
Load-time Structural Reflection in Java�

Shigeru Chiba
Institute of Information Science and Electronics

University of Tsukuba
and Japan Science and Technology Corp.

Email: chiba@is.tsukuba.ac.jp, chiba@acm.org

Abstract

The standard reflection API of Java provides the ability to introspect a program but not to al-
ter program behavior. This paper presents an extension to the reflection API for addressing this
limitation. Unlike other extensions enabling behavioral reflection, our extension called Javassist
enables structural reflection in Java. For using a standard Java virtual machine (JVM) and avoiding
a performance problem, Javassist allows structural reflection only before a class is loaded into the
JVM. However, Javassist still covers various applications including a language extension emulating
behavioral reflection. This paper also presents the design principles of Javassist, which distinguish
Javassist from related work.

1 Introduction

Java is a programming language supporting reflection. The reflective ability of Java is called the re-
flection API. However, it is almost restricted to introspection, which is the ability to introspect data
structures used in a program such as a class. The Java’s ability to alter program behavior is very limited;
it only allows a program to instantiate a class, to get/set a field value, and to invoke a method through
the API.

To address the limitations of the Java reflection API, several extensions have been proposed. Most
of these extensions enable behavioral reflection, which is the ability to intercept an operation such as
method invocation and alter the behavior of that operation. If an operation is intercepted, the runtime
systems of those extensions call a method on a metaobject for notifying it of that event. The programmer
can define their own version of metaobject so that the metaobject executes the intercepted operation with
customized semantics, which implement a language extension for a specific application domain such as
fault tolerance [9].

However, behavioral reflection only provides the ability to alter the behavior of operations in a pro-
gram but not provides the ability to alter data structures used in the program, which are statically fixed at
compile time (or, in languages like Lisp, when they are first defined). The latter ability called structural
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reflection allows a program to change, for example, the definition of a class, a function, and a record on
demand. Some kinds of language extensions require this ability for implementation and thus they can-
not be implemented with a straightforward program using behavioral reflection; complex programming
tricks are often needed.

To simply implement these language extensions, this paper presents Javassist, which is a class library
for enabling structural reflection in Java. Since portability is important in Java, we designed a new
architecture for structural reflection, which can be implemented without modifying an existing runtime
system or compiler. Javassist is a Java implementation of that architecture. An essential idea of this
architecture is that structural reflection is performed by bytecode transformation at compile-time or load
time. Javassist does not allow structural reflection after a compiled program is loaded into the JVM.
Another feature of our architecture is that it provides source-level abstraction: the users of Javassist do
not have to have a deep understanding of the Java bytecode. Our architecture can also execute structural
reflection faster than the compile-time metaobject protocol used by OpenC++ [3] and OpenJava [20].

In the rest of this paper, we first overview previous extensions enabling behavioral reflection in Java
and point out limitations of those extensions. Then we present the design of Javassist in Section 3 and
show typical applications of Javassist in Section 4. In Section 5, we compare our architecture with
related work. Section 6 is conclusion.

2 Extensions to the reflection ability of Java

The Java reflection API dose not provide the full reflective capability. It does not enable alteration of
program behavior but it only supports introspection, which is the ability to introspect data structures,
for example, inspecting a class definition. This design decision was acceptable because implementing
the full capability was difficult without a decline in runtime performance. An implementation technique
using partial evaluation has been proposed [17, 2] but the feasibility of this technique in Java has not
been clear.

However, several extensions to the Java reflection API have been proposed. To avoid performance
degradation, most of these extensions enable restricted behavioral reflection. They only allow alteration
of the behavior of specific kinds of operations such as method calls, field accesses, and object creation.
The programmers can select some of those operations and alter their behavior. The compilers or the
runtime systems of those extensions insert hooks in programs so that the execution of the selected op-
erations is intercepted. If these operations are intercepted, the runtime system calls a method on an
object (called a metaobject) associated with the operations or the target objects. The execution of the
intercepted operation is implemented by that method. The programmers can define their own version of
metaobject for implementing new behavior of the intercepted operations.

The runtime overheads due to this restricted behavioral reflection are low since only the execution
of the intercepted operations involves a performance penalty and the rest of the program runs with-
out any overheads. Especially, if hooks for the interception are statically inserted in a program during
compilation, the runtime overheads are even lowered. To statically insert hooks, Reflective Java [22]
performs source-to-source translation before compilation and Kava [21] performs bytecode-level trans-
formation when a program is loaded into the JVM. MetaXa [16, 11] internally performs bytecode-level
transformation with a customized JVM. It uses a customized just-in-time compiler (JIT) for improving
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the execution speed of the inserted hooks. This hook-insertion technique is well known and has been
applied to other languages such as C++ [4].

Although the restricted behavioral reflection is useful for implementing various language extensions,
there are some kinds of extensions that cannot be intuitively implemented with that kind of reflection.
An example of these extensions is binary code adaptation (BCA) [13], which is a mechanism for altering
a class definition in binary form to conform changes of the definitions of other classes. Suppose that
we write a program using a class library obtained from a third party. For example, our class Calendar
implements an interface Writable included in that class library:

class Calendar implements Writable {
public void write(PrintStream s) { ... }

}

The class Calendar implements method write() declared in the interface Writable.
Then, suppose that the third party gives us a new version of their class library, in which the interface

Writable is renamed into Printable and it declares a new method print(). To make our program
conform this new class library, we must edit the definitions of all our classes implementing Writable,
including Calendar:

class Calendar implements Printable {
public void write(PrintStream s) { ... }
public void print() { write(System.out); }

}

The interface of Calendar is changed into Printable and method print() is added.
BCA automates this adaptation; it automatically alters class definitions in binary form according to

a configuration file specifying how to alter them. Note that the method body of print() is identical
among all the updated classes since print() can be implemented with the functionality already pro-
vided by write() for the old version. If that configuration file is supplied by the library developer, we
can run our program without concern about evolution of the class library.

