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Abstract

The standard reflection API of Java provides the ability to introspect a program but not to al-
ter program behavior. This paper presents an extension to the reflection API for addressing this
limitation. Unlike other extensions enabling behaviora reflection, our extension called Javassist
enables structural reflection in Java. For using a standard Java virtual machine (JVM) and avoiding
a performance problem, Javassist allows structural reflection only before a class is loaded into the
JVM. However, Javassist still covers various applications including a language extension emulating
behavioral reflection. This paper also presents the design principles of Javassist, which distinguish
Javassist from related work.

1 Introduction

Java is a programming language supporting reflection. The reflective ability of Javais called the re-
flection API. However, it is almost restricted to introspection, which is the ability to introspect data
structures used in a program such as aclass. The Java s ability to alter program behavior is very limited;
it only allows a program to instantiate a class, to get/set a field value, and to invoke a method through
the API.

To address the limitations of the Java reflection API, several extensions have been proposed. Most
of these extensions enable behaviora reflection, which is the ability to intercept an operation such as
method invocation and alter the behavior of that operation. If an operation is intercepted, the runtime
systems of those extensions call amethod on ametaobject for notifying it of that event. The programmer
can define their own version of metaobject so that the metaobject executes the intercepted operation with
customized semantics, which implement alanguage extension for a specific application domain such as
fault tolerance [9].

However, behavioral reflection only provides the ability to ater the behavior of operationsin a pro-
gram but not providesthe ability to alter data structures used in the program, which are statically fixed at
compiletime (or, in languages like Lisp, when they are first defined). The latter ability called structural
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reflection allows a program to change, for example, the definition of a class, afunction, and arecord on
demand. Some kinds of language extensions require this ability for implementation and thus they can-
not be implemented with a straightforward program using behavioral reflection; complex programming
tricks are often needed.

To simply implement these language extensions, this paper presents Javassist, which isaclass library
for enabling structural reflection in Java. Since portability is important in Java, we designed a new
architecture for structural reflection, which can be implemented without modifying an existing runtime
system or compiler. Javassist is a Java implementation of that architecture. An essential idea of this
architecture isthat structural reflection is performed by bytecode transformation at compile-time or load
time. Javassist does not allow structural reflection after a compiled program is loaded into the VM.
Another feature of our architecture isthat it provides source-level abstraction: the users of Javassist do
not have to have adeep understanding of the Java bytecode. Our architecture can also execute structural
reflection faster than the compile-time metaobject protocol used by OpenC++ [3] and OpenJava [20].

In the rest of this paper, we first overview previous extensions enabling behaviora reflection in Java
and point out limitations of those extensions. Then we present the design of Javassist in Section 3 and
show typical applications of Javassist in Section 4. In Section 5, we compare our architecture with
related work. Section 6 is conclusion.

2 Extensionsto thereflection ability of Java

The Java reflection API dose not provide the full reflective capability. It does not enable ateration of
program behavior but it only supports introspection, which is the ability to introspect data structures,
for example, inspecting a class definition. This design decision was acceptable because implementing
the full capability was difficult without a decline in runtime performance. An implementation technique
using partial evaluation has been proposed [17, 2] but the feasibility of this technique in Java has not
been clear.

However, several extensions to the Java reflection APl have been proposed. To avoid performance
degradation, most of these extensions enable restricted behavioral reflection. They only alow alteration
of the behavior of specific kinds of operations such as method calls, field accesses, and object creation.
The programmers can select some of those operations and ater their behavior. The compilers or the
runtime systems of those extensions insert hooks in programs so that the execution of the selected op-
erations is intercepted. If these operations are intercepted, the runtime system calls a method on an
object (called a metaobject) associated with the operations or the target objects. The execution of the
intercepted operation isimplemented by that method. The programmers can define their own version of
metaobject for implementing new behavior of the intercepted operations.

The runtime overheads due to this restricted behaviora reflection are low since only the execution
of the intercepted operations involves a performance penalty and the rest of the program runs with-
out any overheads. Especialy, if hooks for the interception are statically inserted in a program during
compilation, the runtime overheads are even lowered. To statically insert hooks, Reflective Java [22]
performs source-to-source tranglation before compilation and Kava [21] performs bytecode-level trans-
formation when a program isloaded into the VM. MetaXa[16, 11] internally performs bytecode-level
transformation with a customized JVM. It uses a customized just-in-time compiler (JT) for improving



the execution speed of the inserted hooks. This hook-insertion technique is well known and has been
applied to other languages such as C++ [4].

