
to

sor
l
d.
ard
e-
n.
put/
f
ey
ne
ss-
o-
e
t-
t-
the
ing

the
lls,
n
o
the
om
nd
rate
m-

rial
that

in
ion-
ny

ng

co-
e

d
of

, and
ly.)

rk,
est
hree
J-Orchestra: Automatic Java Application Partitioning
Eli Tilevich and Yannis Smaragdakis

Center for Experimental Research in Computer Science (CERCS)
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{tilevich, yannis}@cc.gatech.edu

ABSTRACT

J-Orchestra is an automatic partitioning system for Java programs.
J-Orchestra takes as input Java applications in bytecode format and
transforms them into distributed applications, running on distinct
Java Virtual Machines. To accomplish such automatic partitioning,
J-Orchestra uses bytecode rewriting to substitute method calls with
remote method calls, direct object references with proxy refer-
ences, etc. Using J-Orchestra does not require great sophistication
in distributed system methodology—the user only has to specify
the network location of various hardware and software resources
and their corresponding application classes. J-Orchestra has signif-
icant generality, flexibility, and degree of automation advantages
compared to previous work on automatic partitioning. For
instance, J-Orchestra is guaranteed to correctly partition any Java
program, allowing any application object to be placed on any
machine, regardless of how application objects access each other
and Java system objects. Additionally, J-Orchestra objects can
migrate in response to run-time events in order to take advantage
of locality. J-Orchestra also offers run-time optimizations, like the
lazy creation of distributed objects—objects do not suffer the over-
head of remote registration until they are about to be accessed
remotely.

We have used J-Orchestra to successfully partition several realistic
applications including a command line shell, a ray tracer, and sev-
eral applications with native dependencies (sound, graphics).

1 INTRODUCTION

Application partitioningis the task of breaking up the functionality
of an application into distinct entities that can operate indepen-
dently, usually in a distributed setting. Application partitioning has
been advocated strongly in the computing press [11] as a way to
use resources more efficiently. Traditional partitioning entails re-
coding the application functionality so that it uses a middleware
mechanism for communication between the different entities. In
this paper, we present anautomatic partitioning systemfor Java
applications. Our system, called J-Orchestra, utilizes compiler
technology to partition existing centralized applications without
manual editing of the application source code.

Automatic partitioning aims to satisfy functional constraints (e.g.,
resource availability). For instance, an application may be getting
input from sensors, storing it in a database, processing it, and pre-
senting the results on a graphical screen. All four hardware
resources (sensors, database, fast processor, graphical screen) may
be on different machines. Indeed, the configuration may change
several times in the lifetime of the application. Automatic parti-

tioning can accommodate such requirements without needing
hand-modify the application code.

For several tasks, like switching between local and remote sen
input, automatic partitioning is without direct competition—al
other alternatives require that the application be hand-modifie
Nevertheless, in the case of user interaction resources (keybo
input, graphical screen output) automatic partitioning finds comp
tition in several existing technologies for transparent distributio
These technologies include Java servlets and text/graphics in
output redirection protocols like telnet and X-Windows [14]. All o
the above are rudimentary adaptors for distributed computing: th
allow executing a program on a different computer than the o
managing the input/output. Nevertheless, all application proce
ing still occurs on a single network site. In contrast, when aut
matic application partitioning is used, different parts of th
application can run on different machines in order to minimize ne
work traffic or reduce server load. For instance, for graphical ou
put, it is often best to keep the code generating the graphics on
same site as the graphics hardware, instead of passing all draw
commands over the network.

J-Orchestra operates at the Java bytecode level and rewrites
application code to replace local data exchange (function ca
data sharing through pointers) with remote communicatio
(remote function calls through Java RMI [18], indirect pointers t
mobile objects). The resulting application is guaranteed to have
same behavior as the original one. J-Orchestra receives input fr
the user specifying the network locations of various hardware a
software resources and the code using them directly. A sepa
profiling phase and static analysis are used to automatically co
pute a partitioning that minimizes network traffic.

Past attempts to automatic partitioning have not scaled to indust
strength applications, for several technical reasons. We argue
J-Orchestra is the most scalable automatic partitioning system
existence. J-Orchestra is the first system that imposes no partit
ing constraints on application code: J-Orchestra can partition a
Java application, allowing anyapplication objectto be placed on
any machine, regardless of how application objects interact amo
them and with system objects. Anysystem objectcan be remotely
accessed from anywhere in the network, although it has to be
located with system objects that may potentially reference it. (W
will later give precise definitions for the terms “application” an
“system” objects, but, roughly, these correspond to instances
regular user classes that do not extend Java system classes
Java system classes that have native dependencies, respective

To see the scalability advantages of J-Orchestra over prior wo
consider the Addistant system [19]—the most mature and clos
alternative to J-Orchestra in the design space. J-Orchestra has t
1

ld
be

oxy
f
e
ri-

n-
ith
ysis
hat
n
at
ion

tra
is-

ea-
ns
nce
over

ra
in
ts.
J-
an

ing
tra

. If
e
he
to
h a
is

ted

to
be
uch

in
de
y,

see
e
s,
nd
advantages over Addistant: a far more general rewrite engine
allowing arbitrary partitioning of the application (generality); a
system supporting object mobility (flexibility); and a much lesser
dependence on user input for a correct partitioning (degree of auto-
mation). We examine each of these aspects in turn:

• Generality: Addistant imposes restrictions on what applications
it can partition and how. For instance, Addistant cannot make a
class remotely accessible when the class is unmodifiable and has
unmodifiable clients. (The typical reason for a class to be
unmodifiable is that its implementation is partly in platform-
specific, “native”, code, as is the case for many Java system
classes.) In general, Addistant decides on a technique for dis-
tributing objects on a per-class basis. This means that if even
one of the clients of a class needs to access it directly, all clients
are restricted to accessing the class directly. Instead, J-Orchestra
makes decisions on a per-reference basis. In this way, a single
object (e.g., an instance of an unmodifiable Java system class,
like java.io.FileOutputStream) can be accessed through
references of different kinds, depending on the code manipulat-
ing each reference. Specifically, the object is accessed directly
by other unmodifiable system classes but is accessed through a
proxy object by regular (modifiable) application classes. The J-
Orchestra rewrite ensures that when a reference is passed from
an application class to a system class, it is “unwrapped”, to pro-
duce a direct reference so that the system code can access the
object directly. Similarly, when a reference is passed from sys-
tem code to application code, the object is “wrapped”: a refer-
ence to a proxy is generated, so that the application code
accessing the object can migrate anywhere on the network. This
mechanism is responsible for the generality of J-Orchestra: any
application object can be on any machine, regardless of what
other objects it references.

• Flexibility: Addistant does not allow object mobility. Objects are
created and are used on the same network site. In contrast, J-
Orchestra application objects can freely migrate to different net-
work sites at run-time—e.g., to take advantage of locality. This
makes J-Orchestra a much more flexible system: migration poli-
cies can be put in place and get activated in response to run-time
events, instead of fixing object locations once and for all. For
instance, a method call may cause the arguments of the method
to migrate to the site where the method code is executed.

• Degree of Automation: Addistant requires user input for every
application and system class. The user input determines the
semantics of remote object access. For instance, the Addistant
user has to explicitly specify whether instances of an unmodifi-
able class are created only by modifiable code, whether an
unmodifiable class is accessed by modifiable code, whether
instances of a class can be safely passed by-copy, etc. (As indi-
cated above, the list is not exhaustive: there are cases that the
Addistant arsenal of rewrite techniques does not cover.) In con-
trast, J-Orchestra does not require the user to know how classes
are implemented and what their referencing behavior is. This
elevates the degree of automation in the system—the user per-
forming the partitioning no longer needs to have a sophisticated
understanding of the application semantics.

Furthermore, J-Orchestra offers the ability to rewrite a limited
portion of the application to make it remotely accessible. In this
way, not all application classes need to be accessible through

proxy objects—the application can operate as it normally wou
in a centralized environment, except for the parts that need to
accessible remotely. This is a desirable property because pr
indirection may slow down application execution by a factor o
some tens of percent. By only rewriting a small portion of th
application, we ensure high-speed local execution without sac
ficing remote accessibility. Addistant can provide a similar be
efit, but in J-Orchestra this feature is usable automatically w
guaranteed correctness. J-Orchestra provides static anal
tools that automatically determine the unmodifiable classes t
can potentially be used by an application. This information ca
then be used to determine the minimal rewriting actions th
need to be performed to render any subset of the applicat
remotely accessible.

In this paper, we present the main elements of the J-Orches
rewrite engine. We describe the J-Orchestra rewrite algorithm, d
cuss its power and detail how J-Orchestra deals with various f
tures of the Java language. Finally, we examine the optimizatio
that we have implemented in J-Orchestra and present performa
measurements that demonstrate the advantage of J-Orchestra
input/output redirection with X-Windows.

2 REWRITE STRATEGY OVERVIEW

In this section, we give a high-level overview of the J-Orchest
rewrite algorithm. In our discussion, we assume that all objects
the application are to be turned into remotely accessible objec
This assumption simplifies our argument of the generality of
Orchestra. In Section 4.1, we will discuss how the assumption c
be safely relaxed.