Unfortunately, implementing BCA with behavioral reflection is not intuitive or straightforward. Since
behavioral reflection cannot directly provide the ability to alter data structures such as a class definition
or construct a new data structure, these reflective computation must be indirectly implemented. For
example, the implementation of BCA with behavioral reflection defines a metaobject indirectly per-
forming the adaptation specified by a given configuration file. For the above example, this metaobject is
made to be associated with Calendar and it watches method calls on Calendar objects. If the method
print() is called, the metaobject intercepts that method call and executes the computation correspond-
ing to print() instead of the Calendar object. The metaobject also intercepts runtime type checking
so that the JVM recognizes Calendar as a subtype of Printable. Recall that Java is a statically typed
language and the original Calendar is a subtype of Writable.

The ability to alter data structures used in a program is called structural reflection, which has not been
directly supported by previous systems. Although a number of language extensions are more easily
implemented with structural reflection than with behavioral reflection, the previous systems have not
been addressing those extensions. They have been too much focused on language extensions that can be
implemented by altering the behavior of method calls and so on.
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3 Javassist

To simply implement language extensions like BCA shown in the previous section, we developed Javas-
sist, which is our extension to the Java reflection API and enables structural reflection instead of behav-
ioral one. Javassist is based on our new architecture for structural reflection, which can be implemented
without modifying an existing runtime system or a compiler.

3.1 Implementations of structural reflection

Structural reflection is the ability to allow a program to alter the definitions of data structures such as
classes and methods. It has been provided by several languages such as Smalltalk [10], ObjVlisp [6],
and CLOS [14]. These languages implement structural reflection with support mechanisms embedded
in runtime systems. Since the runtime systems contain internal data representing the definitions of data
structures such as a class, the support mechanisms allow a program to directly read and change those
internal data and thereby execute structural reflection on the correspondent data structures.

We could not accept this implementation technique for Javassist since it needs to modify a standard
JVM but portability is important in Java. Furthermore, a naive application of this technique to Java
would cause serious performance degradation of the JVM because this technique makes it difficult for
runtime systems to employ optimization techniques based on static information of executed programs.
Since a program may be altered at runtime, efficient dynamic recompilation is required for redoing
optimization on demand. For example, method inlining is difficult to perform. If an inlined method is
altered at runtime with structural reflection, all the inlined code must be updated. To do this, the runtime
system must record where the code is inlined. This will spend a large amount of memory space. Another
example is the “v-table” technique used for typical C++ implementations [8]. This technique statically
constructs method dispatch tables so that invoked methods are quickly selected with a constant offset in
the tables. If a new method is added to a class at runtime, then the dispatch tables may be updated and
all offsets in the tables may be recomputed. Since the dynamic recompilation technique has been used
so far for gradually optimizing “hot spots” of compiled code at runtime [12], it has been assuming that a
program is never changed at runtime. Effectiveness of dynamic recompilation without this assumption
is an open question.

Another problem is correctness of types. Since Java is a statically typed language, a variable of type
X must be bound to an object of X or a subclass Y of X. If a program can freely access and change the
internal data of the JVM, it may dynamically change the super class of Y from X to another class. This
change causes a type error for the binding between a variable of type X and an object of Y. To address
this problem, extra runtime type checks or restrictions on the range of structural reflection are needed.

3.2 Load-time structural reflection

To avoid the problems mentioned above, we designed a new architecture for structural reflection; it does
not need to modify an existing runtime system or a compiler. On the other hand, it enables structural
reflection only before a program is loaded into a runtime system, that is, at load time. Javassist is a
class library enabling structural reflection based on this architecture. In Java, the bytecode obtained by
compilation of a program is stored in class files, each of which corresponds to a distinct class. Javassist
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performs structural reflection by translating alterations by structural reflection into equivalent bytecode
transformation of the class files. After the transformation, the modified class files are loaded into the
JVM and then no alterations are allowed after that. Thereby, Javassist can be used with a standard JVM,
which may use various optimization techniques.

Javassist is used with a user class loader. Java allows programs to define their own versions of class
loader, which fetch a class file from a not-standard resource such as a network. A typical definition of
the class loader is as follows:

class MyLoader extends ClassLoader {
public Class loadClass(String name) {
byte[] bytecode = readClassFile(name);
return resolveClass(defineClass(bytecode));

}

private byte[] readClassFile(String name) {
// read a class file from a resource.

}
}

The methods defineClass() and resolveClass() are inherited from ClassLoader. They re-
quest the JVM to load a class constructed from the bytecode given as an array of byte. The returned
value is a Class object representing the loaded class. Once a class X is manually loaded with an in-
stance of MyLoader, all classes referenced by that class X are loaded through that class loader. The
JVM automatically calls loadClass() on that class loader for loading them on demand.

Javassist helps readClassFile() shown above obtain the bytecode of a requested class. It can be
regarded as a class library for reading bytecode from a class file and altering it. However, unlike similar
class libraries such as the JavaClass API [7] and JOIE [5], Javassist provides source-level abstraction so
that it can be used without knowledge of bytecode or the data format of the class file. Also, Javassist
was designed to make it difficult to wrongly produce a class file rejected by the bytecode verifier of the
JVM.

3.3 The Javassist API

We below present the overview of the Javassist API.

