForeground of the
application-system translator fiava.awt.Component

} ones for anchored classes. The only difference is that a mobile
proxy assumes the exact name and method interface of the original

public anchored.java.awt.Color getForeground () { class. The clients of a mobile class access its proxy in exactly the
return (anchored.java.awt.Color) same way as they used to access the original class.
Anchored.wrapSysObj(_localClassRef.
getForeground()); A remote class is responsible for handling the network execution
} semantics. Remote classes mimic the inheritance structure of their

original classes. The remote semantics is achieved by changing the
superclass of the base (topmost) proxy frjara.lang.Object

to java.rmi.server.UnicastRemoteObject . Since it is the
proxies that inherit the names of the original classes, remote
classes must be consistently renamed. J-Orchestra gives remote
classes an_* remote " suffix. The example below summarizes the
Anchored application classes are the application classes thatrewrite in source code form (although in reality the original class
inherit from anchored system classes. Recall that anchored systemand the remote class only exist in bytecode form).

classes depend on platform-specific resources and thus cannot)

migrate through the network. Anchored application classes can be//Original class declaration

thought of as referencing native libraries indirectly through their class A extends B implements | {...}

superclasses. Anchored application classes are handled with gproxy class declaration

translation that is identical to the one for anchored system classesclass A extends B implements I, Proxy { ... }

except for one aspect. The defining distinction between system and

application anchored classes is that the latter can access othef/Remote class declaration

application classes’ fields directly. Such direct field accesses haveC!ass A__remote extends B__remote

to be detected and replaced with accessor and mutator methods. Iﬁmplements 1, Remote {...}

this way, other application classes referenced by anchored applica-gome care needs to be taken during binary modification of a class,

_localClassRef points to an instance of the original system
class fava.awt.Component) that handles all method calls made
through the remote application-system translator.

3.2.2 Anchored Application Classes

tion classes do not need to be anchored. to ensure that the types expected match the ones actually used. For
Consider an arbitrary methddo of an anchored application class ~ Instance, the name of a classieeds to change ®__remote , but
MyThread that extendgva.lang.Thread . most references to type(e.g., as the type of a method parameter)
need to continue referring t®—the proxy type is the right type for
class MyThread extends java.lang.Thread { references ta objects in the rewritten application.
void foo (A a) { a.counter++; }
} 3.3 Handling of Java Language Features

This clearly creates a problem. If classs placed on aremote net- The J-Orchestra rewrite has to handle several Java language fea-
work site, fieldcounter can no longer be accessed directly since tures. Some parts of the translation (e.g., that of static methods) are
RMI (and all other distribution frameworks) are method-based. To straightforward and only add engineering complexity. Handling
fix the problem, J-Orchestra replaces direct accesses with accessasome other elements (e.g., arrays), however, is far from trivial.

and mutator methods and adds those methods toAclass Some of the techniques described here are similar to the ones used
) by JavaParty (but JavaParty operates at the source code level while
class MyThread extends java.lang.Thread { J-Orchestra is a bytecode translator). In other cases, however, J-

void foo (A a) { . L L
aset$Scounter (a.get$$counter () + 1); Orchestra has a higher obligation than JavaParty to maintain local

} execution semantics for a partitioned application, since J-Orchestra
} partitioning is automatic for the entire application.

3.2.3 Mobile Classes. 3.3.1 Static Methods and Fields

Mobile classes are able to migrate to various network sites during J-Orchestra has to handle remote execution of static methods. This
the run of a program. The migration currently supported by J- also takes care of remote access to static fields: J-Orchestra

Orchestra isynchronousobjects migrate in response to run-time réwrites all direct accesses to fields (both member and static) of

events, such as passing a mobile object as a parameter to a remot@ther classes with accessor _and mutator methods. In order to be
method. Migration allows us to exploit data locality in an applica- 2aPle to handle remote execution of static methods, J-Orchestra cre-

tion. For instance. when a remote method call occurs. it can be &t€s static delegator classes for every original class that has any

advantageous to have a mobile object parameter move temporarilyStatic methods. Static delegators extgv.rmi.server.Uni- _
or permanently to the callee’s network site. All standard object castRemoteObject and define all the static methods declared in

mobility semantics (e.ggall-by-visit , call-by-move [10]) the original class.

can be supported in an application rewritten by J-Orchestra. JOriginal class

J-Orchestra translates mobile classes in the original applicationclass A{

(and the replicated mobile system classes) intooxy classand a static void foo (String s) {...}
remote classProxy classes are created in source code form, while static int bar () {...}

remote classes are produced by bytecode rewriting of the original

mobile class. Proxies for mobile classes are very similar to the

//Static Delegator for A--runs on a remote site
class A__StaticDelegator extends
java.rmi.server.UnicastRemoteObject {
void foo (String s) { A__remote.foo (s); }
int bar () { return A__remote.bar (); }

3.3.4 Arrays

Handling arrays is interesting from a language standpoint because
they are the only native generic type in Java. Conceptually, arrays
are very similar to objects. For instance, arrays are subclasses of
} java.lang.Object . An array can be thought of as a class that
supports the operations “store” and “load”. Arrays require special
treatment because, just like objects, they are mutable and can be
aliased: changes made through one array reference have to be visi-
ble to all other references to the same array.

For optimization purposes, a static delegator for a class gets cre-
ated only in-response to calling any of the static methods in the
proxy class. If no static method of a class is ever called during a
particular execution scenario, the static delegator for that class is
never created. Once created, the static delegator or its RMI stub isJ-Orchestra treats arrays very similarly to objects, although at the
stored in a member field of the class’s proxy and is reused for all concrete level the translation is different. All arrays are wrapped
subsequent static method invocations. into specialarray front-endclasses for reference by the applica-
tion. Application classes are modified to replace array accesses
with calls to the “store” and “load” methods of an array front-end.
eThe front-end is responsible for performing the appropriate opera-