2.1 Main Insights

J-Orchestra creates an abstraction of shared memory by allow
references to objects on remote JVMs. That is, the J-Orches
rewrite converts all references in the original application intoindi-
rect references—i.e., references toproxy objects. The proxy object
hides the details of whether the actual object is local or remote
remote methods need to be invoked, the proxy object will b
responsible for propagating the method call over the network. T
invariant maintained is that clients never get direct references
objects that can potentially be remote—access is always throug
proxy. Application code needs to be rewritten to maintain th
invariant: for instance, allnew statements have to be rewritten to
create a proxy object and return it, an object has to be preven
from passing direct references to itself (as the value of thethis

expression) to other objects, etc. If other objects need to refer
data fields of a rewritten object directly, the code needs to
rewritten to invoke accessor and mutator methods, instead. S
methods are generated automatically for every piece of data
application classes. For instance, if the original application co
tried to increment a field of a potentially remote object directl
like in o1.a_field++ , the code will have to change into
o1.set_a_field(o1.get_a_field()+1) . This rewrite will
actually occur at the bytecode level.

The above indirect reference techniques are not novel (e.g.,
JavaParty [8], as well as the implementation of middleware lik
Java RMI [18]). The problem with indirect reference technique
however, is that they do not work well when the remote object a
the client objects are implemented inunmodifiable code. Typically,
2

nd

va

auto-

up-
h
e.

a”
e-
ced
li-
han

st,
typi-
her

tra
re

m a
ect

d

on-
be
e,
sla-

ses,
the

can
ss

text.

n
to
sce-
ght-
code is unmodifiable because it is in a platform-specific or “native”
form—the implementation of Java system classes falls in this cate-
gory. Unmodifiable code may be pre-compiled to refer directly to
another object’s fields, thus rendering the proxy indirection invalid.
One of the major novel elements of J-Orchestra is the use of indi-
rect reference techniques even in the presence of unmodifiable
code.

2.2 Handling Unmodifiable Code

To see the issues involved, let us examine some possible
approaches to dealing with unmodifiable code. We will restrict our
attention to Java but the problem (and our solution) is general: pre-
compiled native code that accesses the object layout directly will
cause problems to indirect reference approaches in any environ-
ment.

• If the client code (i.e., user of a reference) of a remote object is
not modifiable, but the code of the remote object is modifiable,
then we can use “name indirection”: the proxy class can assume
the name of the original remote class, and the remote class can
be renamed. This is the “replace” approach of the Addistant sys-
tem [19]. The problem is that the client may expect to access
fields of the remote object directly. In this case, the approach
breaks.

• If the client code (i.e., user of a reference) of a remote object is
modifiable but the code of the remote object is not, then we can
change all clients to refer to the proxy. This is the “rename”
approach of the Addistant system. This case does not present
any problems, but note that the Addistant approach is “all-or-
none”.All clients of the unmodifiable class must be modifiable,
or references cannot be freely passed around (since one client
will refer to a proxy object and another to the object directly).

• If the client code (i.e., user of a reference) of a remote object is
not modifiable and the code of the remote object is also not
modifiable, no solution exists. There is no way to replace direct
references with indirect references. Nevertheless, the key obser-
vation is that the remote object can be referred to directly by
unmodifiable clients and indirectly by modifiable clients. In this
way, although unmodifiable objects cannot be placed on differ-
ent network sites when they reference each other, modifiable
objects can be on a different site than the unmodifiable objects
that they reference. This is the approach that J-Orchestra fol-
lows. A direct consequence is that (unlike the Addistant rewrite)
the semantics of the application does not affect its ability to be
partitioned. An application object (instance of a modifiable
class) can be placed anywhere on the network, regardless of
which Java system objects it accesses and how.

For this approach to work, it should be possible to create an
indirect reference from a direct one and vice versa, at applica-
tion run-time. The reason is that references can be passed from
modifiable to unmodifiable code and vice versa by using them as
arguments to a method call. Fortunately, this conversion is easy
to handle since all method calls are done through proxies. Prox-
ies for unmodifiable classes are the only way to refer to unmodi-
fiable objects from modifiable code. Thus, when a method of
such a proxy is called, the reference arguments need to be
unwrappedbefore the method call is propagated to the target
object. Unwrapping refers to creating a direct reference from an
indirect one. Similarly, when a method of such a proxy returns a

reference, that reference needs to bewrapped: a new indirect
reference (i.e., reference to a proxy object) is created a
returned instead.

Essentially, instead of the usual call-by-value semantics of Ja
method calls, our proxies implement acall-by-value-convert
semantics, where the references passed as arguments are
matically converted exactly when (and if) needed.

A consequence of the J-Orchestra rewrite algorithm is that is s
ports object mobility. If an object can only be referenced throug
proxies, then its location can change transparently at run-tim
Thus, for instance, regular application objects in a “pure Jav
application can migrate freely to other sites during application ex
cution. The reason is that such objects cannot be referen
directly by unmodifiable code. (An exception is the case of app
cation classes that extend system classes other t
java.lang.Object —we will discuss such complications in our
detailed presentation of the J-Orchestra rewrite model.) In contra
instances of Java system classes are remotely accessible but
cally cannot migrate, as they may be accessed directly by ot
system objects.

3 REWRITE MECHANISM

In this section, we discuss in concrete detail the J-Orches
rewrite model. Several elements that were previously elided a
presented thoroughly.

We will first give precise definitions of our terminology in order to
classify the different types of classes J-Orchestra deals with.

J-Orchestra converts all objects of an application intoremote-
capableobjects. Remote-capable objects can be accessed fro
remote site. We distinguish three kinds of remote-capable obj
classes: mobile classes, anchored unmodifiableclasses, and
anchored modifiableclasses. The “anchored/mobile” attribute
refers to run-time behavior.Anchoredclasses can be accesse
remotely but cannot move through the network.Mobileclasses can
migrate at will.

We should emphasize that the mechanisms ofclassificationand
translationof classes are entirely separate. J-Orchestra uses a c
servative algorithm to determine whether an object should
anchored or mobile. This algorithm could change in the futur
affecting the way classes are categorized. Nevertheless, the tran
tion mechanism for mobile classes, anchored unmodifiable clas
and anchored modifiable classes can stay the same. Similarly,
translation mechanism for the three categories of classes
change, even if the way we determine the category of a cla
remains the same.

In the following sections, we will blur the distinction between
classes and their instances when the meaning is clear from con
For instance, we may write “classA refers to classB” to mean that
an instance ofA may hold a reference to some instance ofB.

3.1 Classification

For simplicity in our classification, we assume that the applicatio
to be partitioned is written in pure Java (i.e., the only access
native code is inside Java system classes). This is the standard
nario where J-Orchestra is used. Our observations can be strai
3

e
cre-
ss

t
a

and
en-
as

on-
tem
ever

by
d its
s but
b-
be

s a
the
the
all
a-

li-
ns-
. A

ce
re
rs to
nce

rue
he
ly

to

can
his
h)
So
es-
ort
p-
.

al
s
but
lti-
forwardly generalized to applications that include some native

code.1

In principle, classes need to be anchored when they provide
abstractions for machine-specific services and resources such as
threading (java.lang.Thread) or I/O (java.io.ObjectOut-

putStream). Other classes may need to be anchored because of
the way they interact with anchored classes. For instance, if an
anchored class directly accesses the fields of another object, that
object should also be anchored. In fact, such accesses may not be
apparent to the Java code as they may occur in native code. There-
fore, we often need to be conservative and assume that native code
can potentially directly reference the fields of all parameters
passed to it.

The J-Orchestra classification algorithm for the vast majority of
classes can be summarized as follows. (Some exceptions will be
discussed individually.)

Anchored Unmodifiable (System) Classes.A system classC is
anchored unmodifiableif it depends on native code (i.e., has native
methods), or references toC objects can be passed between appli-
cation code and an anchored unmodifiable class.

Anchored Modifiable (Application) Classes.A class isanchored
modifiableif it is a modifiable application class that extends an
anchored unmodifiable class (other thanjava.lang.Object).

Mobile Classes.Mobile classes are all classes that do not fall in
either of the above two categories. All classes in a pure Java appli-
cation that do not extend system classes are mobile. Note, how-
ever, that Java system classes can also be mobile, as long as they
do not call native code and they cannot be passed to/from anchored
system classes.

The interesting distinction in the above classification is between
system classes that are mobile and system classes that are
anchored. Note that even classes that donot reference native code
and arenot referenced by native code may need to be anchored, as
long as their instances are passed to/from anchored system classes.
For example, J-Orchestra’s rewrite engine deems
java.lang.ThreadGroup anchored because a reference to a
ThreadGroup can be passed to the constructor of class
java.lang.Thread , which has native methods.

Java system classes are mobile, if they do not call native code and
they cannot be passed to/from anchored system classes. In this
case, instances of the system class are used entirely in “application
space” and are never passed to unmodifiable code. The implemen-
tation of such classes can be replicated in a different (non-system)
package and application code can be rewritten to refer to the new

class.2 The system class can be treated exactly like a regular appli-
cation class using this approach.

Note that static inspection can conservatively guarantee that refer-
ences to a system classC never cross the system/application

boundary. As long as no references toC or its superclasses (other
thanjava.lang.Object) or to arrays of these types appear in th
signatures of methods in anchored system classes, it is safe to
ate a mobile “application-only” version. (Interface access or acce
through orjava.lang.Object references is safe—a proxy objec
is indistinguishable from the original object in these cases.) As
consequence, the categorization of system classes into mobile
anchored is robust with respect to future changes in the implem
tation of Java library classes—the partitioning remains valid
long as the interfaces are guaranteed to stay the same.