Reification and Reflection:

The first step of the use of Javassist is to create a CtClass (compile-time class) object representing the
bytecode of a class loaded into the JVM. This step is for reifying the class to make it accessible from a
program. If stream is an InputStream for reading a class file (from a local disk, memory, a network,
etc.), then:

CtClass c = new CtClass(stream);

creates a new CtClass object representing the bytecode of the class read from the class file, which
contains enough symbolic information to reify the class. Also, the constructor of CtClass can receive a
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Table 1: Methods in CtClass for introspection

Method Description
String getName() gets the class name

int getModifiers() gets the class modifiers such as public
boolean isInterface() determines whether this object represents

a class or an interface
CtClass getSuperclass() gets the super class

CtClass[] getInterfaces() gets the interfaces
CtField[] getDeclaredFields() gets the fields declared in the class
CtMethod[] getDeclaredConstructors() gets the constructors declared in the class
CtMethod[] getDeclaredMethods() gets the methods declared in the class

String class name instead of an InputStream. If a String class name is given, Javassist searches a class
path and finds an InputStream for reading a class file.

One can call various methods on the CtClass object for introspecting and altering the class definition.
Changes of the class definition are reflected on the bytecode represented by that object. To obtain the
bytecode for loading the altered class into the JVM, method toBytecode() is called on that object:

byte[] bytecode = c.toBytecode();

Loading the obtained bytecode into the JVM is regarded as the step for reflecting the CtClass object
on the base level. Javassist provides several other methods for this step. For example, method com-
pile() writes bytecode to a given output stream such as a local file and a network. Method load()
directly loads the class into the JVM with a class loader provided by Javassist. It returns a Class object
representing the loaded class. Recall that Class is included in the Java reflection API while CtClass is
in Javassist.

Note that Javassist does not provide any framework for specifying how and what classes are processed
with Javassist. The programmer of the class loader has freedom with respect to this framework. For
example, the class loader may process classes with Javassist only if they are specified by a configuration
file read at the beginning. It may process them according to a hard-coded algorithm.

Javassist allows a user class loader to define a new class from scratch without reading any class file.
This is useful if a program needs to dynamically define a new class on demand. To do this, a CtClass
object must be created as follows:

CtClass c2 = new CtNewClass();

The created object c2 represents an empty class that has no methods or fields although methods and
fields can be added to the class later through the Javassist API shown below. If toBytecode() is
called on this object, then it returns the bytecode corresponding to that empty class.

Introspection:

Javassist provides several methods for introspecting the class represented by a CtClass object. This part
of the Javassist API is compatible with the Java reflection API except that Javassist does not provide
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Table 2: Methods in CtField and CtMethod for introspection

Method in CtField Description
String getName() gets the field name
CtClass getDeclaringClass() get the class declaring the field

int getModifiers() gets the field modifiers such as public
CtClass getType() get the field type
Method in CtMethod Description
String getName() gets the method name
CtClass getDeclaringClass() get the class declaring the method

int getModifiers() gets the method modifiers such as public
CtClass[] getParameterTypes() gets the types of the parameters
CtClass[] getExceptionTypes() gets the types of the exceptions that the

method may throw
boolean isConstructor() returns true if the method is a constructor
boolean isClassInitializer() returns true if the method is a class initializer

methods for creating an instance or invoking a method because these methods are meaningless at load
time. Table 1 lists selected methods for introspection.

CtClass objects returned by getSuperclass() and getInterfaces() are constructed from
class files found on a class path. They represent the original class definitions and thus accept only
introspection but not alteration. To alter a class, another CtClass object must be explicitly created
with the new operator. Modifications to this object have no effect on the CtClass object returned by
getSuperclass() or getInterfaces(). For example, suppose that a class C inherits from a
class S. If a CtClass object for S is created with new and a method m() is added to that object, this
modification is not reflected on the object returned by getSuperclass() on a CtClass object for C.
The class C inherits m() from S only if the CtClass object created with new is converted into bytecode
and loaded into the JVM.

The information about fields and methods is provided by objects separate from the CtClass object; it
is provided by CtField objects obtained by getDeclaredFields() and CtMethod objects obtained
by getDeclaredMethods(), respectively. The information about a constructor is also provided by
a CtMethod object. Table 2 lists methods in CtField and CtMethod for introspection.

Alteration:

A difference between Javassist and the standard Java reflection API is that Javassist provides methods for
altering class definitions. Several methods for alteration are defined in CtClass (Table 3). These meth-
ods are categorized into methods for changing class modifiers, methods for changing class hierarchy,
and methods for adding a new member. They were carefully selected to satisfy our design goals.

Our design goals are three. (1) The first goal is to provide source-level abstraction for programmers.
Javassist was designed so that programmers can use it without knowledge of the Java bytecode. (2)
The second goal is to execute structural reflection as efficiently as possible. (3) The last goal is to help
programs perform structural reflection in a safe manner in terms of types.
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Table 3: Methods for alteration

Method in CtClass Description
void bePublic() make the class public
void beAbstract() make the class abstract
void notFinal() remove the final modifier from the class
void setName(String name) change the class name
void setSuperclass(CtClass c) change the super class
void setInterfaces(CtClass[] i) change the interfaces
void addConstructor(...) add a new constructor
void addDefaultConstructor() add the default constructor
void addAbstractMethod(...) add a new abstract method
void addMethod(...) add a new method
void addWrapper(...) add a new wrapped method
void addField(...) add a new field

Method in CtField Description
void bePublic() make the field public

Method in CtMethod Description
void bePublic() make the method public
void instrument(...) modify a method body
void setBody(...) substitute a method body
void setWrapper(...) substitute a method body

As for the first goal, the most significant design decision was how programmers specify a method
body. Suppose that a new method is added to a class. If a sequence of bytecode is used for specifying the
body of that method, the programmers would get great flexibility but have to learn details of bytecode.
To achieve the first goal, Javassist allows to copy a method body from another existing method although
this design decision restricts the flexibility of the added method. The copied bytecode sequence is
adjusted to fit the destination method. For example, the bytecode for accessing a member through the
this variable contains a symbolic reference to the type of this. This reference is replaced with one
to the class declaring the destination method.