3.3.2 Inheritance

Proxies, remote application-system translator classes, and remote’ h itaolf I th . e then th
classes all mimic the inheritance/subtyping hierarchy of their cor- tions on the array itself. If the array type is mobile, then the array

responding original classes. Replacing direct references with refer_front-e_nd is treated _exactly like a regular appllcat_lon class (i.e., a
ences to proxies preserves the original execution semantics: aP'OXY IS created for it). If, however, the array type is anchored, the
proxy can be used when a supertype instance is expected. Since i{ront-end has a dual ro!e. It also serves as a system/application
is not known which patrticular proxy is going to be used to invoke a .translator' and automatlcglly wraps and unwraps the elements
method, only the base class contains the interface reference that idSerted into arrays. For instance, the front-end for an anchored

used for method delegation. This field is accessible to all the sub- &M@Y ofjava.lang.Thread objects is responsible for wrapping
classes’ proxies by having thestected ~ access modifier. the thread objects when they are retrieved by application code and

unwrapping them when they are stored. This front-end class is
3.3.3 Object Creation

shown here:
Creating objects remotely is a necessary functionality for every class java_lang_Thread_FrontEnd {
distributed object system. J-Orchestra proxies’ constructors work ~java.lang.Thread [|_array;
differently from other methods in order to implement distribution
policies (i.e., create various objects on given network sites). First, a
proxy constructor calls a special-purpose do-nothing constructor in
its super class to avoid the regular object creation sequence. A }
proxy constructor creates objects using the services oblject

anchored.java.lang.Thread aaload(int location) {
return (anchored.java.lang.Thread)
Anchored.wrap (_array[location]);

factory J-Orchestra’s object factory is an RMI service running on

every network node where the partitioned application operates.

Every object factory is parameterized with configuration files spec-
ifying a symbolic location of every class in the application and the

void aastore (int location,
anchored.java.lang.Thread elem) {
_array[location] =
(java.lang.Thread)Anchored.unwrap (elem);

URLs of other object factories. Evenbject factory clienkeeps }
remote references to all the object factories in the system. Object}

factory clients dete_rmi_ne object Iocatio_ns, handle remote object It is worth noting that the same “wrapping/unwrapping” needs to

creations, and maintain various mappings between the createdys nerformed for multidimensional anchored arrays. For instance,
objects and their proxies. The following example shows & portion it , yyq dimensional array of integers is anchored, then before each
of the constructor code in a proxy class of its constituent arrays is retrieved, it needs to be wrapped in a
front-end for one dimensional integer arrays. The code fragment
below (a slight simplification of the actual J-Orchestra generated
code) shows this transformation.

public A () {
/lcall super do-nothing constructor
super ((BogusConstructorArg)null);

class Int2FrontEnd {
int [][] _array;

Illcheck if we are already initialized or are
/Icalled from a subclass

if (null '= _remoteRef) || Int2FrontEnd (int[J[Jarray) {_array = array;}
(lgetClass ().equals (A.class))) int [][] get_array () { return _array; }
return;

IntFrontEnd aaload (int location) {

})'Call ObjectFactory return new IntFrontEnd(_array[location]);

tr }
Y {remoteRef = void aastore (int location, IntFrontEnd value) {
(A) ObjectFactory.createObject(*A”):; _array[location] = value.get_array ();
} catch (RemoteException e) { ... }) }
}

Determining whether an array needs to be anchored or can bereferences. Consider the following example showing the problem
mobile is an interesting problem. Although arrays are implemented if no special care is taken:

in native code, we can safely assume that they do not capture sys-

tem-specific state and that they never directly access fields of the//0riginal code o
arguments to their “store” and “load” methods, as they have no g:zzzgiv\:}?&dt:gg ((2 g)){{ l:}).}baz (this); }}
knowledge of the types of the array elements. Therefore, arrays

can be made mobile, unless they are passed between applicgtior,ygenerated remote object for A

code and system code. Note that this means that an array of objectg|ass A__remote {

of class C can be mobile even when class C is anchored—C void foo (B b) { b.baz (this); }
objects may cross the application/system boundary, but as long as //"this” is now of type A__remote!
arrays of C objects do not cross it, these arrays can be made}

mobile.
Methodbaz in classB expects an argument of tyge hence the

Nevertheless, the usual type-based anchored/mobile classificatiortall b.baz(this) will fail, as this is of type A__remote . J-
mechanism of J-Orchestra can be too restrictive when applied to Orchestra detects all such explicit useshif and fixes the prob-
arrays. Recall that according to the J-Orchestra classification, if alem by looking up the corresponding proxy object and replacing
reference to a certain type can cross the system/application boundthis with it. Furthermore, we can store the result of the proxy
ary, then all references to this type are made anchored. Some of théookup in a local variable and use that variable insteathief in
consequences of this approach are: a) if a multidimensional arrayfuture expressions. For example, the rewritten bytecodééorin

is anchored, then every array of the same or lower dimension andthis case would be:

the same element type also needs to be anchored on the same site;

b) if an array of C objects is anchored to a site, then all arrays of @lcad_0 /lpass “this” to locateProxy method

subclass objects of the same dimension need to be anchored on thivokestatic Runtime.locateProxy ,

same site. For primitive typesn{ , float , etc.) the problem astore_2 fIstore the located proxy object

. . [ffor fut
becomes even more intense. The problem is that the J-Orchestr%load 1 mo;é k;J ure use
classification algorithm is type based and primitive array types are ;.4 > /lload proxy (of type A)

anonymous types. The same type, eigf] , can be used for jnyokevirtual B.baz

very different purposes, but currently J-Orchestra can only be con-

servative due to lack of data flow information. For instance, any At the bytecode level, it is somewhat involved to detect when the
application that passes an integer array to an anchored system clasgansformation should be applied. Recognizing explicit uses of
will have to treat all its integer arrays (of the same or lower dimen- this (as opposed to occurrences of tiead 0 instruction that
sion) as anchoredn the same siteThis restriction may even are used to reference to the object’'s own methods) requires a stack
hinder the ability to safely place different Java system classes onmachine emulator for the bytecode instructions. The emulator
different network sites. If two entirely unconnected system pack- needs to reconstruct operations and operands from the bytecode
ages both exchange arrays of integers with some application’s stack-machine instruction architecture.

code, then both packages have to be placed on the same machine . .

because of the possibility that they both refer to the same array. 3.3.6 Object Identity