As an advanced technical note, we should mention that less c
servative rules can also be applied to guarantee that more sys
classes can be made mobile. For instance, if a system class n
accesses native code, never has its fields directly referenced
other system classes (i.e., all access is through methods), an
instances are passed from application classes to system classe
not the other way, then the class can be mobile by using a “su
type” approach. Specifically, a subtype of the system class can
created in an application package. The subtype is used a
proxy—none of its original data fields are used. Nevertheless,
subtype object can be safely passed to system code when
supertype is expected. The subtype object itself propagates
method calls to an actual mobile object. This technique is applic
ble as long as the original system class is notfinal . We already
use this technique in J-Orchestra but not automatically in all app
cable cases—manual intervention is required to enable this tra
formation on a case-by-case basis when it seems warranted
good example is thejava.lang.Vector class. Vectors are used
very often to pass data around and it would be bad for performan
to restrict their mobility: vectors should migrate where they a
needed. Nevertheless, many graphical applications pass vecto
anchored system classes in the Swing system library—for insta
the javax.swing.table.DefaultTableModel class has meth-
ods that expect vectors. All the aforementioned conditions are t
for vectors: theVector class has no native methods, classes in t
Swing library do not access fields of vector objects directly (on
through methods), and vectors are only passed from application
system code, but not the other way. Therefore,Vector can be
safely turned into a mobile class in this case.

For a more accurate determination of whether system classes
be made mobile, data flow analysis should be employed. In t
way, it can be determined more accurately whether (and whic
instances of a class flow from application code to system code.
far, we have not needed to exploit such techniques in J-Orch
tra—the type system has been a powerful enough ally in our eff
to determine which objects can be made mobile. The only exce
tion has to do with arrays and will be discussed in Section 3.3.4

1. If the application includes native code, our guarantees will need
to be similarly adjusted. For an extreme example, if native
code in a single method accesses fields of all application
classes directly, then no partitioning can be done, since all
application classes will need to be anchored on the same site.

2. It is not clear whether this replication is allowed under the leg
conditions of JDK usage. In the long run, if replication turn
out to be impossible, an inheritance approach is feasible,
requires more engineering work (because of the lack of mu
ple inheritance).
4

he
es
ode

er

em
ectly

ace
pi-

ate
ible

e
e
e

ed

by

en
sed
ap-
ct
of
hat
tion
the
by
es:
fer-

g”
3.2 Translation

3.2.1 Anchored System Classes

System classes are anchored in groups: an anchored system class
needs to be co-located with all related anchored system classes.
Unrelated anchored classes, however, can be located on different
machines. In practice, anchoring system classes together with
other related system classes typically does not inhibit the meaning-
ful partitioning of system resources. For instance, we have used J-
Orchestra to partition several applications so that the graphics dis-
play on one machine, while disk processing, sound output, key-
board input, etc. are provided on remote computers. This is
possible because the Java Development Kit (JDK) supports hierar-
chical organization through the concept of packages. A Java pack-
age contains classes that share common functionality. JDK classes
within the same package reference mostly each other and very
rarely instances of the system classes from other packages. This
property means that anchoring group boundaries commonly coin-
cide with package boundaries. For example, all the classes from
the java.awt package can be anchored on the same machine that
handles the user interface part of an application. This arrangement
allows anchored system classes to access each other directly while
being remotely accessible by application classes through proxies.

J-Orchestra does not modify anchored system classes but produces
two supporting classes per anchored system class. These are a
proxy class and aremote application-system translator(or just
application-system translator). A proxy exposes the services of its
anchored class to regular application classes. A remote applica-
tion-system translator enables remote execution and handles the
translation of object parameters between the application and sys-

tem layers.3 Both proxy classes and remote application-system
translator classes are produced in source code form and translated
using a regular Java compiler. We will now examine each of these
supporting classes in greater detail.

A proxy is a front-end class that exposes the method interface of
the original system class. It would be impossible to put a proxy
into the same package as the original system class: system classes
reside in system packages that J-Orchestra does not modify.
Instead, proxies are placed in a different package and have no rela-
tionship to their system classes. Proxy naming/package hierarchies
are isomorphic to their corresponding system classes. For example,
a proxy for java.lang.Thread is called
anchored.java.lang.Thread . To make remote execution pos-
sible, all application classes that reference the original system class
have to now reference the proxy class instead. This is accom-

plished by consistently changing the constant pools of all t
application binary class files. The following example demonstrat
the effect of those changes as if they were done on the source c
level for clarity reasons.

//Original code: client of java.lang.Thread
java.lang.Thread t = new java.lang.Thread (...);
void f (java.lang.Thread t){ t.start (); }

//Modified code
anchored.java.lang.Thread t =

new anchored.java.lang.Thread (...);
void f (anchored.java.lang.Thread t){ t.start(); }

All the object parameters to the methods of a proxy are eith
immutable classes such asjava.lang.String or other proxies.
The rewrite strategy ensures that proxies for anchored syst
classes do not reference any other anchored system classes dir
but rather through proxies.

The only data member of an anchored system proxy is an interf
reference to the remote application-system translator class. A ty
cal proxy method delegates execution by calling an appropri
method in the remote instance member and then handles poss
remote exceptions. For instance, thesetPriority method for the
proxy of java.lang.Thread is:

public final void setPriority(int arg0){
try {

_remoteRef.setPriority (arg0);
} catch (RemoteException e) {

e.printStackTrace ();
}

}

The _remoteRef member variable can point to either the remot
application-system translator class itself or its RMI stub. In th
first case, all method invocations will be local. Invocations mad
through RMI stubs go over the network, eventually getting handl
by the system object on a remote site.

Application-system translators enable remote invocation
extending java.rmi.server.UnicastRemoteObject . Addi-
tionally, they handle the translation of proxy parameters betwe
the application and user layers. Before a proxy reference is pas
to a method in a system class, it needs to be unwrapped. Unwr
ping is the operation of extracting the original system obje
pointed to by a proxy. If a system class returns an instance
another system class as the result of a method call, then t
instance needs to be wrapped before it is passed to the applica
layer. Using wrapping, J-Orchestra manages to be oblivious to
way objects are created. Even if system objects are created
unmodifiable code, they can be used by regular application class
they just need to be wrapped as soon as they are about to be re
enced by application code.

The following example demonstrates how “wrapping-unwrappin
works in methodssetForeground and getForeground of the
application-system translator forjava.awt.Component .

public void setForeground
(anchored.java.awt.Color arg0)

{
_localClassRef.setForeground

((java.awt.Color)Anchored.unwrapSysObj (arg0));

3. The existence of a separate application-system translator is an
implementation detail—under different middleware, the trans-
lator functionality could be folded inside the proxy. J-Orches-
tra currently uses Java RMI as its distribution middleware.
Under RMI, classes need to explicitly declare that they are
remotely accessible (e.g., by inheriting from classUnicas-

tRemoteObject). Therefore, unmodifiable system classes
cannot be made remotely accessible, but their translator can.
Separate application-system translators simplify our imple-
mentation because system classes wrapped with an applica-
tion-system translator can be treated the same as application
classes.
5

ile
inal
the

on
heir
the

te
ote

s

ss,
. For

r)

fea-
are
g
al.
sed
hile

r, J-
cal
tra

his
stra
of
be

cre-
any

in
}

public anchored.java.awt.Color getForeground () {
return (anchored.java.awt.Color)

Anchored.wrapSysObj(_localClassRef.
getForeground());

}

_localClassRef points to an instance of the original system
class (java.awt.Component) that handles all method calls made
through the remote application-system translator.

3.2.2 Anchored Application Classes

Anchored application classes are the application classes that
inherit from anchored system classes. Recall that anchored system
classes depend on platform-specific resources and thus cannot
migrate through the network. Anchored application classes can be
thought of as referencing native libraries indirectly through their
superclasses. Anchored application classes are handled with a
translation that is identical to the one for anchored system classes,
except for one aspect. The defining distinction between system and
application anchored classes is that the latter can access other
application classes’ fields directly. Such direct field accesses have
to be detected and replaced with accessor and mutator methods. In
this way, other application classes referenced by anchored applica-
tion classes do not need to be anchored.

Consider an arbitrary methodfoo of an anchored application class
MyThread that extendsjava.lang.Thread .

class MyThread extends java.lang.Thread {
void foo (A a) { a.counter++; }

}

This clearly creates a problem. If classA is placed on a remote net-
work site, fieldcounter can no longer be accessed directly since
RMI (and all other distribution frameworks) are method-based. To
fix the problem, J-Orchestra replaces direct accesses with accessor
and mutator methods and adds those methods to classA.

class MyThread extends java.lang.Thread {
void foo (A a) {

a.set$$counter (a.get$$counter () + 1);
}

}

3.2.3 Mobile Classes.

Mobile classes are able to migrate to various network sites during
the run of a program. The migration currently supported by J-
Orchestra issynchronous: objects migrate in response to run-time
events, such as passing a mobile object as a parameter to a remote
method. Migration allows us to exploit data locality in an applica-
tion. For instance, when a remote method call occurs, it can be
advantageous to have a mobile object parameter move temporarily
or permanently to the callee’s network site. All standard object
mobility semantics (e.g.,call-by-visit , call-by-move [10])
can be supported in an application rewritten by J-Orchestra.

J-Orchestra translates mobile classes in the original application
(and the replicated mobile system classes) into aproxy classand a
remote class. Proxy classes are created in source code form, while
remote classes are produced by bytecode rewriting of the original
mobile class. Proxies for mobile classes are very similar to the

ones for anchored classes. The only difference is that a mob
proxy assumes the exact name and method interface of the orig
class. The clients of a mobile class access its proxy in exactly
same way as they used to access the original class.

A remote class is responsible for handling the network executi
semantics. Remote classes mimic the inheritance structure of t
original classes. The remote semantics is achieved by changing
superclass of the base (topmost) proxy fromjava.lang.Object

to java.rmi.server.UnicastRemoteObject . Since it is the
proxies that inherit the names of the original classes, remo
classes must be consistently renamed. J-Orchestra gives rem
classes an “__remote ” suffix. The example below summarizes the
rewrite in source code form (although in reality the original clas
and the remote class only exist in bytecode form).