Despite the well-known quasi-equivalence between Java source code and bytecode, the correspon-
dence between source-level and bytecode-level alterations are not straightforward. Hiding the gap be-
tween the two levels from programmers is also a part of the first goal.

For example, setName() renames a class but it also substitutes the new name for all occurrences
of the old name in the definition of that class, including method signatures and bodies. Modifying a
single constant-pool item never performs this substitution. If a constructor calls another constructor in
the same class (if it executes this()), then the bytecode of the former constructor is modified since
the bytecode contains a symbolic reference to the name of the class declaring the latter constructor. This
reference must be modified to indicate the new name.
setSuperclass() performs similar substitution. If it is called, all occurrences of the old super

class name is replaced with a new name and all constructors are modified so that they call a constructor
in the new super class. However, there is an exception to this substitution. If the name of the original
super class is java.lang.Object (the root of the class hierarchy), setSuperclass() does not per-
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form the substitution except it modifies constructors. This is because java.lang.Object is often used for
representing any class. For example, although addElement() in java.util.Vector takes a parameter
of class java.lang.Object, which is the super class of java.util.Vector, this never means that addEle-
ment() takes an instance of the super class.

The second design goal is to reduce overheads due to class loading with Javassist. Since we will
use Javassist for implementing a mobile-agent system, in which Javassist inserts security-check code
into bytecode, Javassist must transform bytecode received through a network as efficiently as possible.
Mobile agents frequently move among hosts and thus we cannot ignore the loading time of the bytecode
implementing the mobile agents.

Our design decision on how programmers specify a method body was influenced by the second goal
as well as the first one. Javassist does not use source code for specifying the body of an added method.
If source code is used, it must be compiled on the fly when a class is loaded into the JVM. A naive
implementation of this source-code approach would produce a complete class definition including the
added method at source level and then compile it with a Java compiler such as javac. As we show later,
however, this implementation implies serious performance penalties. To achieve practical efficiency, we
need a special compiler that can quickly compile only a method body. We did not adopt the source-
code approach because of limitations of our resources. Instead, Javassist allows to copy a pre-compiled
method body from a class to another. This approach does not imply overheads due to source-code
compilation at load time.

The third design goal is to prevent programs to wrongly produce a class including type incorrectness.
To achieve this goal, Javassist allows only limited kinds of alteration of class definitions. In general,
reflective systems should impose some restrictions on structural reflection so that programs do not falsely
collapse themselves with reflection. Suppose that a reflective system allows to remove a field from a class
at runtime. If there are already instances of that class, is it appropriate that the system simply discards
the value of the removed field of those instances?

Since erroneous bytecode produced with Javassist is rejected by the bytecode verifier, it can never
damage the JVM. However, restricting the reflective capability of Javassist is still necessary because it
is often awkward to correct a program producing erroneous bytecode. For this reason, Javassist does not
provide methods for removing a method or a field from a class because they cause type incorrectness if
there is a method accessing the removed method or field. Javassist also imposes restrictions on the class
passed to setSuperclass(), which is a method for changing a super class. The new super class
must be a subclass of the original super class since there may be methods that implicitly cast an instance
of that class to the original super class. Of course, the new super class must not be final. Further-
more, Javassist does not provide a method for changing the parameters of a method. Programmers are
recommended to add a new method with the same name but with different parameters.

Adding a new member:

Javassist provides methods for adding a new method to a class. To avoid the abstraction and performance
problems mentioned above, addMethod() receives a CtMethod object, which specifies a method
body. The signature of addMethod() is as shown below:

void addMethod(CtMethod m, String name, ClassMap map)
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name specifies the name of the added method. The method body is copied from a given method m. Since
a method body is copied from an existing compiled method, no source-code compilation is needed at
load time or no raw bytecode is given to addMethod(). Programmers can describe a method body
in Java and compile it in advance. Javassist reads the bytecode of the compiled method and adds it to
another class. This improves execution performance of Javassist since a compiler is not run at load time.

When a method body is copied, some class names appearing in the body can be replaced according to
a hash table map.1 For example, programmers can declare a class XVector:

public class XVector extends java.util.Vector {
public void add(X e) {
super.addElement(e);

}
}

and copy the method add() into a class StringVector:

CtMethod m = /* method add() in XVector */;
CtClass c = /* class StringVector */;
ClassMap map = new ClassMap();
map.put("X", "java.lang.String");
c.addMethod(m, "addString", map);

The class name java.lang.String is substituted for all occurrences of the class name X in add(). The
added method is as follows:

public void addString(java.lang.String e) {
super.addElement(e);

}

Javassist provides another method addWrapper() for adding a new method. It allows more generic
description of a method body:

void addWrapper(int modifiers, CtClass returnType, String name,
CtClass[] parameters, CtClass[] exceptions,
CtMethod body, ConstParameter constParam)

The first five parameters specify the modifiers, the return type, the method name, the parameter types,
and the exceptions that the method may throw. The body of the added method is copied from the method
specified by body. No matter what the signature of the added method is, the method specified by body
must have the following signature:

Object m(Object[] args, value-type constValue)

1At least, addMethod() replaces all occurrences of the name of the class declaring the copied method. Even if that class
name does not appear at source level, the corresponding bytecode may include references to it.
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To fill the gap between this signature and the signature of the added method, addWrapper() implicitly
wraps the copied method body in glue code, which constructs an array of actual parameters passed to
the added method and assigns it to args before executing the copied method body. The glue code also
sets constValue to a constant value specified by constParam passed to addWrapper(). In the
current version of Javassist, an integer value or a String object can be specified for the constant value.
For example, this constant value can be used to pass the name of the added method.