In the future, we plan to explore more sophisticated classification T0 support full object mobility, J-Orchestra assigns globally
a|gorithms to automatica”y ensure that arrays can be mobile unique ObjeCt identifiers to all the remote ObjeCtS. Each execution
safely. For now, manual intervention is the only way to circumvent Site maintains a mapping between proxies and their remote objects.
the rigidness of the J-Orchestra classification. Unfortunately, In case of remote object migration, the run-time system first
safety is not automatically ensured in this case. Note that the only checks whether the remote object already has a proxy on the cur-
problem concerns the read-write use of arrays: if arrays are only rent host. If such a proxy is found, then its remote object field is
written by application code and read by system code (or vice- reassigned. Otherwise, a new proxy object is created. This arrange-
versa), they can safely be made mobile. Fortunately, this is the ment preserves correct reference semantics in the presence of full
common for arrays shared between application and system code object mobility.

but J-Orchestra cannot know this without manual hints. J-Orchestra employs a similar scheme to handle anchored objects’

We have partitioned several Java applications using J-Orchestrawrapping. When an object is unwrapped and re-wrapped, we
without ever needing to exercise manual control in order to over- should ensure that the identity of the proxy (the “wrap” object) is

come array classification problems. preserved. This means that the wrapping operation for anchored
objects is a bit more complicated than originally presented in Sec-
3.3.5 “this” tion 3.2.1. Consider an example methetlrmMyArgument in

)) . anchored clasa that takes an argument of another anchored class
Under the J-Orchestra rewrite, an object can refer to its own meth- B

ods and variables directly. That is, no proxy indirection overhead is

imposed for access to methods throughttiie reference. Never- B returnMyArgument (B arg) { return arg; }

theless, this means that J-Orchestra has to treat explicit uses of)))

this specially. Recall that remote objects are generated by chang-J-Orchestra’s rewrite algorithm ensures that the following code
ing the name of the original class at the bytecode level. When the fragment preserves its original semantics, although in the trans-
name of a class changes so does the type of all of its expiicit

lated code all objects will be proxies for application-system trans- The translation to maintain these properties is as follows: for syn-
lators. chronized methods, we only have to ensure that the proxy “for-
warder” method is not synchronized—the original method on the

ib - new iof remote object will perform the synchronization. For handling
a = new A(); wait /notify /notifyAll calls on proxies, we globally detect all
B bl = a.returnMyArgument(b); . ;
assert_equal (b == b1): such calls and replace them with calls to specially generated meth-
- ods in the proxy objects (the originahit /notify /notifyAll in
When providing a wrapper for its return value, java.lang.Object arefinal and cannot be overridden). Prox-
returnMyArgument in the application-system translator for class ies propagate alivait /notify /notifyAll calls to the remote

Areturns the existing proxy rather than creating a new one. Being objects they represent. All remote objectsrémote objects for
able to do this correctly requires maintaining a mapping between mobile classes or system/application translators for anchored
application-system translators and their corresponding anchoredclasses) export methods that implemeait /notify /notifyAll

objects. semantics on the object.

This mapping also helps solve the problem of Java RMI not keep- 3.3.8 |Inner Classes

ing a per-site identity for its remote objects. If a remotely-accessi-

ble object is used as a parameter to a remote method, RMI Inner classes were added to JDK1.1 without introducing changes
transfers the Object’s RMI stub. If the stub eventua”y gets passed to the JVM instruction set. At the byteCOde |eVe|, inner classes are
back to the site of the original remotely accessible object, the RMI supported byynthetic ~ methods and inner class attributes. Syn-
run-time will not recognize that it can use the object directly thetic methods in a class can only be used by its inner classes.
instead of the stub. Stated differently, identity is not preserved for Since it might make sense to place an inner class and its enclosing
remote|y accessible Objects passed to remote methods. This ComC|aSS on different network sites, J-Orchestra Completely eliminates
p|icate5 the unwrapping operation performed by app"cation_sys_ all the inner class dependencies from its remOte-C&pab'e classes.
tem translators. It would be impossible to retrieve the This means removing inner class and synthetic method attributes
corresponding anchored object from an application-system transla-along with consistently renaming all the inner classes. For exam-
tor stub without some additional information. Fortunately, RMI Ple, all the references touter$inner will be replaced with
guarantees the invariant that thashCode method returns the Outer_Inner . This streamlines the compilation process for the
same value whether invoked on a remote object or its stub. This generated proxies of inner classes. Removing all the inner classes
property makes keeping the aforementioned mapping betweendependencies allows placing each proxy in a separate file and com-
anchored objects and their application-system translators possiblePiling proxies in an arbitrary order.

An anchored object can be inserted into the mapping using its . .
application-systejm translator (remote object) and F;fe)trigved ugsing 3.3.9 I—_|and|mg SyStem'QUt' System.in, System.err, Sys-
the remote object’s stub. For those anchored classes that overridd€m.exit, System.properties

the hashCode method providing their own implementation, spe-
cial care is taken to use the base clgaga(rmi.server.Uni-
castRemoteObject) version of the method.

The java.lang.System class provides access to several system
facilities exported by the JVM. Among these facilities are standard
input, standard output, and error output streams (exported as pre-
defined objects), access to externally defined “properties”, and a
way to terminate the execution of the JVM. All these facilities
The handling of synchronization is an important issue in guaran- assume having a single JVM and are not aware of distribution. In a
teeing regular Java semantics for a partitioned multithreaded appli- distributed environment, it is important to modify the aforemen-
cation. Java RMI does not support transparency of synchronizationtioned facilities so that their behavior makes sense. Different poli-
references—alkait /notify ~ calls on remote objects are not prop- cies may be appropriate for different applications. For example,
agated to the remote site (see [18], section 8.1). We are currently inwhen any of the partitions writes something to the standard output
the process of implementing a full synchronization system for J- stream, should the results be visible only on the network site of the
Orchestra. This system will guarantee semantics identical to regu-partition, all the network sites, or one specially designated network
lar Java for all partitioned applications. Our system is similar to the site that handles I/O? If one of the partitions makes a catlyt
mechanism for transparent synchronization used in version 1.05 oftem.exit , should only the JVM that runs that partition exit or the
JavaParty (see [8]). We believe, however, that we can address thaequest should be applied to all the remaining network sites? J-
JavaParty problems with blocks synchronized on remote objects. Orchestra allows defining these policies on a per-application basis.
(We also believe that our solution could be implemented for Java- For this purpose, J-Orchestra provides classes c&bmabteln ,
Party, as well.) Nevertheless, since this solution is not fully imple- RemoteOut , RemoteErr , RemoteExit , andRemoteProperties

mented, we do not describe it here. whose implementation determines the application-specific policy.
For example, all references t®ystem.out are replaced with
RemoteOut.out() in all the rewritten code. An implementation

of RemoteOut.out() can return a stream that redirects all the
messages to a particular network site, for example.