//Original class declaration
class A extends B implements I {...}

//Proxy class declaration
class A extends B implements I, Proxy { ... }

//Remote class declaration
class A__remote extends B__remote
implements I, Remote {...}

Some care needs to be taken during binary modification of a cla
to ensure that the types expected match the ones actually used
instance, the name of a classA needs to change toA__remote , but
most references to typeA (e.g., as the type of a method paramete
need to continue referring toA—the proxy type is the right type for
references toA objects in the rewritten application.

3.3 Handling of Java Language Features

The J-Orchestra rewrite has to handle several Java language
tures. Some parts of the translation (e.g., that of static methods)
straightforward and only add engineering complexity. Handlin
some other elements (e.g., arrays), however, is far from trivi
Some of the techniques described here are similar to the ones u
by JavaParty (but JavaParty operates at the source code level w
J-Orchestra is a bytecode translator). In other cases, howeve
Orchestra has a higher obligation than JavaParty to maintain lo
execution semantics for a partitioned application, since J-Orches
partitioning is automatic for the entire application.

3.3.1 Static Methods and Fields

J-Orchestra has to handle remote execution of static methods. T
also takes care of remote access to static fields: J-Orche
rewrites all direct accesses to fields (both member and static)
other classes with accessor and mutator methods. In order to
able to handle remote execution of static methods, J-Orchestra
ates static delegator classes for every original class that has
static methods. Static delegators extendjava.rmi.server.Uni-

castRemoteObject and define all the static methods declared
the original class.

//Original class
class A {

static void foo (String s) {...}
static int bar () {...}

}

6

use
ys

s of
t

ial
be

visi-

the
ed
-
ses
.

ra-
ay
, a
he
tion
nts
red

and
is

to
ce,
ch
a
nt

ed
//Static Delegator for A--runs on a remote site
class A__StaticDelegator extends
java.rmi.server.UnicastRemoteObject {

void foo (String s) { A__remote.foo (s); }
int bar () { return A__remote.bar (); }

}

For optimization purposes, a static delegator for a class gets cre-
ated only in-response to calling any of the static methods in the
proxy class. If no static method of a class is ever called during a
particular execution scenario, the static delegator for that class is
never created. Once created, the static delegator or its RMI stub is
stored in a member field of the class’s proxy and is reused for all
subsequent static method invocations.

3.3.2 Inheritance

Proxies, remote application-system translator classes, and remote
classes all mimic the inheritance/subtyping hierarchy of their cor-
responding original classes. Replacing direct references with refer-
ences to proxies preserves the original execution semantics: a
proxy can be used when a supertype instance is expected. Since it
is not known which particular proxy is going to be used to invoke a
method, only the base class contains the interface reference that is
used for method delegation. This field is accessible to all the sub-
classes’ proxies by having theprotected access modifier.

3.3.3 Object Creation

Creating objects remotely is a necessary functionality for every
distributed object system. J-Orchestra proxies’ constructors work
differently from other methods in order to implement distribution
policies (i.e., create various objects on given network sites). First, a
proxy constructor calls a special-purpose do-nothing constructor in
its super class to avoid the regular object creation sequence. A
proxy constructor creates objects using the services of theobject
factory. J-Orchestra’s object factory is an RMI service running on
every network node where the partitioned application operates.
Every object factory is parameterized with configuration files spec-
ifying a symbolic location of every class in the application and the
URLs of other object factories. Everyobject factory clientkeeps
remote references to all the object factories in the system. Object
factory clients determine object locations, handle remote object
creations, and maintain various mappings between the created
objects and their proxies. The following example shows a portion
of the constructor code in a proxy classA.

public A () {
//call super do-nothing constructor
super ((BogusConstructorArg)null);

//check if we are already initialized or are
//called from a subclass
if ((null != _remoteRef) ||

(!getClass ().equals (A.class)))
return;

...
//Call ObjectFactory
try {

_remoteRef =
(A) ObjectFactory.createObject(“A”);

} catch (RemoteException e) { ... }
}

3.3.4 Arrays

Handling arrays is interesting from a language standpoint beca
they are the only native generic type in Java. Conceptually, arra
are very similar to objects. For instance, arrays are subclasse
java.lang.Object . An array can be thought of as a class tha
supports the operations “store” and “load”. Arrays require spec
treatment because, just like objects, they are mutable and can
aliased: changes made through one array reference have to be
ble to all other references to the same array.

J-Orchestra treats arrays very similarly to objects, although at
concrete level the translation is different. All arrays are wrapp
into specialarray front-endclasses for reference by the applica
tion. Application classes are modified to replace array acces
with calls to the “store” and “load” methods of an array front-end
The front-end is responsible for performing the appropriate ope
tions on the array itself. If the array type is mobile, then the arr
front-end is treated exactly like a regular application class (i.e.
proxy is created for it). If, however, the array type is anchored, t
front-end has a dual role. It also serves as a system/applica
translator and automatically wraps and unwraps the eleme
inserted into arrays. For instance, the front-end for an ancho
array of java.lang.Thread objects is responsible for wrapping
the thread objects when they are retrieved by application code
unwrapping them when they are stored. This front-end class
shown here:

class java_lang_Thread_FrontEnd {
java.lang.Thread []_array;

anchored.java.lang.Thread aaload(int location) {
return (anchored.java.lang.Thread)

Anchored.wrap (_array[location]);
}

void aastore (int location,
anchored.java.lang.Thread elem) {

_array[location] =
(java.lang.Thread)Anchored.unwrap (elem);

}
}

It is worth noting that the same “wrapping/unwrapping” needs
be performed for multidimensional anchored arrays. For instan
if a two dimensional array of integers is anchored, then before ea
of its constituent arrays is retrieved, it needs to be wrapped in
front-end for one dimensional integer arrays. The code fragme
below (a slight simplification of the actual J-Orchestra generat
code) shows this transformation.

class Int2FrontEnd {
int [][] _array;
Int2FrontEnd (int[][]array) {_array = array;}
int [][] get_array () { return _array; }

 IntFrontEnd aaload (int location) {
return new IntFrontEnd(_array[location]);

}
void aastore (int location, IntFrontEnd value) {

_array[location] = value.get_array ();
}

}

7

m

g
y

he
of

tack
tor
ode

ly
ion
cts.
st
ur-
is
ge-
full

cts’
we
is
red
c-

ss

de
ns-
Determining whether an array needs to be anchored or can be
mobile is an interesting problem. Although arrays are implemented
in native code, we can safely assume that they do not capture sys-
tem-specific state and that they never directly access fields of the
arguments to their “store” and “load” methods, as they have no
knowledge of the types of the array elements. Therefore, arrays
can be made mobile, unless they are passed between application
code and system code. Note that this means that an array of objects
of class C can be mobile even when class C is anchored—C
objects may cross the application/system boundary, but as long as
arrays of C objects do not cross it, these arrays can be made
mobile.

Nevertheless, the usual type-based anchored/mobile classification
mechanism of J-Orchestra can be too restrictive when applied to
arrays. Recall that according to the J-Orchestra classification, if a
reference to a certain type can cross the system/application bound-
ary, then all references to this type are made anchored. Some of the
consequences of this approach are: a) if a multidimensional array
is anchored, then every array of the same or lower dimension and
the same element type also needs to be anchored on the same site;
b) if an array of C objects is anchored to a site, then all arrays of
subclass objects of the same dimension need to be anchored on the
same site. For primitive types (int , float , etc.) the problem
becomes even more intense. The problem is that the J-Orchestra
classification algorithm is type based and primitive array types are
anonymous types. The same type, e.g.,int[] , can be used for
very different purposes, but currently J-Orchestra can only be con-
servative due to lack of data flow information. For instance, any
application that passes an integer array to an anchored system class
will have to treat all its integer arrays (of the same or lower dimen-
sion) as anchoredon the same site! This restriction may even
hinder the ability to safely place different Java system classes on
different network sites. If two entirely unconnected system pack-
ages both exchange arrays of integers with some application’s
code, then both packages have to be placed on the same machine,
because of the possibility that they both refer to the same array.

In the future, we plan to explore more sophisticated classification
algorithms to automatically ensure that arrays can be mobile
safely. For now, manual intervention is the only way to circumvent
the rigidness of the J-Orchestra classification. Unfortunately,
safety is not automatically ensured in this case. Note that the only
problem concerns the read-write use of arrays: if arrays are only
written by application code and read by system code (or vice-
versa), they can safely be made mobile. Fortunately, this is the
common for arrays shared between application and system code,
but J-Orchestra cannot know this without manual hints.

We have partitioned several Java applications using J-Orchestra
without ever needing to exercise manual control in order to over-
come array classification problems.

3.3.5 “this”

Under the J-Orchestra rewrite, an object can refer to its own meth-
ods and variables directly. That is, no proxy indirection overhead is
imposed for access to methods through thethis reference. Never-
theless, this means that J-Orchestra has to treat explicit uses of
this specially. Recall that remote objects are generated by chang-
ing the name of the original class at the bytecode level. When the
name of a class changes so does the type of all of its explicitthis

references. Consider the following example showing the proble
if no special care is taken:

//original code
class A { void foo (B b) { b.baz (this); } }
class B { void baz (A a) {...} }

//generated remote object for A
class A__remote {

void foo (B b) { b.baz (this); }
//”this” is now of type A__remote!