The value returned by the copied method body is an Object object. The glue code also converts it
into a value of the type specified by returnType. Then it returns the converted value to the caller to
the added method. If type conversion fails, then an exception is thrown. Although methods added by
addWrapper() involve runtime overheads due to type conversion, a single method body can be used
as a template of multiple methods receiving a different number of parameters. Examples of the use of
addWrapper() are shown in Section 4.

Javassist also provides a method for adding a new field to a class:

void addField(int modifiers, CtClass type, String fieldname,
String accessor, FieldInitializer init)

If accessor is not null, this method also adds an accessor method, which returns the value of the
added field. The name of the accessor is specified by accessor. Moreover, the last parameter init
specifies the initial value of the added field. The initial value is either one of parameters passed to a
constructor, a newly created object, or the result of a call to a static method.

Altering a method body:

Although Javassist does not allow to remove a method from a class, it provides methods for changing a
method body. setBody() and setWrapper() in CtMethod substitute a given method body for an
original body:

void setBody(CtMethod m, ClassMap map)
void setWrapper(CtMethod m, ConstParameter param)

They correspond to addMethod() and addWrapper() respectively. setBody() copies a method
body from a given method m. Some class names appearing in the body are replaced with different names
according to map. setWrapper() also copies a method body from m but it wraps the copied body in
glue code. The signature of m must be:

Object m(Object[] args, value-type constValue)

Javassist also provides a method for modifying expressions in a method body. instrument() in
CtMethod performs this modification:

void instrument(CodeConverter converter)
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Table 4: Methods in CodeConverter

Method Description
void redirectFieldAccess() change a field-access expression to access

a different field.
void replaceNew() replace a new expression with a static method

call.
void replaceFieldRead() replace a field-read expression with a static

method call.
void replaceFieldWrite() replace a field-write expression with a static

method call.

The parameter converter specifies how to instrument a method body. The CodeConverter object
can perform various kinds of instrumentation. Table 4 lists methods provided by the current implemen-
tation of Javassist. They direct a CodeConverter object to replace a specific kind of expressions with
hooks, which invoke static methods for executing the expressions in a customized manner. The idea
of CodeConverter came from C++’s operator overloading. CodeConverter was designed for safely
altering the behavior of operators such as new and . (dot) independently of the context.

For example, expressions for instantiating a specific class can be replaced with expressions for calling
a static method. Suppose that variables xclass and yclass represent class X and Y, respectively.
Then a program:

CtMethod m = ... ;
CodeConverter conv = new CodeConverter();
conv.replaceNew(xclass, yclass, "create");
m.instrument(conv);

instruments the body of the method represented by the CtMethod object m. All expressions for instan-
tiating the class X such as:

new X(3, 4);

are translated into expressions for calling a static method create() declared in the class Y:

Y.create(3, 4);

The parameters to the new expression are passed to the static method.

Reflective class loader:

The class loader provided by Javassist allows a loaded program to control the class loading by that
class loader. If a program is loaded by Javassist’s class loader L and it includes a class C, then it can
intercept the loading of C by L to self-reflectively modify the bytecode of C (Figure 1). For avoiding
infinite recursion, while the loading of a class is intercepted, further interception is prohibited. The
load() method in CtClass requires that a program is loaded by Javassist’s class loader although the
other methods work without Javassist’s class loader.
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class C

bytecode

class X
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Figure 1: Javassist’s class loader allows self-reflective class loading

Java’s standard class loader never allows this self-reflective class loading for security reasons. If it is
allowed, a program may change some private fields to public ones at load time for reading hidden
values. Furthermore, in Java, if a program creates a class loader and loads a class C with that class
loader, the loaded class is regarded as a different one from the class denoted by the name C appearing in
that program. The latter class is loaded by the class loader that loaded the program.

Using Javassist without a class loader:

Javassist can be used without a user class loader. There are three kinds of usage of Javassist: with a user
class loader, with a web server, and off line.

For security reasons, an applet is usually prohibited from using a user class loader. However, we can
write an applet working with Javassist if we use a web server as a replacement of a user class loader.
Since classes used in an applet are loaded from a web server into the JVM of a web browser, we can
customize the web server so that it runs Javassist for processing the classes before sending them to the
web browser. Javassist includes a simple web server written in Java as a basis for such customization.
We can extend it to perform structural reflection with Javassist. The program of the customized web
server would be as follows:

for (;;) {
receive an http request from a web browser.
CtClass c = new CtClass(the requested class);
do structural reflection on c if needed.
byte[] bytecode = c.toBytecode();
send the bytecode to the web browser.

}

Before sending a requested class to a web browser, it performs structural reflection on the class according
to the algorithm, for example, given as a configuration file.

Another usage of Javassist is “off line”. We can perform structural reflection on a class and overwrite
the original class file of that class with the bytecode obtained as the result. The altered class can be
later loaded into the JVM without a user class loader. The following is an example of the off-line use of
Javassist:

CtClass c = new CtClass("Rectangle");
do structural reflection on c if needed.
c.compile(); // writes bytecode on the original class file.
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This program performs structural reflection on class Rectangle and overwrites the class file of that class
with the bytecode obtained by c.toBytecode().

4 Examples

This section shows three applications of Javassist. We illustrate that Javassist can be used to implement
non-trivial alteration required by these applications despite the level of the abstraction.