Although the restricted behavioral reflection is useful for implementing various language extensions,
there are some kinds of extensions that cannot be intuitively implemented with that kind of reflection.
An example of these extensionsisbinary code adaptation (BCA) [13], which isamechanism for altering
a class definition in binary form to conform changes of the definitions of other classes. Suppose that
we write a program using a class library obtained from a third party. For example, our class Calendar
implements an interface Writable included in that classlibrary:

cl ass Cal endar inplenents Witable {
public void wite(PrintStreams) { ... }

The class Calendar implements method wr i t () declared in the interface Writable.

Then, suppose that the third party gives us anew version of their classlibrary, in which the interface
Writable is renamed into Printable and it declares a new method pri nt (). To make our program
conform this new class library, we must edit the definitions of all our classes implementing Writable,
including Calendar:

cl ass Cal endar inplenments Printable {
public void wite(PrintStreams) { ... }
public void print() { Wlte(systemout) }

}

Theinterface of Calendar is changed into Printable and method pri nt () isadded.

BCA automates this adaptation; it automatically alters class definitions in binary form according to
a configuration file specifying how to alter them. Note that the method body of pri nt () isidentical
among al the updated classes since pri nt () can be implemented with the functionality already pro-
vided by wri t e() fortheold version. If that configuration fileis supplied by the library developer, we
can run our program without concern about evolution of the classlibrary.

Unfortunately, implementing BCA with behavioral reflection is not intuitive or straightforward. Since
behavioral reflection cannot directly provide the ability to alter data structures such as a class definition
or construct a new data structure, these reflective computation must be indirectly implemented. For
example, the implementation of BCA with behavioral reflection defines a metaobject indirectly per-
forming the adaptation specified by a given configuration file. For the above example, this metaobject is
made to be associated with Calendar and it watches method calls on Calendar objects. If the method
print () iscaled, the metaobject interceptsthat method call and executes the computation correspond-
ingtopri nt () instead of the Calendar object. The metaobject also intercepts runtime type checking
so that the VM recognizes Calendar as a subtype of Printable. Recall that Javais a statically typed
language and the original Calendar is a subtype of Writable.

The ability to alter data structures used in aprogram is called structural reflection, which has not been
directly supported by previous systems. Although a number of language extensions are more easily
implemented with structural reflection than with behaviora reflection, the previous systems have not
been addressing those extensions. They have been too much focused on language extensions that can be
implemented by altering the behavior of method calls and so on.

3



3 Javassist

To simply implement language extensions like BCA shown in the previous section, we devel oped Javas-
sist, which is our extension to the Java reflection API and enables structural reflection instead of behav-
ioral one. Javassist is based on our new architecture for structural reflection, which can be implemented
without modifying an existing runtime system or a compiler.

3.1 Implementations of structural reflection

Structural reflection is the ability to allow a program to alter the definitions of data structures such as
classes and methods. It has been provided by severa languages such as Smalltalk [10], ObjVIisp [6],
and CLOS [14]. These languages implement structural reflection with support mechanisms embedded
in runtime systems. Since the runtime systems contain internal data representing the definitions of data
structures such as a class, the support mechanisms allow a program to directly read and change those
internal data and thereby execute structural reflection on the correspondent data structures.

We could not accept this implementation technique for Javassist since it needs to modify a standard
JVM but portability is important in Java. Furthermore, a naive application of this technique to Java
would cause serious performance degradation of the VM because this technique makes it difficult for
runtime systems to employ optimization techniques based on static information of executed programs.
Since a program may be atered at runtime, efficient dynamic recompilation is required for redoing
optimization on demand. For example, method inlining is difficult to perform. If an inlined method is
atered at runtime with structural reflection, al the inlined code must be updated. To do this, the runtime
system must record where the codeisinlined. Thiswill spend alarge amount of memory space. Another
example is the “v-table” technique used for typical C++ implementations [8]. This technique statically
constructs method dispatch tables so that invoked methods are quickly selected with a constant offset in
the tables. If a new method is added to a class at runtime, then the dispatch tables may be updated and
all offsets in the tables may be recomputed. Since the dynamic recompilation technique has been used
so far for gradually optimizing “hot spots’ of compiled code at runtime[12], it has been assuming that a
program is never changed at runtime. Effectiveness of dynamic recompilation without this assumption
is an open question.

Another problem is correctness of types. Since Javais a statically typed language, a variable of type
X must be bound to an object of X or asubclassY of X. If a program can freely access and change the
internal data of the VM, it may dynamically change the super class of Y from X to another class. This
change causes a type error for the binding between a variable of type X and an object of Y. To address
this problem, extra runtime type checks or restrictions on the range of structural reflection are needed.