}

Methodbaz in classB expects an argument of typeA, hence the
call b.baz(this) will fail, as this is of type A__remote . J-
Orchestra detects all such explicit uses ofthis and fixes the prob-
lem by looking up the corresponding proxy object and replacin
this with it. Furthermore, we can store the result of the prox
lookup in a local variable and use that variable instead ofthis in
future expressions. For example, the rewritten bytecode forfoo in
this case would be:

aload_0 //pass “this” to locateProxy method
invokestatic Runtime.locateProxy
astore_2 //store the located proxy object

//for future use
aload_1 //load b
aload_2 //load proxy (of type A)
invokevirtual B.baz

At the bytecode level, it is somewhat involved to detect when t
transformation should be applied. Recognizing explicit uses
this (as opposed to occurrences of theaload_0 instruction that
are used to reference to the object’s own methods) requires a s
machine emulator for the bytecode instructions. The emula
needs to reconstruct operations and operands from the bytec
stack-machine instruction architecture.

3.3.6 Object Identity

To support full object mobility, J-Orchestra assigns global
unique object identifiers to all the remote objects. Each execut
site maintains a mapping between proxies and their remote obje
In case of remote object migration, the run-time system fir
checks whether the remote object already has a proxy on the c
rent host. If such a proxy is found, then its remote object field
reassigned. Otherwise, a new proxy object is created. This arran
ment preserves correct reference semantics in the presence of
object mobility.

J-Orchestra employs a similar scheme to handle anchored obje
wrapping. When an object is unwrapped and re-wrapped,
should ensure that the identity of the proxy (the “wrap” object)
preserved. This means that the wrapping operation for ancho
objects is a bit more complicated than originally presented in Se
tion 3.2.1. Consider an example methodreturnMyArgument in
anchored classA that takes an argument of another anchored cla
B.

B returnMyArgument (B arg) { return arg; }

J-Orchestra’s rewrite algorithm ensures that the following co
fragment preserves its original semantics, although in the tra
8

n-
r-

he
g

th-

red

es
re
-
es.
ing

tes
ses.
tes
m-

e
ses
om-

ys-

m
rd
pre-
d a
s
n a
-
li-
le,
put
he
rk

J-
sis.

cy.

e

lated code all objects will be proxies for application-system trans-
lators.

B b = new B();
A a = new A();
B b1 = a.returnMyArgument(b);
assert_equal (b == b1);

When providing a wrapper for its return value,
returnMyArgument in the application-system translator for class
A returns the existing proxy rather than creating a new one. Being
able to do this correctly requires maintaining a mapping between
application-system translators and their corresponding anchored
objects.

This mapping also helps solve the problem of Java RMI not keep-
ing a per-site identity for its remote objects. If a remotely-accessi-
ble object is used as a parameter to a remote method, RMI
transfers the object’s RMI stub. If the stub eventually gets passed
back to the site of the original remotely accessible object, the RMI
run-time will not recognize that it can use the object directly
instead of the stub. Stated differently, identity is not preserved for
remotely accessible objects passed to remote methods. This com-
plicates the unwrapping operation performed by application-sys-
tem translators. It would be impossible to retrieve the
corresponding anchored object from an application-system transla-
tor stub without some additional information. Fortunately, RMI
guarantees the invariant that thehashCode method returns the
same value whether invoked on a remote object or its stub. This
property makes keeping the aforementioned mapping between
anchored objects and their application-system translators possible.
An anchored object can be inserted into the mapping using its
application-system translator (remote object) and retrieved using
the remote object’s stub. For those anchored classes that override
the hashCode method providing their own implementation, spe-
cial care is taken to use the base class (java.rmi.server.Uni-

castRemoteObject) version of the method.

3.3.7 Multithreading and Synchronization

The handling of synchronization is an important issue in guaran-
teeing regular Java semantics for a partitioned multithreaded appli-
cation. Java RMI does not support transparency of synchronization
references—allwait /notify calls on remote objects are not prop-
agated to the remote site (see [18], section 8.1). We are currently in
the process of implementing a full synchronization system for J-
Orchestra. This system will guarantee semantics identical to regu-
lar Java for all partitioned applications. Our system is similar to the
mechanism for transparent synchronization used in version 1.05 of
JavaParty (see [8]). We believe, however, that we can address the
JavaParty problems with blocks synchronized on remote objects.
(We also believe that our solution could be implemented for Java-
Party, as well.) Nevertheless, since this solution is not fully imple-
mented, we do not describe it here.

The currently implemented J-Orchestra synchronization approach
guarantees correctness whensynchronized methodsare used
(which is the most common Java synchronization technique) but
not necessarily whensynchronized code blocksare used. When
code blocks are used, J-Orchestra guarantees correct synchroniza-
tion per-site: if all synchronized blocks are executed on the
same machine, synchronization will work correctly.

The translation to maintain these properties is as follows: for sy
chronized methods, we only have to ensure that the proxy “fo
warder” method is not synchronized—the original method on t
remote object will perform the synchronization. For handlin
wait /notify /notifyAll calls on proxies, we globally detect all
such calls and replace them with calls to specially generated me
ods in the proxy objects (the originalwait /notify /notifyAll in
java.lang.Object are final and cannot be overridden). Prox-
ies propagate allwait /notify /notifyAll calls to the remote
objects they represent. All remote objects (__remote objects for
mobile classes or system/application translators for ancho
classes) export methods that implementwait /notify /notifyAll

semantics on the object.

3.3.8 Inner Classes

Inner classes were added to JDK1.1 without introducing chang
to the JVM instruction set. At the bytecode level, inner classes a
supported bysynthetic methods and inner class attributes. Syn
thetic methods in a class can only be used by its inner class
Since it might make sense to place an inner class and its enclos
class on different network sites, J-Orchestra completely elimina
all the inner class dependencies from its remote-capable clas
This means removing inner class and synthetic method attribu
along with consistently renaming all the inner classes. For exa
ple, all the references toOuter$Inner will be replaced with
Outer_Inner . This streamlines the compilation process for th
generated proxies of inner classes. Removing all the inner clas
dependencies allows placing each proxy in a separate file and c
piling proxies in an arbitrary order.

3.3.9 Handling System.out, System.in, System.err, S
tem.exit, System.properties

The java.lang.System class provides access to several syste
facilities exported by the JVM. Among these facilities are standa
input, standard output, and error output streams (exported as
defined objects), access to externally defined “properties”, an
way to terminate the execution of the JVM. All these facilitie
assume having a single JVM and are not aware of distribution. I
distributed environment, it is important to modify the aforemen
tioned facilities so that their behavior makes sense. Different po
cies may be appropriate for different applications. For examp
when any of the partitions writes something to the standard out
stream, should the results be visible only on the network site of t
partition, all the network sites, or one specially designated netwo
site that handles I/O? If one of the partitions makes a call toSys-

tem.exit , should only the JVM that runs that partition exit or the
request should be applied to all the remaining network sites?
Orchestra allows defining these policies on a per-application ba
For this purpose, J-Orchestra provides classes calledRemoteIn ,
RemoteOut , RemoteErr , RemoteExit , andRemoteProperties

whose implementation determines the application-specific poli
For example, all references toSystem.out are replaced with
RemoteOut.out() in all the rewritten code. An implementation
of RemoteOut.out() can return a stream that redirects all th
messages to a particular network site, for example.
9

2).
ble

d
is
lly
ed
be
to-

be
ate
a-

ns
ion
the
ible.

J-
re

ed
not
w on
hey

o-
me
sed
al
f

om
J-

f

if-
to

or
y
on

ugh

e

to
on-
on-
he
e

t
ad
ct

so-
the
4 PERFORMANCE

4.1 Optimizations

4.1.1 Limited Rewrite

Up to this point, we have discussed a J-Orchestra translation where
everyapplication and system class is made remote-capable. This
simplifies the presentation of the J-Orchestra translation mecha-
nism. Nevertheless, in practice, we mostly use J-Orchestra with a
rewrite technique that affects as few classes as possible. We call
this the J-Orchestralimited rewrite model.

The reason to limit which classes get rewritten has to do with per-
formance. The full J-Orchestra rewrite adds some execution over-
head to the application even when objects are used entirely locally.
Specifically, the J-Orchestra rewrite adds one level of indirection
for each method call to a different application object, two levels of
indirection for each method call to an anchored system object, and
one extra method call for every direct access to another object’s
fields. These overheads are kept as low as possible. For instance,
for an application object created and used only locally, the over-
head is only one interface call for every virtual call, because proxy
objects refer directly to the target object and not through RMI.
Interface calls are not expensive in modern JVMs (they cost
approximately as much as virtual calls [1]) but the overall slow-
down can be significant.

The overall impact of the indirection overhead on an application
depends on how much work the application’s methods perform per
method call. A simple experiment suffices to put the costs in per-
spective. Table 1 shows the overhead of adding an extra interface
indirection per virtual method call for a simple benchmark pro-
gram. The overall overhead rises from 17% (when a method per-
forms 10 multiplications, 10 increment, and 10 test operations) to
35% (when the method only performs 2 of these operations).

Penalizing programs that have small methods is against good
object-oriented design, however. Furthermore, the above numbers
do not include the extra cost of accessing anchored objects and
fields of other objects indirectly (although these costs are second-
ary). To get an idea of the total overhead for an actual application,
we measured the slowdown of the J-Orchestra rewrite using J-
Orchestra itself as input. That is, we used J-Orchestra to translate
the main loop of the J-Orchestra rewriter, consisting of 41 class
files totalling 192KB. Thus, the re-written version of the J-Orches-
tra rewriter (as well as all system classes it accesses) became
remote-capable but still consisted of a single partition. In local exe-

cution, the re-written version was about 37% slower (see Table
Although a 37% slowdown of local processing can be accepta
for some applications, for many others it is too high.