4.1 Binary Code Adaptation

The mechanism of binary code adaptation (BCA) [13] automatically alters class definitions according to
a file written by the users, called a delta file:

delta class implements Writable {
rename Writable Printable;
add public void print() { write(System.out); }

}

This delta file specifies adaptation that we mentioned in Section 2.
If Javassist is used, the implementor of BCA has only to write a parser of delta file and a user class

loader performing adaptation with Javassist. For example, the parser translates the delta file shown above
into the Java program shown below:

class Exemplar implements Printable {
public void write(PrintStream s) { /* dummy */ }
public void print() { write(System.out); }

}

class Adaptor {
public void adapt(CtClass c) {
CtMethod printM = /* method print() in Exemplar */;
CtClass[] interfaces = c.getInterfaces();
for (int i = 0; i < interfaces.length; ++i)

if (interfaces[i].getName().equals("Writable")) {
interfaces[i] = CtClass.forName("Printable");
c.setInterfaces(interfaces);
c.addMethod(printM, new ClassMap());
return;

}
}

}

The class Exemplar is compiled together with Adapter in advance so that adapt() can obtain a
CtMethod object representing print(). adapt() uses the reification and introspection API of
Javassist for obtaining it. It first constructs a CtClass object representing Exemplar and then obtains
the CtMethod object by getDeclaredMethods() in CtClass. The class file for Exemplar is
automatically found by Javassist on the class path used for loading Adapter.
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The user class loader calls adapt() in Adaptor whenever a class is loaded into the JVM. It cre-
ates a CtClass object representing the loaded class and calls adapt() with that object. The method
adapt() performs adaptation if the loaded class implements Writable. Then the user class loader
converts the CtClass object into bytecode and loads into the JVM.

Note that this implementation is more intuitive than the implementation with behavioral reflection.
Moreover, it is simpler than the implementation without reflection since the implementor does not have
to care about low-level bytecode transformation. If the users of BCA can directly write the classes
Exemplar and Adaptor instead of a delta file, then the implementation would be much simpler since
we do not need the parser of delta file.

4.2 Behavioral reflection

Behavioral reflection enabled by MetaXa [16, 11] and Kava [21] can be implemented with an approxi-
mately 750-line program (including comments) using Javassist. A key idea of their implementations is
to insert hooks in a program when a class is loaded into the JVM. We below see an overview of a user
class loader performing this insertion with Javassist.

Let a metaobject be an instance of MyMetaobject, which is a subclass of Metaobject:

public class MyMetaobject extends Metaobject {
public Object trapMethodcall(String methodName, Object[] args) {
/* called if a method call is intercepted. */ }

public Object trapFieldRead(String fieldName) {
/* called if the value of a field is read. */ }

public void trapFieldWrite(String fieldName, Object value) {
/* called if a field is set. */ }

}

If field accesses and method calls on an instance of C:

public class C {
public int m(int x) { return x + f; }
public int f;

}

are intercepted by the metaobject, then the user class loader alters the definition of the class C into the
following:2

public class C implements Metalevel {
public int m(int x) { /* notify a metaobject */ }
public int f;
private Metaobject _metaobject = new MyMetaobject(this);
public Metaobject _getMetaobject() { return _metaobject; }
public int orig_m(int x) { return x + f; }
public static int read_f(Object target) {

/* notify a metaobject */ }
public static void write_f(Object target, int value) {

/* notify a metaobject */ }
}

2For simplicity, this implementation ignores static members although extending the implementation for handling
static members is possible within the ability of Javassist.
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class Exemplar {
private Metaobject _metaobject;

public Object trap(Object[] args, String methodName) {
return _metaobject.trapMethodcall(methodName, args);

}

public static Object trapRead(Object[] args, String name) {
Metalevel target = (Metalevel)args[0];
return target._getMetaobject().trapFieldRead(name);

}

public static Object trapWrite(Object[] args, String name) {
Metalevel target = (Metalevel)args[0];
Object value = args[1];
target._getMetaobject().trapFieldWrite(name, value);

}
}

Figure 2: Class Exemplar

where the interface Metalevel declares the method getMetaobject().
This alteration can be performed within the ability of Javassist. The interface Metalevel is added by

setInterfaces() in CtClass. The field metaobject and the accessor getMetaobject()
are added by addField() in CtClass.

For intercepting method calls, the user class loader first makes a copy of every method in C by calling
addMethod() in CtClass. For example, it adds orig m()3 as a copy of m(). Then it replaces the
body of every method in C with a copy of the body of the method trap() in Exemplar (see Figure 2).
This modification is performed by setWrapper() in CtMethod. The gap between the signatures of
m() and trap() is filled by setWrapper(). The substituted method body notifies a metaobject of
interception. The first parameter args is a list of actual parameters and the second one name is the
name of the copy of the original method such as "orig m". These two parameters are used for the
metaobject to invoke the original method through the Java reflection API.

For intercepting field accesses, the user class loader instruments the bodies of methods in all classes.
All accesses to a field f in C are translated into calls to a static method read f() or write f().
This instrumentation is performed by instrument() in CtMethod and replaceFieldRead()
and replaceFieldWrite() in CodeConverter. The methods read f() and write f() notify
a metaobject of the accesses. They are added by addWrapper() in CtClass as copies oftrapRead()
and trapWrite() in Exemplar. The gap between the signatures of read f() (or write f()) and
trapRead() (or trapWrite()) is filled by addWrapper(). For example, actual parameters to
read f() are converted into the first parameter args to trapRead(). The second parameter name
to trapRead() is the name of the accessed field such as "f".

3If a method name is overloaded, a copy of each method must be given a different name such as orig m1(), orig m2(),
...
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4.3 Remote method invocation

Generating stub code for remote method invocation is another application of Javassist. A Java pro-
gram cannot directly call a method on a remote object on a different computer. It needs the Java RMI
tools generating stub code, which translates a method call into lower-level network data transfer such
as TCP/IP communication. However, the Java RMI tools are compile-time ones; a program must be
processed by the RMI compiler, which generates and saves stub code on a local disk. Also, a program
using the Java RMI must be subject to a protocol (i.e. API) specified by the Java RMI.