3.2 Load-timestructural reflection

To avoid the problems mentioned above, we designed a new architecture for structural reflection; it does
not need to modify an existing runtime system or a compiler. On the other hand, it enables structural
reflection only before a program is loaded into a runtime system, that is, at load time. Javassist is a
class library enabling structural reflection based on this architecture. In Java, the bytecode obtained by
compilation of a program is stored in class files, each of which corresponds to a distinct class. Javassist



performs structural reflection by tranglating aterations by structural reflection into equivalent bytecode
transformation of the class files. After the transformation, the modified class files are loaded into the
JVM and then no aterations are allowed after that. Thereby, Javassist can be used with a standard VM,
which may use various optimization techniques.

Javassist is used with a user class loader. Java alows programs to define their own versions of class
loader, which fetch a class file from a not-standard resource such as a network. A typical definition of
the class loader isasfollows:

cl ass MyLoader extends O assLoader {
public O ass | oadd ass(String namne)
byte[] bytecode = readd assFil e(nhane);
return resol ved ass(defi ned ass(byt ecode));

}

private byte[] readd assFile(String nane) ({
/! read a class file froma resource.
}

}

The methods def i neCl ass() andresol ved ass() areinherited from ClassLoader. They re-
guest the VM to load a class constructed from the bytecode given as an array of byt e. The returned
value is a Class object representing the loaded class. Once a class X is manually loaded with an in-
stance of MyLoader, al classes referenced by that class X are loaded through that class loader. The
JVM automatically calls| oadC ass() on that classloader for loading them on demand.

Javassist helpsr eadC assFi | e() shown above obtain the bytecode of arequested class. It can be
regarded as a classlibrary for reading bytecode from aclass file and atering it. However, unlike similar
classlibraries such as the JavaClass API [7] and JOIE [5], Javassist provides source-level abstraction so
that it can be used without knowledge of bytecode or the data format of the class file. Also, Javassist
was designed to make it difficult to wrongly produce a class file rejected by the bytecode verifier of the
VM.

3.3 TheJavassist API

We below present the overview of the Javassist API.

Reification and Reflection:

The first step of the use of Javassist is to create a CtClass (compile-time class) object representing the
bytecode of a class |oaded into the VM. This step is for reifying the class to make it accessible from a
program. If st r eamisan InputStream for reading a classfile (from alocal disk, memory, a network,
etc.), then:

G dass ¢ = new Ctd ass(stream;

creates a new CtClass object representing the bytecode of the class read from the class file, which
contains enough symbolic information to reify the class. Also, the constructor of CtClass can receive a



Table 1: Methodsin CtClass for introspection

Method Description
String getNane() gets the class name
int getMdifiers() gets the class modifierssuch aspubl i ¢
bool ean islnterface() determines whether this object represents
aclassor aninterface
Ct d ass get Supercl ass() gets the super class
Ctdass[] getlnterfaces() gets the interfaces
CtField[] getDeclaredFields() gets the fields declared in the class
Ct Met hod[] get Decl ar edConst ruct or s() | gets the constructors declared in the class
Ct Met hod[] get Decl ar edMet hods() gets the methods declared in the class

String class name instead of an InputStream. If a String class name is given, Javassist searches a class
path and finds an InputStream for reading a classfile.

One can call various methods on the CtClass object for introspecting and altering the class definition.
Changes of the class definition are reflected on the bytecode represented by that object. To obtain the
bytecode for loading the atered class into the VM, method t 0Byt ecode() iscalled on that object:

byte[] bytecode = c.toBytecode();

Loading the obtained bytecode into the WM is regarded as the step for reflecting the CtClass object
on the base level. Javassist provides severa other methods for this step. For example, method com
pi | e() writes bytecode to a given output stream such as alocal file and a network. Method | oad()
directly loads the class into the VM with a class|oader provided by Javassist. It returns a Class object
representing the loaded class. Recall that Class isincluded in the Java reflection APl while CtClass is
in Javassist.

Note that Javassist does not provide any framework for specifying how and what classes are processed
with Javassist. The programmer of the class loader has freedom with respect to this framework. For
example, the class|oader may process classes with Javassist only if they are specified by aconfiguration
fileread at the beginning. It may process them according to a hard-coded algorithm.

Javassist allows a user class loader to define a new class from scratch without reading any classfile.
Thisis useful if a program needs to dynamically define a new class on demand. To do this, a CtClass
object must be created as follows:

CtClass ¢c2 = new Ct Newd ass();

The created object c2 represents an empty class that has no methods or fields although methods and
fields can be added to the class later through the Javassist APl shown below. If t oByt ecode() is
called on this abject, then it returns the bytecode corresponding to that empty class.