For this reason, J-Orchestra offers the ability to rewrite a limite
portion of an application to make it remotely accessible. In th
way, the application can operate with no overhead, as it norma
would in a centralized environment, except for the parts that ne
to be accessible remotely. Given a set of classes that must
remotely accessible, the J-Orchestra’s static analysis tools au
matically determine what other application classes must
remotely accessible as well. For example, the user might indic
that all the UI classes must be remotely accessible. This inform
tion can then be used to determine the minimal rewriting actio
that need to be performed to render the UI subset of the applicat
remotely accessible. If certain classes need to be mobile, all
non-mobile classes they reference have to be remotely access
The limited rewrite process is fully automated.

In general, limited rewrite can be viewed as a version of the
Orchestra full rewrite, where many of the application classes a
explicitly not made mobile, but just anchored or even not affect
at all (if they are only accessed by anchored classes, they do
need to be remote-capable). Conceptually, these classes are no
the system side of the application/system boundary, and, thus, t
use direct references to all other anchored objects.

The limited rewrite is particularly successful when most of the pr
cessing in an application occurs on one network site and only so
resources (e.g., graphics, sound, keyboard input) are acces
remotely. We have used the limited rewrite to partition sever
applications that follow this pattern (e.g., a GUI-driven demo o
the Java speech API, a graphical display of real time statistics fr
another machine, etc.). In all cases, the execution overhead from
Orchestra indirection was practically zero.

4.1.2 Lazy Remote Object Creation

Recall that remote objects extendjava.rmi.server.Unicas-

tRemoteObject to enable remote execution. The constructor o
java.rmi.server.UnicastRemoteObject exports the remote
object to the RMI run-time. This is an intensive process that sign
icantly slows down the overall object creation. J-Orchestra tries
avoid this slowdown by employing lazy remote object creation f
all the objects that might never be invoked remotely. If a prox
constructor determines that the object it wraps is to be created
the local machine, then the creation process does not go thro
the object factory. Instead, alazy version of the remote object is
created directly. A lazy object is identical to a remote one with th
exception of having a different name and not inheriting from
java.rmi.server.UnicastRemoteObject . A proxy contin-
ues to point to such a lazy object until the application attempts
use that proxy in a remote method call. In that case, the proxy c
verts its lazy object to a remote one using a special conversion c
structor. This constructor reassigns every member field from t
lazy object to the remote one. All static fields are kept in th
remote version of the object to avoid data inconsistencies.

Although this optimization may at first seem RMI-specific, in fac
it is not. Every middleware mechanism suffers significant overhe
for registering remotely accessible objects. Lazy remote obje
creation ensures that the overhead is not suffered until it is ab
lutely necessary. In the case of RMI, our experiments show that

Table 1: J-Orchestra indirection overhead as a function of
average work per method call (a billion calls total)

Work
(multiply,
increment,

test)

Original
Time

Rewritten
Time

Overhead

2 35.17s 47.52s 35%

4 42.06s 51.30s 22%

10 62.5s 73.32s 17%
10

r

z
se

rst
in-

ote
es,
nts
ed
is
n
t-
ere
h

ns-

ges
me

es-
ll
era-

in
all
tra
of

he
is
as

h-
creation of a remotely accessible object is over 200 times more
expensive than a single constructor invocation! In contrast, the
extra cost of converting a lazy object into a remotely accessible
one is about the same as a few variable assignments in Java. There-
fore, it makes sense to optimistically assume that objects are cre-
ated only for local use, until they are actually passed to a remote
site. Considering that a well-partitioned application will only move
few objects over the network, the optimization is likely to be valu-
able.

The impact of speeding up object creation is significant in terms of
total application execution time. We measured the effects using the
J-Orchestra code itself as a benchmark. The result is shown below.
The measurements are on the full J-Orchestra rewrite: all objects
are made remote-capable, although they are executed on a single
machine. 767 objects were constructed during this execution. The
overhead for the version of J-Orchestra that eagerly constructs all
objects to be remote-capable is 58%, while the same overhead
when the objects are created for local use is less than 38% (an
overall speedup of 1.15, or 15%).

4.2 Performance Measurements

J-Orchestra is an attractive alternative to input/output redirection
technologies like X-Windows and telnet. In this section, we com-
pare the performance of J-Orchestra to X-Windows, used to dis-
play graphics on a remote host.

The trade-off in all our experiments is simple: X-Windows has a
lower overhead per network transfer, but J-Orchestra has tremen-
dous flexibility to place the drawing code on the machine where
the graphics will be displayed. More specifically, if J-Orchestra
and X-Windows perform the same number of network operations,
X-Windows will always be faster. This may come as a surprise
since the X protocol [15] for transferring graphics over the net-
work is commonly considered a “heavy” protocol. Nevertheless,
compared to a heavyweight implementation of general purpose
middleware like Java RMI, the X protocol is fairly lightweight. A
major difference, for instance, is that most X protocol requests do
not generate replies, but RMI remote method calls will always
need to generate network traffic when an operation completes. On
the other hand, J-Orchestra can outperform X-Windows, because
J-Orchestra can altogether avoid transferring the drawing com-
mands over the network and instead issue them locally.

All the experiments described are partitioned using simple manual
input, consisting of location constraints for only a couple of classes
in the application. The J-Orchestra limited rewrite then detects
which other application and system classes need to be rewritten
and whether they should be anchored or mobile. In all experi-
ments, we measured the run time of the original Java application,
as well as the run time of the rewritten (i.e., remote-capable) ver-
sion of the application but executing in a single partition. These
two baseline results were identical—the limited rewrite only adds

indirection to a tiny proportion of the total objects created in ou
example programs.

We used JDK 1.3 on two Sun Ultra 10 machines (Sparc II 440MH
processor) connected with a 100Mbit Ethernet network for the
experiments.

4.2.1 Window Drawing

We created three different tests of window operations. The fi
opens an empty remote window. The second opens a remote w
dow and displays 100 text buttons on it. The third opens a rem
window and displays 100 graphical buttons on it. In all three cas
the window is repainted 10 times. Each of the three experime
has two versions: one where all drawing operations are initiat
from the window object itself and one where the (re-)painting
initiated from a different object. The reason for this last distinctio
is that we want to produce a more “realistic” comparison by initia
ing the operations remotely. That is, in the J-Orchestra case, th
will be operations over the network for each re-painting, althoug
the graphics for the buttons themselves will never need to be tra
ferred over the network.

The results (run times) are shown below (all numbers are avera
of 3 runs that varied by at most 0.5s). The baseline is the run ti
of a local version.

Version 1 of the above experiment shows the benefit of J-Orch
tra, but the partitioning can be considered “unfairly optimal”. A
the graphics are produced in response to a single network op
tion. Therefore, J-Orchestra performs very close to the baseline
the Version 1 experiment. Version 2, however, is more realistic:
re-drawing is initiated over the network. In this case, J-Orches
performs about the same as X-Windows, except for the case
graphics buttons. In this case, X-Windows has to transfer t
graphical icon over the network, while J-Orchestra avoids th
overhead altogether. As a result, J-Orchestra is more than twice
fast as X-Windows. Of course, a slower network (e.g., 10Mbit et

Table 2: Effect of lazy remote object creation and J-Orchestra
indirection on total execution time

Original
time

Indirect
lazy

Overhead Indirect
non-lazy

Overhead

6.63s 9.11s 37.4% 10.48s 58.1%
Table 3: Version 1 of window experiments

Experiment/
System

Empty
window

Window +
100 text
buttons

Window +
100 graphics

buttons

Baseline 2.9s 7.2s 6.6s

X-Windows 4.7s 8.2s 15.8s

J-Orchestra 3.1s 7.7s 6.6s

Table 4: Version 2 of window experiments

Experiment/
System

Empty
window

Window +
100 text
buttons

Window +
100 graphics

buttons

Baseline 2.7s 7.6s 6.8s

X-Windows 4.5s 8.5s 16.3s

J-Orchestra 4.9s 8.4s 7.7s
11

d
r X-
all

ing
.

of
re
n-
nd
n is

s
h of
ill
ch-

r

ified
st
The
ng
is-
er

ed
-
le
n

rld
M
for

tal
m
e

ard
o-
om-
ame
a

n
e

t all
port
n

ery
arty
is
ode
nnot
yte-
ittle
ernet, ISDN, or modem connection) would accentuate these results
dramatically. We should also mention that the window with text
buttons does not display correctly in the case of X-Windows (an
empty window is displayed).

4.2.2 Simple Animation

In this benchmark, we test a small but fully usable third-party
application. This experiment is representative of the way X-Win-
dows and J-Orchestra will be used in practice. It consists of a Java
analog clock program (one of the many written as Java graphics
demos). The program draws a simple face of an analog clock (60
minute marks, 4 hour numbers, and three moving clock hands).
With X-Windows, we just run the clock application on one
machine and display the results on another. With J-Orchestra, how-
ever, we can transfer only the interesting data (a currentDate

object) over the network and do all the drawing locally. To turn this
into a useful benchmark, we changed it very slightly, so that the
clock updates the time on the screen as quickly as possible—i.e.,
the program keeps polling the system for time as often as it can
and displays the results on screen. The measured quantity is then
the frames-per-second attained on the remote display. In other
words, we are treating the clock display as a real-time animation
and measure the animation quality. This is representative of actual
uses of J-Orchestra. J-Orchestra is useful when the user needs to
display or process real-time results on a different machine than the
one producing the results.

The measurements (frames per second) for this benchmark appear
below. Apart from the original clock, we also created two stripped-
down versions. The first only draws the moving parts of the clock
(i.e., the hands). The second draws the clock hands as well as the
numbers “3”, “6”, “9”, and “12” on the face of the clock.