Javassist allows programmers to develop their own version of the RMI tools, which specify a cus-
tomized protocol and produce stub code at either compile-time or even runtime. Suppose that an applet
needs to call a method on a Counter object on a web server written in Java. For remote method invoca-
tion, the applet needs stub code defining a proxy object of the Counter object, which has the same set
of methods as the Counter object. If the Counter object has a method setCount(), the proxy object
also has a method setCount() with the same signature. However, the method on the proxy object
serializes given parameters and sends them to the web server, where setCount() is invoked on the
Counter object with the received parameters.

This stub code can be generated at runtime with Javassist at the server side and it can be sent on
demand to the applet side. The applet programmer can easily write the applet without concern about
low-level network programming. The stub code for accessing the Counter object is as follows:

public class ProxyCounter {
private RmiStream rmi;
public ProxyCounter(int objectRef) {
rmi = new RmiStream(objectRef);

}
public int setCount(int value) { /* remote method invocation */ }

}

An instance of ProxyCounter is a proxy object. An RmiStream object handles low-level network
communication. The class RmiStream is provided by a runtime support library.

ProxyCounter can be defined within the confines of Javassist. The field rmi is added by addField()
in CtClass and the initialization of rmi in a constructor can be specified by a FieldInitializer object
passed to addField().

The method setCount() is added by addWrapper() in CtClass as a copy of the method in-
voke() in Exemplar shown below:

class Exemplar {
private RmiStream rmi;
Object invoke(Object[] args, String methodName) {
return rmi.rpc(methodName, args);

}
}

The gap between the signatures of setCount() and invoke() is filled by addWrapper(). If
setCount() is called, the actual parameter value is converted into an array of Object and as-
signed to args. methodName is set to a method name "setCount"4 . Then rpc() is called on the

4If a method name is overloaded, this should be setCount1, setCount2, ... for distinction.
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RmiStream object for serializing the given parameters and sends them to the web server. Note that the
parameters can be serialized within the ability of the standard Java if they are converted into an array of
Object.

Stub code generation is another example, which is not straightforward to implement with behavioral
reflection. In a typical implementation with behavioral reflection, a proxy object is an instance of the
class Counter although all method calls on the proxy object are intercepted by a metaobject and for-
warded to a remote object; the class ProxyCounter is not produced. Therefore, if the proxy object
is created, a constructor declared in Counter is called and may cause fatal side-effects since the class
Counter is defined as a class at the server side but the proxy object is not at that side.

5 Related Work

Reflection in Java:

MetaXa [16, 11] and Kava [21] enable behavioral reflection in Java whereas Javassist enables structural
reflection. They are suitable for implementing different kinds of language extensions. However, Javassist
indirectly covers applications of MetaXa and Kava since a class loader providing functionality equivalent
to MetaXa and Kava can be implemented with Javassist as we showed in Section 4.2.

Although Kava performs bytecode transformation of class files before the JVM loads them as Javassist
does, they only insert hooks for interception in bytecode but do not run metaobjects at that time. They
enable reflection at runtime and their ability is not structural reflection but the restricted behavioral
reflection.

The Java reflection API was recently extended in the JDK 1.3 beta to partially enable behavioral
reflection [19]. The new API allows a program to dynamically define a proxy class implementing given
interfaces. An instance of this proxy class delegates all method invocations to another object through a
type-independent interface.

Javassist is not the first system enabling structural reflection in Java. For example, Kirby et al proposed
a system enabling structural reflection (they called it linguistic reflection) in Java although their system
only allows to dynamically define a new class but not to alter a given class definition at load time [15].
With their system, a Java program can produce a source file of a new class, compile it with an external
compiler such as javac, and load the compiled class with a user class loader. They reported that their
system could be used for defining a class optimized for a given runtime condition.

Compile-time metaobject protocol:

The compile-time metaobject protocol [3] is another architecture enabling structural reflection without
modifying an existing runtime system. OpenJava [20] is a Java implementation of this architecture. As
Javassist does, it restricts structural reflection within the time before a class is loaded into the JVM al-
though it was designed mainly for off-line use at compile time. However, OpenJava is source-code basis
although Javassist is bytecode basis; OpenJava reads source code for creating an object representing a
class, a method, or a field. Alteration to the object is translated into corresponding transformation of
the source code. The bytecode for the altered class is obtained by compiling the modified source code.
Since OpenJava is source-code basis, it can deal with syntax extensions within a framework of structural
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reflection. For example, one can extend the syntax of class declaration and make it possible to add an
annotation to a class declaration.

On the other hand, the source-code basis means that OpenJava needs the source file of every processed
class whereas Javassist needs only a class file (compiled binary). This is a disadvantage because source
files are not always available if the class is provided by a third party. OpenJava also involves a perfor-
mance overhead due to handling source code; the source file of every class must be parsed for reification
and compiled for reflection. Although this overhead is compensation for the capability for fine-grained
transformation of source code (including syntax extension), it is not negligible if OpenJava is used by
a class loader for altering a loaded class. Some kinds of applications such as a mobile agent system do
not need fine-grained transformation but fast class loading.

Although the implementations of OpenJava or Javassist have not been tuned up, the performance dif-
ference between OpenJava and Javassist is notable with respect to reification and reflection. If a class
loader can be implemented with either OpenJava or Javassist, Javassist achieves shorter loading time.
To show this performance difference, we compared Javassist and OpenJava with two small applications.
We implemented BCA 5 and behavioral reflection presented in Section 4 with both Javassist and Open-
Java and we measured the time needed for altering a given class with each implementation. For fair
comparison, the implementations with Javassist write modified class files back on a local disk.