I ntrospection:

Javassist provides several methods for introspecting the class represented by a CtClass object. This part
of the Javassist API is compatible with the Java reflection API except that Javassist does not provide
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Table 2: Methodsin CtField and CtMethod for introspection

Method  in CtField Description
String getNane() getsthefield name
Ct d ass getDecl ari ngCl ass() |gettheclassdeclaring thefield
int getMdifiers() getsthe field modifiers such aspubl i ¢
Gt d ass get Type() get thefield type
Method  in CtMethod Description
String getNane() gets the method name
Ct d ass getDecl ari ngCl ass() | get the class declaring the method
int getMdifiers() gets the method modifiers such aspubl i ¢
Ctdass[] getParameterTypes() |getsthetypes of the parameters
Ctd ass[] get ExceptionTypes() |getsthetypes of the exceptions that the
method may throw
bool ean i sConstructor () returnst r ue if the method is a constructor
bool ean isC asslnitializer() |returnstrue if themethod isaclassinitializer

methods for creating an instance or invoking a method because these methods are meaningless at |oad
time. Table 1 lists selected methods for introspection.

CtClass objectsreturned by get Super cl ass() andget | nt erfaces() areconstructed from
class files found on a class path. They represent the original class definitions and thus accept only
introspection but not alteration. To ater a class, another CtClass object must be explicitly created
with the new operator. Modifications to this object have no effect on the CtClass object returned by
get Supercl ass() orgetlnterfaces(). For example, suppose that a class C inherits from a
class S. If a CtClass object for S is created with new and a method () is added to that abject, this
modification is not reflected on the object returned by get Super cl ass() onaCtClass object for C.
TheclassC inheritsm() from S only if the CtClass object created with newis converted into bytecode
and loaded into the VM.

Theinformation about fields and methods is provided by objects separate from the CtClass aobject; it
isprovided by CtField objectsobtained by get Decl ar edFi el ds() and CtMethod objects obtained
by get Decl ar edMet hods( ), respectively. The information about a constructor is also provided by
a CtMethod object. Table 2 lists methods in CtField and CtMethod for introspection.

Alteration:

A difference between Javassi st and the standard Javareflection APl isthat Javassist provides methods for
altering class definitions. Several methods for alteration are defined in CtClass (Table 3). These meth-
ods are categorized into methods for changing class modifiers, methods for changing class hierarchy,
and methods for adding a new member. They were carefully selected to satisfy our design goals.

Our design goals are three. (1) Thefirst goal is to provide source-level abstraction for programmers.
Javassist was designed so that programmers can use it without knowledge of the Java bytecode. (2)
The second goal is to execute structural reflection as efficiently as possible. (3) Thelast goal isto help
programs perform structural reflection in a safe manner in terms of types.



Table 3: Methods for ateration

Method in CtClass Description
voi d bePublic() makethe classpubl i ¢
voi d beAbstract () makethe classabst r act
voi d not Fi nal () removethef i nal modifier from the class
voi d set Name(String nane) change the class name
voi d set Supercl ass(Ct C ass ¢) change the super class
void setlnterfaces(CtC ass[] i) |changetheinterfaces
voi d addConstructor(...) add a new constructor
voi d addDef aul t Construct or () add the default constructor
voi d addAbstract Met hod(...) add anew abst r act method
voi d addMet hod(. ..) add a new method
voi d addW apper(...) add a new wrapped method
void addField(...) add anew field
Method in CtField Description
voi d bePublic() makethefield publ i ¢
Method in CtMethod Description
voi d bePublic() make the method publ i ¢
void instrunent(...) modify a method body
voi d setBody(...) substitute a method body
void setWapper(...) substitute a method body

As for the first goal, the most significant design decision was how programmers specify a method
body. Suppose that anew method isadded to aclass. If asequence of bytecodeis used for specifying the
body of that method, the programmers would get great flexibility but have to learn details of bytecode.
To achievethe first goal, Javassist allows to copy amethod body from another existing method although
this design decision restricts the flexibility of the added method. The copied bytecode sequence is
adjusted to fit the destination method. For example, the bytecode for accessing a member through the
t hi s variable contains a symbolic reference to the type of t hi s. This referenceis replaced with one
to the class declaring the destination method.

Degpite the well-known quasi-equivalence between Java source code and bytecode, the correspon-
dence between source-level and bytecode-level aterations are not straightforward. Hiding the gap be-
tween the two levels from programmers is also a part of the first goal.