For the original clock application, J-Orchestra is more than twice
as fast as X-Windows. The reason is that J-Orchestra only needs to
transfer the time information. In contrast, X-Windows needs to
redraw the minute mark lines and the numbers “3”, “6”, “9”, and
“12” on the face of the clock, even though these do not change in
time. The corresponding drawing commands have to be issued
over the network, which slows down X-Windows execution signif-
icantly.

Actually, J-Orchestra is much faster than X-Windows for the clock
application, even though it has to overcome two disadvantages.
First, because of the way the application is written, J-Orchestra has
to transfer more data than strictly needed—a complete
java.util.Date object needs to be passed over the network, and
this contains more information than just the current time (e.g.,
year, date, and time zone). Second, the underlying protocol (Java

RMI) is less efficient than X-Windows in transferring the require
data. On the other hand, J-Orchestra also has an advantage ove
Windows. Although J-Orchestra transfers more data, it transfers
the data at once in a singleDate object, thus incurring network
latency only once. X-Windows has to issue a separate draw
operation over the network for each line or text string displayed

The stripped-down version of the clock demonstrates the effect
these two factors. As shown in Table 5, if just the clock hands we
drawn, J-Orchestra would have been a little slower than X-Wi
dows. If, however, as little as the four hour numbers (3, 6, 9, a
12) need to be drawn on the face of the clock, J-Orchestra agai
much faster than X-Windows.

5 RELATED WORK

Distributed computing has been the main focus of system
research in the past two decades. Therefore, there is a wealt
work that exhibits similar goals or methodologies to ours. We w
separate closely related work (approaches that use similar te
niques to ours) from indirectly related work (work with simila
goals but significantly different approaches).

5.1 Directly Related Work

Several recent systems other than J-Orchestra can also be class
as automatic partitioning tools. In the Java world, the close
approaches are the Addistant [19] and Pangaea [16] systems.
Coign system [9] has promoted the idea of automatic partitioni
for applications based on COM components. We discussed Add
tant extensively in Section 1, so we will concentrate on the oth
two systems here.

Coign [9] is an automatic partitioning system for software bas
on Microsoft’s COM model. Although Coign is a pioneering sys
tem, it suffers from two drawbacks. First, Coign is not applicab
to many real-world situations: although Windows software ofte
exports coarse-grained COM components, very few real-wo
applications are written as collections of many fine-grained CO
components. The applications that constitute success cases
Coign (mainly the Octarine word processor) were experimen
and written specifically to showcase that COM is a viable platfor
for developing applications from many small components. Th
second drawback is technical. Coign does not try to solve the h
problems of automatic partitioning: it does not distribute comp
nents when they share data through memory pointers. Such c
ponents are deemed non-distributable and are located on the s
machine. Practical experience with Coign [9] showed that this is
severe limitation for the only real-world application included i
Coign’s example set (the Microsoft PhotoDraw program). Th
Coign approach would be impossible in the case of Java: almos
program data are accessed through references in Java. No sup
for synchronous data mobility exists in Coign, but the applicatio
can be periodically repartitioned based on its recent behavior.

Pangaea [16][17] is an automatic partitioning system that has v
similar goals to J-Orchestra. Pangaea is based on the JavaP
[13] infrastructure for application partitioning. Since JavaParty
designed for manual partitioning and operates at the source c
level, Pangaea is also limited in this respect. Thus, Pangaea ca
be used to make Java system classes (which are supplied in b
code format) remotely accessible. Therefore, Pangaea has l

Table 5: Clock Experiment

Experiment/
System

Original
clock

Clock with
just hands

Clock with
hands and

hours

Baseline 56 fps 104 fps 77 fps

X-Windows 20 fps 74 fps 33 fps

J-Orchestra 42 fps 68 fps 61 fps
12

ide
gher
et-

-
ng
the
-
m

re,
r-

ally:
ies
ica-
lly
or-
stra
o
d
n

for
e
an

c-
dy
a-

n-
ser
s), an
e
ch-
l,

s-
m-
y a
d
ly
os
s,
r a

k-
nc-

ce

).
’s

-
ava
s
n
t a
)
re,
applicability to real world situations, especially with limited man-
ual intervention. For instance, much data exchange in Java pro-
grams happens through system classes (e.g., collection classes, like
java.util.Vector). If such classes are not remotely accessible,
all their clients need to be located on the same site, making parti-
tioning almost impossible for realistic applications.

Finally, we should mention that the JavaParty infrastructure
[13][8] is closely related to J-Orchestra. The similarity is not so
much in the objectives—JavaParty only aims to support manual
partitioning and does not deal with system classes. The techniques
used, however, are very similar to J-Orchestra, especially for the
newest versions of JavaParty [8].

5.2 Indirectly Related Work

Automatic partitioning is essentially aDistributed Shared Memory
(DSM) technique. Just like traditional DSM approaches, we try to
create the illusion of a shared address space, when the data are
really distributed across different machines. Nevertheless, auto-
matic partitioning differs from traditional DSM work in one major
aspect:only the application is allowed to change, not the run-time
environment. Traditional DSM systems like Munin [5], Orca [3],
and, in the Java world, CJVM [2], and Java/DSM [22] use a spe-
cialized run-time environment in order to detect access to remote
data and ensure data consistency. The deployment cost of DSMs
has restricted DSM applicability to high-performance parallel
applications. In contrast, automatically partitioned Java applica-
tions work on original, unmodified Java Virtual Machines (JVMs),
possibly shipped with Web browsers. All modifications necessary
are made directly to the application, using compilation techniques.
In this way, automatic partitioning has no deployment cost, allow-
ing it to be applied to regular applications and compete with light-
weight technologies like X-Windows.

Among distributed shared memory systems, the ones most closely
resembling the J-Orchestra approach are object-based DSMs, like
Orca [3]. The Orca system has a dedicated language and run-time
system, but also has similarities to J-Orchestra in its treatment of
data at the object level, and its use of static analysis.

Mobile object systems, like Emerald [4][10] have similarities with
J-Orchestra. Many of the J-Orchestra ideas on implementing
mobile objects and choosing appropriate semantics for method
invocations (synchronous object migration) have originated with
Emerald.

The Doorastha system [6] represents another piece of work closely
related to automatic partitioning. Doorastha allows the user to
annotate a centralized program to turn it into a distributed applica-
tion. Unfortunately, all the burden is shifted to the user to specify
what semantics are valid for a specific class (e.g., whether objects
are mobile, whether they can be passed by-copy, etc.). The Door-
astha annotations are quite expressive in terms of how method
arguments, different fields of a class, etc., are manipulated. Never-
theless, programming in this way is tedious and error-prone: a
slight error in an annotation may cause insidious inconsistency
errors.

The need for infrastructure to support application partitioning has
been recognized in the systems community. Proposals for such
infrastructure (most recently, Protium [21]) usually try to address
different concerns from those covered by J-Orchestra. High perfor-

mance is an essential element, with the infrastructure trying to h
the latency of remote accesses. J-Orchestra aims at a much hi
degree of automation, but for applications with more modest n
work performance requirements.

Finally, we should mention that the overall approach of program
ming distributed systems as if they were centralized (“paperi
over the network”) has been occasionally criticized (e.g., see
best known “manifesto” on the topic [20]). The main point of criti
cism has been that distributed systems fundamentally differ fro
centralized systems because of the possibility of partial failu
which needs to be handled differently for each application. Neve
theless, J-Orchestra can address this problem, at least parti
although the input of the system is a binary application, the prox
for remote-capable classes are produced in source code. Appl
tion-specific partial-failure handling can be effected by manua
editing the source code of the proxy classes and handling the c
responding Java language exceptions. Thus, although J-Orche
hides much of the complexity of distribution, it allows the user t
handle distribution-specific failure exactly like it would be handle
through manual partitioning. Alternatively viewed, the user ca
concentrate on the part of the application that really matters
distributed computing: partial failure handling. This part is th
only code that needs to be written by hand in order to partition
application.

6 STATUS AND CONCLUSIONS

J-Orchestra is work-in-progress, but most of the back-end fun
tionality is in place, as described in this paper. We have alrea
used J-Orchestra to partition several realistic, third-party applic
tions. Among them are “J-Shell” (a command line shell impleme
tation for Java), a graphical demo of the Java speech API (the u
selects parameters and a sound synthesizer composes phrase
application for monitoring server load and displaying real-tim
graphical statistics, and some small graphical demos and ben
marks. All of the above were partitioned in a client-server mode
where the I/O part of the functionality (graphics, text, etc.) is di
played on a client machine, while processing or execution of co
mands takes place on a server. Our client machine is typicall
hand-held iPAQ PDA, running Linux. This environment is goo
for showcasing the capabilities of J-Orchestra—even relative
uninteresting centralized applications become exciting dem
when they are automatically turned into distributed application
partly running on a hand-held device that communicates ove
wireless network with a central server.

In the future, we intend to continue work on the J-Orchestra bac
end, but at the same time place more emphasis on front-end fu
tionality. The existing J-Orchestra GUI is limited: it does not allow
the specification of any mobility properties and does not interfa
well with the rewrite functionality. Most of the J-Orchestra
rewrites are currently triggered programmatically (using scripts
An integrated environment is necessary to improve the system
third-party usability. A lot more work is also required on the dis
tributed performance aspects. Currently, J-Orchestra uses J
RMI as its distribution middleware. RMI has been criticized for it
inefficiency, but offers useful features for transparent distributio
(e.g., distributed garbage collection). In the future, we may selec
more efficient middleware implementation (e.g., KaRMI [12]
when such alternatives become more mature. Any middlewa
13

,

ry

t-

,
,
d

ty
however, will perform badly if the application is not partitioned
well and object mobility is not coordinated optimally. Therefore,
the greatest future challenge for J-Orchestra will be to develop
mechanisms that automatically infer detailed object migration
strategies in response to synchronous events. (For example, a strat-
egy could be as detailed as “when a methodfoo is called, all its
arguments and all data reachable from its arguments in up to three
indirections should migrate to the method’s execution site.”)