3.3.7 Multithreading and Synchronization

The currently implemented J-Orchestra synchronization approach
guarantees correctness wheynchronized methodsare used
(which is the most common Java synchronization technique) but
not necessarily whesynchronized code blocksare used. When
code blocks are used, J-Orchestra guarantees correct synchroniza-
tion per-site: if all synchronized blocks are executed on the
same machine, synchronization will work correctly.

4 PERFORMANCE
4.1 Optimizations

cution, the re-written version was about 37% slower (see Table 2).
Although a 37% slowdown of local processing can be acceptable
for some applications, for many others it is too high.

4.1.1 Limited Rewrite For _this reason, J-_Or(?hestra offers' the ability to rewri_te a Iimite_d

portion of an application to make it remotely accessible. In this

Up to this point, we have discussed a J-Orchestra translation whereway, the application can operate with no overhead, as it normally
everyapplication and system class is made remote-capable. Thiswould in a centralized environment, except for the parts that need
simplifies the presentation of the J-Orchestra translation mecha-to be accessible remotely. Given a set of classes that must be
nism. Nevertheless, in practice, we mostly use J-Orchestra with aremotely accessible, the J-Orchestra’s static analysis tools auto-
rewrite technique that affects as few classes as possible. We callmatically determine what other application classes must be
this the J-Orchestiamited rewritemodel. remotely accessible as well. For example, the user might indicate
o . . . that all the Ul classes must be remotely accessible. This informa-

The reason to limit which classes get rewritten has to do with per- o can then be used to determine the minimal rewriting actions
formance. The full J-Orchestra rewrite adds some execution over-y,+ neeq to be performed to render the Ul subset of the application
head to the application even when objects are used entirely locally. .o yotely accessible. If certain classes need to be mobile, all the

Specifically, the J-Orchestra rewrite adds one level of indirection non-mobile classes they reference have to be remotely accessible.
for each method call to a different application object, two levels of The limited rewrite process is fully automated

indirection for each method call to an anchored system object, and

one extra method call for every direct access to another object’s In general, limited rewrite can be viewed as a version of the J-
fields. These overheads are kept as low as possible. For instanceQrchestra full rewrite, where many of the application classes are
for an application object created and used only locally, the over- explicitly not made mobile, but just anchored or even not affected
head is only one interface call for every virtual call, because proxy at all (if they are only accessed by anchored classes, they do not
objects refer directly to the target object and not through RMI. need to be remote-capable). Conceptually, these classes are now on
Interface calls are not expensive in modern JVMs (they cost the system side of the application/system boundary, and, thus, they
approximately as much as virtual calls [1]) but the overall slow- use direct references to all other anchored objects.

down can be significant. The limited rewrite is particularly successful when most of the pro-

The overall impact of the indirection overhead on an application cessing in an application occurs on one network site and only some
depends on how much work the application’s methods perform per resources (e.g., graphics, sound, keyboard input) are accessed
method call. A simple experiment suffices to put the costs in per- remotely. We have used the limited rewrite to partition several
spective. Table 1 shows the overhead of adding an extra interfaceapplications that follow this pattern (e.g., a GUI-driven demo of
indirection per virtual method call for a simple benchmark pro- the Java speech API, a graphical display of real time statistics from
gram. The overall overhead rises from 17% (when a method per- another machine, etc.). In all cases, the execution overhead from J-
forms 10 multiplications, 10 increment, and 10 test operations) to Orchestra indirection was practically zero.

35% (when the method only performs 2 of these operations). . .
4.1.2 Lazy Remote Object Creation

Table 1: J-Orchestra indirection overhead as a function of

- Recall that remote objects extefava.rmi. .Unicas-
average work per method call (a billion calls total)) ficba.rmi.server Unicas

tRemoteObject to enable remote execution. The constructor of

java.rmi.server.UnicastRemoteObject exports the remote
Wo_rk . . object to the RMI run-time. This is an intensive process that signif-
_(multlply, Orl_glnal Rev_vrltten Overhead icantly slows down the overall object creation. J-Orchestra tries to
increment, Time Time avoid this slowdown by employing lazy remote object creation for
test) all the objects that might never be invoked remotely. If a proxy
constructor determines that the object it wraps is to be created on
2 85.17s 47.52s 35% the local machine, then the creation process does not go through
4 42.06s 51.30s 2204 the object factory. Instead, lazy version of the remote object is
created directly. A lazy object is identical to a remote one with the
10 62.5s 73.32s 17% exception of having a different name and not inheriting from

java.rmi.server.UnicastRemoteObject . A proxy contin-
Penalizing programs that have small methods is against goodues to point to_such a lazy object until the application attempts to
object-oriented design, however. Furthermore, the above numbers">€ that proxy in a remote method caII_. In that case, the proxy con-
do not include the extra cost of accessing anchored objects andverts its Iaz;_/ object to a remote one using a special conversion con-
fields of other obiects indirectly (althouah these costs are Second_structor. This constructor reassigns every member field from the
o) y(9 S bject to the remote one. All static fields are kept in the
ary). To get an idea of the total overhead for an actual application, azy object) T . . ep
we measured the slowdown of the J-Orchestra rewrite using J- remote version of the object to avoid data inconsistencies.
Orchestra itself as input. That is, we used J-Orchestra to translateAlthough this optimization may at first seem RMI-specific, in fact
the main loop of the J-Orchestra rewriter, consisting of 41 class it is not. Every middleware mechanism suffers significant overhead
files totalling 192KB. Thus, the re-written version of the J-Orches- for registering remotely accessible objects. Lazy remote object
tra rewriter (as well as all system classes it accesses) becamereation ensures that the overhead is not suffered until it is abso-

remote-capable but still consisted of a single partition. In local exe- |utely necessary. In the case of RMI, our experiments show that the

10

creation of a remotely accessible object is over 200 times more indirection to a tiny proportion of the total objects created in our
expensive than a single constructor invocation! In contrast, the example programs.

extra cost of converting a lazy object into a remotely accessible .
one is about the same as a few variable assignments in Java. Therewe used JDK 1.3 on two Sun Ultra 10 machines (Sparc Il 440MHz