For example, set Name() renames a class but it also substitutes the new name for al occurrences
of the old name in the definition of that class, including method signatures and bodies. Modifying a
single constant-pool item never performs this substitution. If a constructor calls ancther constructor in
the same class (if it executest hi s() ), then the bytecode of the former constructor is modified since
the bytecode contains a symbolic reference to the name of the class declaring the latter constructor. This
reference must be modified to indicate the new name.

set Super cl ass() performs similar substitution. If it is called, al occurrences of the old super
class name s replaced with a new name and all constructors are modified so that they call a constructor
in the new super class. However, there is an exception to this substitution. If the name of the original
super class is java.lang.Object (the root of the class hierarchy), set Super cl ass() does not per-



form the substitution except it modifies constructors. Thisis because java.lang.Object is often used for
representing any class. For example, although addEl enent () in java.util.Vector takes a parameter
of classjava.lang.Object, which isthe super class of java.util. Vector, this never meansthat addEl e-
ment () takesan instance of the super class.

The second design goal is to reduce overheads due to class loading with Javassist. Since we will
use Javassist for implementing a mobile-agent system, in which Javassist inserts security-check code
into bytecode, Javassist must transform bytecode received through a network as efficiently as possible.
M obile agents frequently move among hosts and thus we cannot ignore the loading time of the bytecode
implementing the mobile agents.

Our design decision on how programmers specify a method body was influenced by the second goal
aswell asthe first one. Javassist does not use source code for specifying the body of an added method.
If source code is used, it must be compiled on the fly when a class is loaded into the VM. A naive
implementation of this source-code approach would produce a complete class definition including the
added method at source level and then compile it with aJavacompiler suchasj avac. Aswe show later,
however, thisimplementation implies serious performance penalties. To achieve practical efficiency, we
need a special compiler that can quickly compile only a method body. We did not adopt the source-
code approach because of limitations of our resources. Instead, Javassist allows to copy a pre-compiled
method body from a class to another. This approach does not imply overheads due to source-code
compilation at load time.

The third design goal isto prevent programs to wrongly produce a class including type incorrectness.
To achieve this goal, Javassist allows only limited kinds of alteration of class definitions. In general,
reflective systems should impose some restrictions on structural reflection so that programsdo not falsely
collapse themselveswith reflection. Supposethat areflective system allowsto remove afield from aclass
at runtime. If there are already instances of that class, isit appropriate that the system simply discards
the value of the removed field of those instances?

Since erroneous bytecode produced with Javassist is rejected by the bytecode verifier, it can never
damage the VM. However, restricting the reflective capability of Javassist is still necessary because it
is often awkward to correct a program producing erroneous bytecode. For this reason, Javassist does not
provide methods for removing a method or afield from a class because they cause type incorrectness if
there is amethod accessing the removed method or field. Javassist aso imposes restrictions on the class
passed to set Super cl ass(), which is amethod for changing a super class. The new super class
must be a subclass of the original super class since there may be methods that implicitly cast an instance
of that class to the original super class. Of course, the new super class must not be f i nal . Further-
more, Javassist does not provide a method for changing the parameters of a method. Programmers are
recommended to add a new method with the same name but with different parameters.

Adding a new member:

Javassist provides methods for adding anew method to aclass. To avoid the abstraction and performance
problems mentioned above, addMet hod() receives a CtMethod object, which specifies a method
body. The signature of addMet hod() is as shown below:

voi d addMet hod(Ct Method m String nane, C assMap nap)



nane specifiesthe name of the added method. The method body is copied from agiven method m Since
a method body is copied from an existing compiled method, no source-code compilation is needed at
load time or no raw bytecode is given to addMet hod() . Programmers can describe a method body
in Java and compile it in advance. Javassist reads the bytecode of the compiled method and adds it to
another class. Thisimproves execution performance of Javassist since acompiler isnot run at load time.

When amethod body is copied, some class names appearing in the body can be replaced according to
ahash table map.! For example, programmers can declare a class XVector:

public class XVector extends java.util.Vector {
public void add(X e) {
super . addEl enent (e) ;

}

and copy the method add( ) into aclass StringVector:

G Method m= /* method add() inXVector */;
G dass ¢ = /* classStringVector */;

Cl assMap nmap = new C assMap();

map. put (" X", "java.lang.String");
c.addMet hod(m "addString", map);

The class name java.lang.String is substituted for al occurrences of the classname X inadd() . The
added method is as follows:

public void addString(java.lang. String e) {
super . addEl enent (e) ;

Javassist provides another method addW apper () for adding anew method. It allows more generic
description of amethod body:

voi d addW apper(int nodifiers, G Cass returnType, String nane,
Gt dass[] parameters, Ctd ass[] exceptions,
Ct Met hod body, Const Paranet er const Paran)

The firgt five parameters specify the modifiers, the return type, the method name, the parameter types,
and the exceptions that the method may throw. The body of the added method is copied from the method
specified by body. No matter what the signature of the added method is, the method specified by body
must have the following signature:

hj ect m Object[] args, valuetype const Val ue)