Table 5 lists the results. The execution time is the average of five continuous repetitions, which do not
include the first repetition. Since a program is gradually loaded into the JVM during the first repetition,
the first one is tremendously slow. For compiling a modified source file, OpenJava uses a compiler
provided by the Sun JDK for Solaris. However, it never uses the javac command since it starts the
compiler in a separate process; instead, it directly runs the compiler (sun.tools.javac) on the same
JVM.

Although the sizes of the programs implementing the applications are almost equal between Javassist
and OpenJava, Javassist processed a class more than ten times faster than OpenJava. Note that the
execution time by Javassist is shorter than the time needed only for compiling a modified source file.
This is because Javassist can move compilation penalties to an earlier stage. Even a method body is not
compiled while Javassist is running; it is pre-compiled in advance and the resulting bytecode is directly
copied to a target class at run time.

Bytecode translators:

Bytecode translators such as JOIE [5] and the JavaClass API [7] provide a functionality similar to Javas-
sist. They enable a Java program to alter a class definition at load time. However, they are toolkits
for directly dealing with bytecode, that is, the raw data structure of a class file. For example, classes
included in JOIE are ClassInfo, Code, and Instruction. They show that JOIE was designed for ex-
perienced programmers who have a deep understanding of the Java bytecode and want to implement
complex transformation. On the other hand, Javassist was designed to be easy to use; it does not require
programmers to have knowledge of the Java bytecode but instead it provides source-level abstraction
for manipulating bytecode in a relatively safe manner. Although a range of instrumentation of a method
body is restricted, we showed that Javassist can be used to implement non-trivial applications. Javassist

5Of course, the implementation of BCA with OpenJava does not modify a class file in binary form. It emulates equivalent
adaptation at source-code level.
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Table 5: Performance comparison between Javassist and OpenJava

execution program original modified
time size source class file class file

(msec) (lines) (lines) (bytes) (bytes)
BCA Javassist 42 26 24 372 551

OpenJava 543 (172y) 17 24 548
Reflection Javassist 142 205 35 946 3932

OpenJava 4108 (302y) 247 35 2244
Sun JDK 1.2.2 (HotSpot VM 1.0.1), UltraSPARC II 300MHz
ycompilation time by sun.tools.javac (Java compiler).

can be regarded as a front end for easily and safely using a bytecode translator like JOIE; it is not a
replacement of the bytecode translators.

Using bytecode instrumentation for implementing a reflective facility is a known technique in Smalltalk
[1]. A uniqueness of Javassist against this is the design of the API providing source-level abstraction.
The Javassist API was carefully designed to avoid wrongly producing a class definition containing type
incorrectness.

Others:

OpenJIT [18] is a just-in-time compiler that allows a Java program to control how bytecode are compiled
into native code. It provides better flexibility than Javassist with respect to instrumenting a method body
while OpenJIT does not allow to add a new method or field to a class. However, using OpenJIT is more
difficult than using Javassist because OpenJIT requires programmers to have knowledge of both the Java
bytecode and native code. Although OpenJIT can be used without knowledge of the Java bytecode if
programmers use a mechanism of OpenJIT for translating bytecode into a parse tree of an equivalent
Java program, overheads due to that translation has not been reported.

The idea of enabling reflection only at load time for avoiding performance problems is found in the
CLOS MOP [14]. For example, the CLOS MOP allows a program to alter the algorithm of determining
the super classes of a given class but the super classes are statically determined when the class is loaded;
the program cannot dynamically change the super classes at runtime.

Some readers may think that Javassist is very similar to BCA. However, Javassist was designed for
a wider range of applications than BCA, which is specialized for on-line class adaptation. BCA only
allows to modify a given class but not to dynamically define a new class from scratch. On the other
hand, BCA allows programmers to describe the algorithm of adaptation in declarative form.

6 Conclusion

This paper presented Javassist, which is an extension to the Java reflection API. Unlike other extensions,
it enables structural reflection in Java; it allows a program to alter a given class definition and to dynam-
ically define a new class. A number of language extensions are more easily implemented with structural
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reflection than with behavioral reflection.
For avoiding portability and performance problems, the design of Javassist is based on our new archi-

tecture for structural reflection. Javassist performs structural reflection by instrumenting bytecode of a
loaded class. Therefore, it can be used with a standard JVM and compiler although structural reflection
is allowed only before a class is loaded into the JVM, that is, at load time. Since a standard JVM is used,
the classes processed by Javassist are subject to the bytecode verifier and the SecurityManager of Java.
Javassist never breaks security guarantees given by Java.

The followings are important features of Javassist:

� Javassist is portable. It is implemented in only Java without native methods and it runs with a
standard JVM. It does not need a platform-dependent class library. Portability is significant in
Java programming.

� Javassist provides source-level abstraction for manipulating bytecode in a safe manner while byte-
code translators, such as JOIE [5] and the JavaClass API [7], provide no higher-level abstraction.
The users of Javassist do not have to have a deep understanding of the Java bytecode or to be
careful for avoiding wrongly making an invalid class rejected by the bytecode verifier.

� Javassist never needs source code whereas OpenJava [20], which is another system for structural
reflection with source-level abstraction, does. Since OpenJava performs structural reflection by
transforming source code, it must parse and compile source code for reifying and reflecting a class.
Thus a class loader using Javassist can load a class faster than one using OpenJava. However,
OpenJava enables fine-grained manipulation of class definitions so that the resulting definitions
may be smaller and more efficient than ones by Javassist.

The architecture that we designed for Javassist can be applied to other object-oriented languages if
a compiled binary program includes enough symbolic information to construct a class object. How-
ever, the API must be individually designed for each language so that it allows a program to alter class
definitions in a safe manner with respect to the semantics of that language.
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