. S . processor) connected with a 100Mbit Ethernet network for these
fore, it makes sense to optimistically assume that objects are (:re-eX eriments
ated only for local use, until they are actually passed to a remote P '
site. Cc_)ns,lderlng thata well-partltlon(_ad _appllca_tlop will only move 4.2.1 Window Drawing
few objects over the network, the optimization is likely to be valu-
able. We created three different tests of window operations. The first
opens an empty remote window. The second opens a remote win-

;”:ellmpTCt (t)'f speedln? uptpbjec\;vcreatlon IS Z'?r:"fm?fmtm ter_mst(r)]f dow and displays 100 text buttons on it. The third opens a remote
otalappilcation execution time. Yve measured the eects using e o, 4,y ang displays 100 graphical buttons on it. In all three cases,

J-Orchestra code itself as a benchmark. The result IS shown bfalow'the window is repainted 10 times. Each of the three experiments
The measurements are on the full J-Orchestra rewrite: all objects

are made remote-capable. althouah thev are executed on a sin Ihas two versions: one where all drawing operations are initiated
p ' 9 y 9Y%om the window object itself and one where the (re-)painting is

machine. 767 objects were constructed during this execution. Theinitiated from a different object. The reason for this last distinction

overhead for the version of J-Orchestra that eagerly constructs all. h d wrealistic” . by ini
objects to be remote-capable is 58%, while the same overhead!St atwe Wan.t to produce a more rea IStic” comparison by initiat-

; ’ . ing the operations remotely. That is, in the J-Orchestra case, there
when the objects are created for local use is less than 38% (an

will be operations over the network for each re-painting, although
0,
overall speedup of 1.15, or 15%). the graphics for the buttons themselves will never need to be trans-

Table 2: Effect of lazy remote object creation and J-Orchestra ferred over the network.

indirection on total execution time The results (run times) are shown below (all numbers are averages
of 3 runs that varied by at most 0.5s). The baseline is the run time
Original Indirect | Overhead Indirect | Overhead of a local version.
time lazy non-lazy
Table 3: Version 1 of window experiments
6.63s 9.11s 37.4% 10.48s 58.1%

Experiment/ Empty Window + Window +

4.2 Performance Measurements System window 100 text | 100 graphics
buttons buttons

J-Orchestra is an attractive alternative to input/output redirection
technologies like X-Windows and telnet. In this section, we com- Baseline 2.9s 7.2s 6.6s
pare the performance of J-Orchestra to X-Windows, used to dis-
play graphics on a remote host. X-Windows 4.7s 8.2s 15.8s
The trade-off in all our experiments is simple: X-Windows has a | J-Orchestra 3.1s 7.7s 6.6s
lower overhead per network transfer, but J-Orchestra has tremen-
dous flexibility to place the drawing code on the machine where Table 4: Version 2 of window experiments
the graphics will be displayed. More specifically, if J-Orchestra
and X-Windows perform the same number of network operations,) Window + Window +
X-Windows will always be faster. This may come as a surprise | Experiment/ Empty 100 text 100 graphics
since the X protocol [15] for transferring graphics over the net- System window buttons buttons
work is commonly considered a “heavy” protocol. Nevertheless,
compared to a heavyweight implementation of general purpose Baseline 2.7s 7.6 6.8
middleware like Java RMI, the X protocol is fairly lightweight. A
major difference, for instance, is that most X protocol requests do | X-Windows 4.5s 8.5s 16.3s
not generate replies, but RMI remote method calls will always
need to generate network traffic when an operation completes. On| J-Orchestra 4.9s 8.4s 7.7

the other hand, J-Orchestra can outperform X-Windows, because

J-Orchestra can altogether avoid transferring the drawing com-veersion 1 of the above experiment shows the benefit of J-Orches-
mands over the network and instead issue them locally. tra, but the partitioning can be considered “unfairly optimal”. All

All the experiments described are partitioned using simple manual t_he graphics are produced in response to a single network opera-
input, consisting of location constraints for only a couple of classes tion- Therefore, J-Orchestra performs very close to the baseline in

in the application. The J-Orchestra limited rewrite then detects the Version 1 experiment. Version 2, however, is more realistic: all

which other application and system classes need to be reWrittenre—drawing is initiated over the neMOrk. In this case, J-Orchestra
and whether they should be anchored or mobile. In all experi- Performs about the same as X-Windows, except for the case of

ments, we measured the run time of the original Java application, graphics buttons. In this case, X-Windows has to transfer the

as well as the run time of the rewritten (i.e., remote-capable) ver- graphical icon over the network, while J-Orf:hestra avoids _this
sion of the application but executing in a single partition. These overhead altogether. As a result, J-Orchestra is more than twice as

two baseline results were identical—the limited rewrite only adds @St as X-Windows. Of course, a slower network (e.g., 10Mbit eth-

11

ernet, ISDN, or modem connection) would accentuate these resultsRMI) is less efficient than X-Windows in transferring the required
dramatically. We should also mention that the window with text data. On the other hand, J-Orchestra also has an advantage over X-
buttons does not display correctly in the case of X-Windows (an Windows. Although J-Orchestra transfers more data, it transfers all

empty window is displayed). the data at once in a singf@ate object, thus incurring network
.)) latency only once. X-Windows has to issue a separate drawing
4.2.2 Simple Animation operation over the network for each line or text string displayed.

In this benchmark, we test a small but fully usable third-party The stripped-down version of the clock demonstrates the effect of
application. This experiment is representative of the way X-Win- these two factors. As shown in Table 5, if just the clock hands were
dows and J-Orchestra will be used in practice. It consists of a Javadrawn, J-Orchestra would have been a little slower than X-Win-
analog clock program (one of the many written as Java graphics dows. If, however, as little as the four hour numbers (3, 6, 9, and
demos). The program draws a simple face of an analog clock (60 12) need to be drawn on the face of the clock, J-Orchestra again is
minute marks, 4 hour numbers, and three moving clock hands). much faster than X-Windows.