A common question we are asked concerns our choice of the name
“J-Orchestra”. The reason for the name is that there is a strong
analogy between application partitioning and the way orchestral
music is often composed. Many orchestral pieces are not originally
written for orchestral performance. Instead, only a piano score is
originally composed. Later, an “orchestration” process takes place
that determines which instruments should play which notes of the
completed piano score. There are many examples of orchestrating
piano music that was never intended by its composer for orchestral
performance. There are several examples of piano pieces that have
several brilliant but totally different orchestrations. With J-Orches-
tra, we provide a state-of-the-art “orchestration” facility for Java
programs. Taking into account the unique capabilities of network
nodes (instruments) we partition Java applications for harmonious
distributed execution. We believe that automatic application parti-
tioning represents a huge promise and that J-Orchestra is the first
general and scalable automatic partitioning tool.

ACKNOWLEDGMENTS

Austin (Chun Fai) Chau, Dean Pu Mao, Kane See, and Hailemele-
kot Seifu have all contributed to the J-Orchestra front-end (GUI
and profiler) tools as well as the partitioning and set up of current
J-Orchestra demo applications. Their enthusiasm helped us stay on
track.

This work has been supported by the Yamacraw Foundation, by
DARPA/ITO under the PCES program, and by a Raytheon E-Sys-
tems faculty fellowship.

REFERENCES
[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, David

Grove, and Derek Lieber, “Efficient Implementation of Java
Interfaces: Invokeinterface Considered Harmless”, in Proc.
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2001.

[2] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a
Single System Image of a JVM on a Cluster”, in Proc.
ICPP’99.

[3] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel
Jacobs, Koen Langendoen, Tim Ruhl, and M. Frans
Kaashoek, “Performance Evaluation of the Orca Shared-
Object System”,ACM Trans. on Computer Systems,
16(1):1-40, February 1998.

[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy,
and Larry Carter, “Distribution and Abstract Types in
Emerald”, inIEEE Trans. Softw. Eng., 13(1):65-76, 1987.

[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel,
“Implementation and performance of Munin”,Proc. 13th
ACM Symposium on Operating Systems Principles, pp. 152-
164, October 1991.

[6] Markus Dahm, “Doorastha—a step towards distribution
transparency”,JIT, 2000. See
http://www.inf.fu-berlin.de/~dahm/doorastha/ .

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha,The
Java Language Specification, 2nd Ed., The Java Series,
Addison-Wesley, 2000.

[8] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen
“JavaParty: A distributed companion to Java”,
http://wwwipd.ira.uka.de/JavaParty/

[9] Galen C. Hunt, and Michael L. Scott, “The Coign
Automatic Distributed Partitioning System”,3rd
Symposium on Operating System Design and
Implementation (OSDI’99), pp. 187-200, New Orleans,
1999.

[10] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black, “Fine-Grained Mobility in the Emerald System”,
ACM Trans. on Computer Systems, 6(1):109-133, Februa
1988.

[11] Nelson King, “Partitioning Applications”,DBMS and
Internet Systems magazine, May 1997. See
http://www.dbmsmag.com/9705d13.html .

[12] Christian Nester, Michael Phillipsen, and Bernhard
Haumacher, “A More Efficient RMI for Java”, in Proc.ACM
Java Grande Conference, 1999.

[13] Michael Philippsen and Matthias Zenger, “JavaParty -
Transparent Remote Objects in Java”,Concurrency:
Practice and Experience, 9(11):1125-1242, 1997.

[14] Robert W. Scheifler, and Jim Gettys, “The X Window
System”,ACM Transactions on Graphics, 5(2): 79-109,
April 1986.

[15] Robert W. Scheifler, “X Window System Protocol, Version
11”, Network Working Group RFC 1013, April 1987.

[16] Andre Spiegel, “Pangaea: An Automatic Distribution Fron
End for Java”, 4thIEEE Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS
'99), San Juan, Puerto Rico, April 1999.

[17] Andre Spiegel, “Automatic Distribution in Pangaea”,CBS
2000, Berlin, April 2000. See also
http://www.inf.fu-berlin.de/~spiegel/pangaea/

[18] Sun Microsystems, Remote Method Invocation
Specification,
http://java.sun.com/products/jdk/rmi/ , 1997.

[19] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and
Kozo Itano, “A Bytecode Translator for Distributed
Execution of ‘Legacy’ Java Software”,European
Conference on Object-Oriented Programming (ECOOP),
Budapest, June 2001.

[20] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall,
“A note on distributed computing”, Technical Report, Sun
Microsystems Laboratories, SMLI TR-94-29, November
1994.

[21] Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy
David Presotto, Rob Pike, Girija Narlikar, Sape Mullender
and Eric Grosse, “Protium, and Infrastructure for Partitione
Applications”,Eighth IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VIII). May 20—23, 2001,
Schoss Elmau Germany, pp. 41-46, IEEE Computer Socie
Press, 2001.

[22] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for
Heterogeneous Computing”,Concurrency: Practice and
Experience, 9(11):1213-1224, 1997.
14

	J-Orchestra: Automatic Java Application Partitioning
	Eli Tilevich and Yannis�Smaragdakis
	Center for Experimental Research in Computer Science (CERCS) College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332

	{tilevich,�yannis}@cc.gatech.edu
	Abstract
	J-Orchestra is an automatic partitioning system for Java programs. J-Orchestra takes as input Jav...
	We have used J-Orchestra to successfully partition several realistic applications including a com...

	1 Introduction
	2 Rewrite Strategy Overview
	2.1 Main Insights
	2.2 Handling Unmodifiable Code

	3 Rewrite Mechanism
	3.1 Classification
	Anchored Unmodifiable (System) Classes
	Anchored Modifiable (Application) Classes
	Mobile Classes

	3.2 Translation
	3.2.1 Anchored System Classes
	3.2.2 Anchored Application Classes
	3.2.3 Mobile Classes.

	3.3 Handling of Java Language Features
	3.3.1 Static Methods and Fields
	3.3.2 Inheritance
	3.3.3 Object Creation
	3.3.4 Arrays
	3.3.5 “this”
	3.3.6 Object Identity
	3.3.7 Multithreading and Synchronization
	3.3.8 Inner Classes
	3.3.9 Handling System.out, System.in, System.err, System.exit, System.properties

	4 Performance
	4.1 Optimizations
	4.1.1 Limited Rewrite
	Table 1 : J-Orchestra indirection overhead as a function of average work per method call (a billi...

	2
	35.17s
	47.52s
	35%
	4
	42.06s
	51.30s
	22%
	10
	62.5s
	73.32s
	17%
	4.1.2 Lazy Remote Object Creation
	Table 2 : Effect of lazy remote object creation and J-Orchestra indirection on total execution time

	Original time
	Indirect lazy
	Overhead
	Indirect non-lazy
	Overhead
	6.63s
	9.11s
	37.4%
	10.48s
	58.1%
	4.2 Performance Measurements
	4.2.1 Window Drawing
	Table 3 : Version 1 of window experiments

	Baseline
	2.9s
	7.2s
	6.6s
	X-Windows
	4.7s
	8.2s
	15.8s
	J-Orchestra
	3.1s
	7.7s
	6.6s
	Table 4 : Version 2 of window experiments

	Baseline
	2.7s
	7.6s
	6.8s
	X-Windows
	4.5s
	8.5s
	16.3s
	J-Orchestra
	4.9s
	8.4s
	7.7s
	4.2.2 Simple Animation
	Table 5 : Clock Experiment

	Baseline
	56 fps
	104 fps
	77 fps
	X-Windows
	20 fps
	74 fps
	33 fps
	J-Orchestra
	42 fps
	68 fps
	61 fps
	5 Related Work
	5.1 Directly Related Work
	5.2 Indirectly Related Work

	6 Status and ConclusionS
	Acknowledgments
	References
	[1] Bowen Alpern, Anthony Cocchi, Stephen Fink, David Grove, and Derek Lieber, “Efficient Impleme...
	[2] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Cl...
	[3] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M...
	[4] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Ab...
	[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Mun...
	[6] Markus Dahm, “Doorastha—a step towards distribution transparency”, JIT, 2000. See http://www....
	[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd E...
	[8] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen, “JavaParty: A distributed companion to...
	[9] Galen C. Hunt, and Michael L. Scott, “The Coign Automatic Distributed Partitioning System”, 3...
	[10] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-Grained Mobility in the Eme...
	[11] Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See ...
	[12] Christian Nester, Michael Phillipsen, and Bernhard Haumacher, “A More Efficient RMI for Java...
	[13] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Co...
	[14] Robert W. Scheifler, and Jim Gettys, “The X Window System”, ACM Transactions on Graphics, 5(...
	[15] Robert W. Scheifler, “X Window System Protocol, Version 11”, Network Working Group RFC 1013,...
	[16] Andre Spiegel, “Pangaea: An Automatic Distribution Front- End for Java”, 4th IEEE Workshop o...
	[17] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin, April 2000. See also h...
	[18] Sun Microsystems, Remote Method Invocation Specification, http://java.sun.com/products/jdk/r...
	[19] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator ...
	[20] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Te...
	[21] Cliff Young, Y. N. Lakshman, Tom Szymanski, John Reppy, David Presotto, Rob Pike, Girija Nar...
	[22] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Pr...