At least, addMet hod( ) replacesall occurrences of the name of the class declaring the copied method. Even if that class
name does not appear at source level, the corresponding bytecode may include references to it.
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To fill the gap between this signature and the signature of the added method, addW apper () implicitly
wraps the copied method body in glue code, which constructs an array of actual parameters passed to
the added method and assigns it to ar gs before executing the copied method body. The glue code also
sets const Val ue to aconstant value specified by const Par ampassed to addW apper () . Inthe
current version of Javassist, an integer value or a String object can be specified for the constant value.
For example, this constant value can be used to pass the name of the added method.

The value returned by the copied method body is an Object object. The glue code also converts it
into a value of the type specified by r et ur nType. Then it returns the converted value to the caller to
the added method. If type conversion fails, then an exception is thrown. Although methods added by
addW apper () involve runtime overheads due to type conversion, a single method body can be used
as a template of multiple methods receiving a different number of parameters. Examples of the use of
addW apper () areshown in Section 4.

Javassist also provides a method for adding anew field to aclass:

void addField(int nodifiers, Ctd ass type, String fieldnane,
String accessor, Fieldlnitializer init)

If accessor isnot nul |, this method also adds an accessor method, which returns the value of the
added field. The name of the accessor is specified by accessor . Moreover, the last parameter i ni t
specifies the initial value of the added field. The initial value is either one of parameters passed to a
constructor, a newly created object, or the result of a cal to a static method.

Altering a method body:

Although Javassist does not allow to remove a method from a class, it provides methods for changing a
method body. set Body() and set W apper () in CtMethod substitute a given method body for an
original body:

voi d set Body(Ct Met hod m C assMap nmap)
voi d set Wapper (Ct Met hod m Const Par anet er param

They correspond to addMet hod() and addW apper () respectively. set Body() copiesamethod
body from agiven method m Some class names appearing in the body are replaced with different names
according to map. set W apper () also copies amethod body from mbut it wraps the copied body in
glue code. The signature of mmust be:

hj ect m Object[] args, valuetype const Val ue)

Javassist also provides a method for modifying expressions in a method body. i nstrument () in
CtMethod performs this modification:

voi d instrunent (CodeConverter converter)
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Table 4;: Methods in CodeConverter

Method Description

voi d redirectFi el dAccess() change a field-access expression to access
adifferent field.

voi d repl aceNew() replace anew expression with ast at i ¢ method
call.

voi d repl aceFi el dRead() replace afield-read expression withast ati ¢
method call.

voi d repl aceFiel dWite() replace afield-write expression with ast ati c
method call.

The parameter conver t er specifies how to instrument a method body. The CodeConverter object
can perform various kinds of instrumentation. Table 4 lists methods provided by the current implemen-
tation of Javassist. They direct a CodeConverter object to replace a specific kind of expressions with
hooks, which invoke static methods for executing the expressions in a customized manner. The idea
of CodeConverter came from C++'s operator overloading. CodeConverter was designed for safely
altering the behavior of operators such asnewand . (dot) independently of the context.

For example, expressions for instantiating a specific class can be replaced with expressions for calling
a static method. Suppose that variables xcl ass and ycl ass represent class X and Y, respectively.
Then a program:

CtMethod m= ... ;
CodeConverter conv = new CodeConverter();
conv. repl aceNew xcl ass, yclass, "create");
m i nstrument (conv) ;

instruments the body of the method represented by the CtMethod object m All expressions for instan-
tiating the class X such as:

new X(3, 4);

are trandated into expressions for calling a static method cr eat e() declared intheclassY:

Y.create(3, 4);

The parameters to the new expression are passed to the static method.

Reflective class loader:

The class loader provided by Javassist allows a loaded program to control the class loading by that
class loader. If a program isloaded by Javassist's class loader L and it includes a class C, then it can
intercept the loading of C by L to self-reflectively modify the bytecode of C (Figure 1). For avoiding
infinite recursion, while the loading of a class is intercepted, further interception is prohibited. The
| oad() method in CtClass requires that a program is loaded by Javassist’s class loader athough the
other methods work without Javassist’s class |oader.
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Figure 1: Javassist’s class loader allows self-reflective class loading

Java's standard class loader never allows this self-reflective class |oading for security reasons. If itis
allowed, a program may change somepr i vat e fieldsto publ i ¢ ones at load time for reading hidden
values. Furthermore, in Java, if a program creates a class loader and loads a class C with that class
loader, the loaded class is regarded as a different one from the class denoted by the name C appearing in
that program. The latter classisloaded by the class loader that |oaded the program.