With X-Windows, we just run the clock application on one

machine and display the results on another. With J-Orchestra, how-5 RELATED WORK

ever, we can transfer only the interesting data (a curbené

object) over the network and do all the drawing locally. To turn this Distributed computing has been the main focus of systems
into a useful benchmark, we changed it very slightly, so that the research in the past two decades. Therefore, there is a wealth of
clock updates the time on the screen as quickly as possible—i.e.,work that exhibits similar goals or methodologies to ours. We will
the program keeps polling the system for time as often as it can Separate closely related work (approaches that use similar tech-
and displays the results on screen. The measured quantity is therliques to ours) from indirectly related work (work with similar
the frames-per-second attained on the remote display. In othergoals but significantly different approaches).

words, we are treating the clock display as a real-time animation .

and measure the animation quality. This is representative of actual5'l Dlrectly Related Work

uses of J-Orchestra. J-Orchestra is useful when the user needs t@eyeral recent systems other than J-Orchestra can also be classified
display or process real-time results on a different machine than the 55 5utomatic partitioning tools. In the Java world, the closest
one producing the results. approaches are the Addistant [19] and Pangaea [16] systems. The
The measurements (frames per second) for this benchmark appeaf-°ign system [9] has promoted the idea of automatic partitioning
below. Apart from the original clock, we also created two stripped- for applications based on COM components. We discussed Addis-
down versions. The first only draws the moving parts of the clock tant extensively in Section 1, so we will concentrate on the other
(i.e., the hands). The second draws the clock hands as well as thdWo Systems here.

numbers “3”, “6”, “9”, and “12” on the face of the clock. Coign [9] is an automatic partitioning system for software based
on Microsoft's COM model. Although Coign is a pioneering sys-
tem, it suffers from two drawbacks. First, Coign is not applicable
to many real-world situations: although Windows software often

Table 5: Clock Experiment

Clock with

Experiment/ Original Clock with exports coarse-grained COM components, very few real-world

System clock just hands hands and applications are written as collections of many fine-grained COM
hours components. The applications that constitute success cases for

- Coign (mainly the Octarine word processor) were experimental

Baseline 56 fps 104 fps 77 fps and written specifically to showcase that COM is a viable platform

X-Windows 20 fps 74 fps 33 fps for developing applications from_many small components. The
second drawback is technical. Coign does not try to solve the hard

J-Orchestra 42 fps 68 fps 61 fps problems of automatic partitioning: it does not distribute compo-

nents when they share data through memory pointers. Such com-
ponents are deemed non-distributable and are located on the same

For the original clock application, J-Orchestra is more than twice o
. e machine. Practical experience with Coign [9] showed that this is a
as fast as X-Windows. The reason is that J-Orchestra only needs to P gn [9]

transfer the time information. In contrast. X-Windows needs to severe limitation for the only real-world application included in
) o r ign’s exampl t (the Microsoft PhotoDraw program). Th
redraw the minute mark lines and the numbers “3”, “6”, “9”, and Coign's example set (the Microso otoDraw program) ©

“12” on the face of the clock, even though these do not change in Coign approach would be impossible in the case of Java: almost all

; . .) rogram data are accessed through references in Java. No support
time. The corresponding drawing commands have to be |ssuedp 9 9 bp

. . . —= " ~for synchronous data mobility exists in Coign, but the application
i(::\g;rﬂt;e network, which slows down X-Windows execution signif- can be periodically repartitioned based on its recent behavior.

Pangaea [16][17] is an automatic partitioning system that has very
similar goals to J-Orchestra. Pangaea is based on the JavaParty
[13] infrastructure for application partitioning. Since JavaParty is
designed for manual partitioning and operates at the source code
. ! . level, Pangaea is also limited in this respect. Thus, Pangaea cannot
avautil. Date object needs to be passed over the network, and be used to make Java system classes (which are supplied in byte-

this contains more information than just the cu_rrent time (e.g., code format) remotely accessible. Therefore, Pangaea has little
year, date, and time zone). Second, the underlying protocol (Java

Actually, J-Orchestra is much faster than X-Windows for the clock
application, even though it has to overcome two disadvantages.
First, because of the way the application is written, J-Orchestra has
to transfer more data than strictly needed—a complete

12

applicability to real world situations, especially with limited man- mance is an essential element, with the infrastructure trying to hide
ual intervention. For instance, much data exchange in Java pro-the latency of remote accesses. J-Orchestra aims at a much higher
grams happens through system classes (e.g., collection classes, likdegree of automation, but for applications with more modest net-
java.util.Vector). If such classes are not remotely accessible, work performance requirements.

all their clients need to be located on the same site, making parti-

tioning almost impossible for realistic applications. Finally, we should mention that the overall approach of program-

ming distributed systems as if they were centralized (“papering
Finally, we should mention that the JavaParty infrastructure over the network”) has been occasionally criticized (e.g., see the
[13][8] is closely related to J-Orchestra. The similarity is not so best known “manifesto” on the topic [20]). The main point of criti-

much in the objectives—JavaParty only aims to support manual cism has been that distributed systems fundamentally differ from
partitioning and does not deal with system classes. The techniquescentralized systems because of the possibility of partial failure,
used, however, are very similar to J-Orchestra, especially for the which needs to be handled differently for each application. Never-

newest versions of JavaParty [8]. theless, J-Orchestra can address this problem, at least partially:
. although the input of the system is a binary application, the proxies
5.2 Indirectly Related Work for remote-capable classes are produced in source code. Applica-

tion-specific partial-failure handling can be effected by manually
editing the source code of the proxy classes and handling the cor-
responding Java language exceptions. Thus, although J-Orchestra
%ides much of the complexity of distribution, it allows the user to
handle distribution-specific failure exactly like it would be handled
through manual partitioning. Alternatively viewed, the user can
concentrate on the part of the application that really matters for

: _ distributed computing: partial failure handling. This part is the
and, in the Java world, CJVM [2], and Java/DSM [22] use a spe only code that needs to be written by hand in order to partition an

cialized run-time environment in order to detect access to remotea lication
data and ensure data consistency. The deployment cost of DSMs pp)

has restricted DSM applicability to high-performance parallel_ 6 STATUS AND CONCLUSIONS

applications. In contrast, automatically partitioned Java applica

tions work on original, unmodified Java Virtual Machines (JVMs), j.orchestra is work-in-progress, but most of the back-end func-
possibly shipped with Web browsers. All modifications necessary tionality is in place, as described in this paper. We have already
are made directly to the application, using compilation techniques. yseq J-Orchestra to partition several realistic, third-party applica-

In this way, automatic partitioning has no deployment cost, allow- {jgns. Among them are “J-Shell” (a command line shell implemen-

ing it to be applied to regular applications and compete with light- {ation for Java), a graphical demo of the Java speech API (the user
weight technologies like X-Windows. selects parameters and a sound synthesizer composes phrases), an

Among distributed shared memory systems, the ones most closelyaPPplication for monitoring server load and displaying real-time
resembling the J-Orchestra approach are object-based DSMs, likedraphical statistics, and some small graphical demos and bench-
Orca [3]. The Orca system has a dedicated language and run-timgnarks. All of the above were partitioned in a client-server model,
system, but also has similarities to J-Orchestra in its treatment of Where the I/O part of the functionality (graphics, text, etc.) is dis-

data at the object level, and its use of static analysis. played on a client machine, while processing or execution of com-
mands takes place on a server. Our client machine is typically a

Mobile object systems, like Emerald [4][10] have similarities with hand-held iPAQ PDA, running Linux. This environment is good
J-Orchestra. Many of the J-Orchestra ideas on implementing for showcasing the capabilities of J-Orchestra—even relatively
mobile objects and choosing appropriate semantics for method yninteresting centralized applications become exciting demos
invocations (synchronous object migration) have originated with \when they are automatically turned into distributed applications,
Emerald. partly running on a hand-held device that communicates over a
wireless network with a central server.

Automatic partitioning is essentially@istributed Shared Memory
(DSM)technique. Just like traditional DSM approaches, we try to
create the illusion of a shared address space, when the data ar
really distributed across different machines. Nevertheless, auto-
matic partitioning differs from traditional DSM work in one major
aspectonly the application is allowed to change, not the run-time
environment Traditional DSM systems like Munin [5], Orca [3],

The Doorastha system [6] represents another piece of work closely
related to automatic partitioning. Doorastha allows the user to |n the future, we intend to continue work on the J-Orchestra back-
annotate a centralized program to turn it into a distributed applica- end, but at the same time place more emphasis on front-end func-
tion. Unfortunately, all the burden is shifted to the user to specify tionality. The existing J-Orchestra GUI is limited: it does not allow
what semantics are valid for a specific class (e.g., whether objectsthe specification of any mobility properties and does not interface
are mobile, whether they can be passed by-copy, etc.). The Door-well with the rewrite functionality. Most of the J-Orchestra
astha annotations are quite expressive in terms of how methodrewrites are currently triggered programmatically (using scripts).
arguments, different fields of a class, etc., are manipulated. Never-an integrated environment is necessary to improve the system’'s
theless, programming in this way is tedious and error-prone: a third-party usability. A lot more work is also required on the dis-
slight error in an annotation may cause insidious inconsistency triputed performance aspects. Currently, J-Orchestra uses Java
errors. RMI as its distribution middleware. RMI has been criticized for its

The need for infrastructure to support application partitioning has inefﬁcigncy, but offers useful fegtures for transparent distribution
been recognized in the systems community. Proposals for such(e'g" distributed garbage collection). In the future, we may select a

infrastructure (most recently, Protium [21]) usually try to address more efficient midd_leware implementation (e.g., KaRMI (12))
different concerns from those covered by J-Orchestra. High perfor- when such alternatives become more mature. Any middleware,

13

however, will perform badly if the application is not partitioned
well and object mobility is not coordinated optimally. Therefore,
the greatest future challenge for J-Orchestra will be to develop
mechanisms that automatically infer detailed object migration (8l
strategies in response to synchronous events. (For example, a strat-
egy could be as detailed as “when a metliod is called, all its
arguments and all data reachable from its arguments in up to three[g]
indirections should migrate to the method’s execution site.”)

(7]

A common question we are asked concerns our choice of the name
“J-Orchestra”. The reason for the name is that there is a strong
- L [10]
analogy between application partitioning and the way orchestral
music is often composed. Many orchestral pieces are not originally
written for orchestral performance. Instead, only a piano score is
originally composed. Later, an “orchestration” process takes place [11]
that determines which instruments should play which notes of the
completed piano score. There are many examples of orchestrating
piano music that was never intended by its composer for orchestral[12]
performance. There are several examples of piano pieces that have
several brilliant but totally different orchestrations. With J-Orches-
tra, we provide a state-of-the-art “orchestration” facility for Java [13]
programs. Taking into account the unique capabilities of network
nodes (instruments) we partition Java applications for harmonious
distributed execution. We believe that automatic application parti- (14]
tioning represents a huge promise and that J-Orchestra is the first
general and scalable automatic partitioning tool. [15]

ACKNOWLEDGMENTS

Austin (Chun Fai) Chau, Dean Pu Mao, Kane See, and Hailemele-

kot Seifu have all contributed to the J-Orchestra front-end (GUI

and profiler) tools as well as the partitioning and set up of current 17]
J-Orchestra demo applications. Their enthusiasm helped us stay on
track.

(16]

This work has been supported by the Yamacraw Foundation, by [18]

DARPA/ITO under the PCES program, and by a Raytheon E-Sys-
tems faculty fellowship.

REFERENCES

[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, David
Grove, and Derek Lieber, “Efficient Implementation of Java
Interfaces: Invokeinterface Considered Harmless”, in Proc.
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLAR001.

[2] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a
Single System Image of a JVM on a Cluster”, in Proc.
ICPP’99.

[3] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel
Jacobs, Koen Langendoen, Tim Ruhl, and M. Frans
Kaashoek, “Performance Evaluation of the Orca Shared-
Object System”ACM Trans. on Computer Systems
16(1):1-40, February 1998.

[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy,
and Larry Carter, “Distribution and Abstract Types in
Emerald”, inlEEE Trans. Softw. Engl3(1):65-76, 1987.

[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel,
“Implementation and performance of Munitftoc. 13th
ACM Symposium on Operating Systems Princiges 152-
164, October 1991.

[6] Markus Dahm, “Doorastha—a step towards distribution
transparency”JIT, 2000. See
http://www.inf.fu-berlin.de/~dahm/doorastha/

(19]

(20]

(21]

(22]

14

James Gosling, Bill Joy, Guy Steele, and Gilad Bradfee
Java Language Specification, 2nd Ethe Java Series,
Addison-Wesley, 2000.