Using Javassist without a classloader:

Javassist can be used without a user class loader. There are three kinds of usage of Javassist: with auser
class loader, with aweb server, and off line.

For security reasons, an applet is usually prohibited from using a user class loader. However, we can
write an applet working with Javassist if we use a web server as a replacement of a user class loader.
Since classes used in an applet are loaded from a web server into the VM of a web browser, we can
customize the web server so that it runs Javassist for processing the classes before sending them to the
web browser. Javassist includes a simple web server written in Java as a basis for such customization.
We can extend it to perform structural reflection with Javassist. The program of the customized web
server would be asfollows:

for (;;) {
receive an http request from a web browser.
Gt dass ¢ = new Ct d ass(therequested class) ;
do structural reflection on ¢ if needed.
byte[] bytecode = c.toBytecode();
send the byt ecode tothe web browser.

}

Before sending arequested classto aweb browser, it performs structural reflection on the classaccording
to the algorithm, for example, given as a configuration file.

Another usage of Javassist is“ off line”. We can perform structural reflection on aclass and overwrite
the original class file of that class with the bytecode obtained as the result. The altered class can be
later loaded into the VM without a user classloader. The following is an example of the off-line use of
Javassist:

G dass ¢ = new Ctd ass("Rectangle");

do structural reflectionon ¢ if needed.
c.conpile(); /1 writes bytecode on the original classfile.
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This program performs structural reflection on class Rectangle and overwritesthe classfile of that class
with the bytecode obtained by c. t oByt ecode() .

4 Examples

This section shows three applications of Javassist. We illustrate that Javassist can be used to implement
non-trivial alteration required by these applications despite the level of the abstraction.

4.1 Binary Code Adaptation

The mechanism of binary code adaptation (BCA) [13] automatically alters class definitions according to
afile written by the users, called adeltafile:

delta class inplenents Witable {
renane Witable Printable;
add public void print() { wite(Systemout); }

}

This delta file specifies adaptation that we mentioned in Section 2.

If Javassist is used, the implementor of BCA has only to write a parser of delta file and a user class
loader performing adaptation with Javassist. For example, the parser translates the delta file shown above
into the Java program shown below:

cl ass Exenplar inplenments Printable {
public void wite(PrintStreams) { /* dumry */ }
public void print() { wite(Systemout); }

}

cl ass Adaptor {
public void adapt (Ctdass c) {

G Method printM= /* method print() in Exemplar */;

Ctdass[] interfaces = c.getlnterfaces();

for (int i =0; i < interfaces.length; ++i)

if (interfaces[i].getNanme().equals("Witable")) {

interfaces[i] = Ctd ass.forName("Printable");
c.setlnterfaces(interfaces);
c. addMet hod(printM new O assMap());
return;

}
}
}

The class Exemplar is compiled together with Adapter in advance so that adapt () can obtain a
Ct Met hod object representing print (). adapt () uses the reification and introspection APl of
Javassist for obtaining it. It first constructsa Ct Cl ass object representing Exemplar and then obtains
the Ct Met hod object by get Decl ar edMet hods() in CtClass. The class file for Exemplar is
automatically found by Javassist on the class path used for loading Adapter.
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The user class loader calls adapt () in Adaptor whenever a class is loaded into the VM. It cre-
ates a CtClass object representing the loaded class and calls adapt () with that object. The method
adapt () performs adaptation if the loaded class implements Writable. Then the user class loader
converts the CtClass object into bytecode and loads into the VM.

Note that this implementation is more intuitive than the implementation with behavioral reflection.
Moreover, it is simpler than the implementation without reflection since the implementor does not have
to care about low-level bytecode transformation. If the users of BCA can directly write the classes
Exemplar and Adaptor instead of a delta file, then the implementation would be much simpler since
we do not need the parser of deltafile.

4.2 Behavioral reflection

Behaviora reflection enabled by MetaXa[16, 11] and Kava [21] can be implemented with an approxi-
mately 750-line program (including comments) using Javassist. A key idea of their implementationsis
to insert hooks in a program when a class is loaded into the VM. We below see an overview of a user
class loader performing this insertion with Javassist.