Bernhard Haumacher, Jirgen Reuter, Michael Philippsen,
“JavaParty: A distributed companion to Java”,
http://wwwipd.ira.uka.de/JavaParty/

Galen C. Hunt, and Michael L. Scott, “The Coign
Automatic Distributed Partitioning Systen8rd
Symposium on Operating System Design and
Implementation (OSDI'99)pp. 187-200, New Orleans,
1999.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black, “Fine-Grained Mobility in the Emerald System”,
ACM Trans. on Computer Systems, 6(1):109-133, February
1988.

Nelson King, “Partitioning ApplicationsDBMS and
Internet Systemsagazine, May 1997. See
http://www.dbmsmag.com/9705d13.html

Christian Nester, Michael Phillipsen, and Bernhard
Haumacher, “A More Efficient RMI for Java”, in ProACM
Java Grande Conferenc&999.

Michael Philippsen and Matthias Zenger, “JavaParty -
Transparent Remote Objects in Jav@dncurrency:
Practice and Experienc®(11):1125-1242, 1997.

Robert W. Scheifler, and Jim Gettys, “The X Window
System”, ACM Transactions on Graphic§(2): 79-109,
April 1986.

Robert W. Scheifler, “X Window System Protocol, Version
11", Network Working Group RFC 10,18pril 1987.

Andre Spiegel, “Pangaea: An Automatic Distribution Front-
End for Java”, 4thEEE Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS
'99), San Juan, Puerto Rico, April 1999.

Andre Spiegel, “Automatic Distribution in Pangae@BS
200Q Berlin, April 2000. See also
http://www.inf.fu-berlin.de/~spiegel/pangaea/

Sun Microsystems, Remote Method Invocation
Specification,
http://java.sun.com/products/jdk/rmi/ , 1997.

Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and
Kozo Itano, “A Bytecode Translator for Distributed
Execution of ‘Legacy’ Java SoftwareZuropean
Conference on Object-Oriented Programming (ECOOP)
Budapest, June 2001.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall,
“A note on distributed computing”, Technical Report, Sun
Microsystems Laboratories, SMLI TR-94-29, November
1994,

Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy,
David Presotto, Rob Pike, Girija Narlikar, Sape Mullender,
and Eric Grosse, “Protium, and Infrastructure for Partitioned
Applications”,Eighth IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VIIMay 20—23, 2001,

Schoss Elmau Germany, pp. 41-46, IEEE Computer Society
Press, 2001.

Weimin Yu, and Alan Cox, “Java/DSM: A Platform for
Heterogeneous ComputingConcurrency: Practice and
Experience9(11):1213-1224, 1997.

	J-Orchestra: Automatic Java Application Partitioning
	Eli Tilevich and Yannis�Smaragdakis
	Center for Experimental Research in Computer Science (CERCS) College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332

	{tilevich,�yannis}@cc.gatech.edu
	Abstract
	J-Orchestra is an automatic partitioning system for Java programs. J-Orchestra takes as input Jav...
	We have used J-Orchestra to successfully partition several realistic applications including a com...

	1 Introduction
	2 Rewrite Strategy Overview
	2.1 Main Insights
	2.2 Handling Unmodifiable Code

	3 Rewrite Mechanism
	3.1 Classification
	Anchored Unmodifiable (System) Classes
	Anchored Modifiable (Application) Classes
	Mobile Classes

	3.2 Translation
	3.2.1 Anchored System Classes
	3.2.2 Anchored Application Classes
	3.2.3 Mobile Classes.

	3.3 Handling of Java Language Features
	3.3.1 Static Methods and Fields
	3.3.2 Inheritance
	3.3.3 Object Creation
	3.3.4 Arrays
	3.3.5 “this”
	3.3.6 Object Identity
	3.3.7 Multithreading and Synchronization
	3.3.8 Inner Classes
	3.3.9 Handling System.out, System.in, System.err, System.exit, System.properties

	4 Performance
	4.1 Optimizations
	4.1.1 Limited Rewrite
	Table 1 : J-Orchestra indirection overhead as a function of average work per method call (a billi...

	2
	35.17s
	47.52s
	35%
	4
	42.06s
	51.30s
	22%
	10
	62.5s
	73.32s
	17%
	4.1.2 Lazy Remote Object Creation
	Table 2 : Effect of lazy remote object creation and J-Orchestra indirection on total execution time

	Original time
	Indirect lazy
	Overhead
	Indirect non-lazy
	Overhead
	6.63s
	9.11s
	37.4%
	10.48s
	58.1%
	4.2 Performance Measurements
	4.2.1 Window Drawing
	Table 3 : Version 1 of window experiments

	Baseline
	2.9s
	7.2s
	6.6s
	X-Windows
	4.7s
	8.2s
	15.8s
	J-Orchestra
	3.1s
	7.7s
	6.6s
	Table 4 : Version 2 of window experiments

	Baseline
	2.7s
	7.6s
	6.8s
	X-Windows
	4.5s
	8.5s
	16.3s
	J-Orchestra
	4.9s
	8.4s
	7.7s
	4.2.2 Simple Animation
	Table 5 : Clock Experiment

	Baseline
	56 fps
	104 fps
	77 fps
	X-Windows
	20 fps
	74 fps
	33 fps
	J-Orchestra
	42 fps
	68 fps
	61 fps
	5 Related Work
	5.1 Directly Related Work
	5.2 Indirectly Related Work

	6 Status and ConclusionS
	Acknowledgments
	References
	[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, David Grove, and Derek Lieber, “Efficient Impleme...
	[2] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Cl...
	[3] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M...
	[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Ab...
	[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Mun...
	[6] Markus Dahm, “Doorastha—a step towards distribution transparency”, JIT, 2000. See http://www....
	[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd E...
	[8] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen, “JavaParty: A distributed companion to...
	[9] Galen C. Hunt, and Michael L. Scott, “The Coign Automatic Distributed Partitioning System”, 3...
	[10] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Eme...
	[11] Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See ...
	[12] Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java...
	[13] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Co...
	[14] Robert W. Scheifler, and Jim Gettys, “The X Window System”, ACM Transactions on Graphics, 5(...
	[15] Robert W. Scheifler, “X Window System Protocol, Version 11”, Network Working Group RFC 1013,...
	[16] Andre Spiegel, “Pangaea: An Automatic Distribution Front- End for Java”, 4th IEEE Workshop o...
	[17] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April 2000. See also h...
	[18] Sun Microsystems, Remote Method Invocation Specification, http://java.sun.com/products/jdk/r...
	[19] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator ...
	[20] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Te...
	[21] Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Nar...
	[22] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Pr...