L et ametaobject be an instance of MyMetaobject, which is a subclass of Metaobject:

public class MyMet aobj ect extends Metaobject {
public Object trapMethodcal |l (String nethodName, Object[] args) {
/ * called if amethod call isintercepted. */
public Object trapFieldRead(String fieldNanme) ({
[ * caledif thevalueof afieldisread. */
public void trapFieldWite(String fieldName, Object value) {
| /* cdledif afieldisset. */ }

If field accesses and method calls on an instance of C:

public class C {
public int miint x) { return x + f; }
public int f;

}

are intercepted by the metaobject, then the user class loader alters the definition of the class C into the
following:?

public class C inplenments Metal evel ({
public int m(int x) { /* notify ametaobject */ }
public int f;
private Metaobject _metaobject = new MyMet aobj ect (this);
public Metaobject _getMetaobject() { return _netaobject; }
public int orig_nm(int x) { return x + f; }
public static int read_f(Object target) {
notify a metaobject */ }
static void wite_ f(Object target, int value) {
notify a metaobject */ }

* O *

/
publ i
/
}

2For simplicity, this implementation ignores st ati ¢ members athough extending the implementation for handling
st at i ¢ membersis possible within the ability of Javassist.
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cl ass Exenpl ar {
private Metaobject _metaobject;

public Object trap(Object[] args, String nethodNanme) ({
return _metaobj ect.trapMet hodcal | (met hodNane, args);

public static Object trapRead(Qhject[] args, String nane) {
Met al evel target = (Metal evel )args[0];
return target. _get Metaobject().trapFi el dRead( nane) ;

}

public static Object trapWite(Object[] args, String nane) {
Met al evel target = (Metal evel )args[O];
bj ect value = args[1];
target. _get Metaobject().trapFi el dWite(nanme, val ue);

Figure 2: Class Exemplar

where the interface Metalevel declares the method _get Met aobj ect () .

This alteration can be performed within the ability of Javassist. The interface Metalevel is added by
setlnterfaces() inCtClass. Thefield _met aobj ect and the accessor _get Met aobj ect ()
are added by addFi el d() inCtClass.

For intercepting method calls, the user class loader first makes a copy of every method in C by calling
addMet hod() in CtClass. For example, it adds or i g_n() 2 asacopy of n{) . Then it replaces the
body of every method in C with a copy of the body of the method t r ap() in Exemplar (see Figure 2).
This modification is performed by set W apper () in CtMethod. The gap between the signatures of
m() andtrap() isfilled by set W apper () . The substituted method body notifies a metaobject of
interception. The first parameter ar gs is alist of actua parameters and the second one nane is the
name of the copy of the original method such as " ori g_n'. These two parameters are used for the
metaobject to invoke the original method through the Java reflection API.

For intercepting field accesses, the user class |oader instruments the bodies of methods in all classes.
All accessesto afield f inC aretrandated into callstoast ati ¢ methodread f () orwitef().
This instrumentation is performed by i nst r unent () in CtMethod and r epl aceFi el dRead()
andrepl aceFi el dWi t e() inCodeConverter. The methodsr ead_f () andwr i t e_f () notify
ametaobject of the accesses. They are added by addW apper () inCtClass ascopiesof t r apRead()
andtrapWite() in Exemplar. The gap between the signaturesof read f () (orwrite_f())and
trapRead() (ortrapWite())isfilled by addW apper (). For example, actual parameters to
read f () areconverted into the first parameter ar gs tot r apRead() . The second parameter nane
totrapRead() isthe name of the accessed field suchas" f " .

3If amethod nameis overl oaded, a copy of each method must be given adifferent namesuchasori g_mi(), ori g_n2(),
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4.3 Remote method invocation

Generating stub code for remote method invocation is another application of Javassist. A Java pro-
gram cannot directly call a method on a remote object on a different computer. 1t needs the Java RMI
tools generating stub code, which transates a method call into lower-level network data transfer such
as TCP/IP communication. However, the Java RMI tools are compile-time ones; a program must be
processed by the RMI compiler, which generates and saves stub code on alocal disk. Also, a program
using the Java RMI must be subject to a protocol (i.e. API) specified by the Java RMI.

Javassist alows programmers to develop their own version of the RMI tools, which specify a cus-
tomized protocol and produce stub code at either compile-time or even runtime. Suppose that an applet
needs to call amethod on a Counter object on aweb server written in Java. For remote method invoca-
tion, the applet needs stub code defining a proxy object of the Counter object, which has the same set
of methods as the Counter object. If the Counter object has a method set Count () , the proxy object
also has a method set Count () with the same signature. However, the method on the proxy object
serializes given parameters and sends them to the web server, where set Count () isinvoked on the
Counter object with the received parameters.

This stub code can be generated at runtime with Javassist at the server side and it can be sent on
demand to the applet side. The applet programmer can easily write the applet without concern about
low-level network programming. The stub code for accessing the Counter object isasfollows:

public class ProxyCounter {
private Rm Streamrm;
public ProxyCounter (int objectRef) {
rm = new Rm Strean(objectRef);

public int setCount(int value) { /* remotemethodinvocation */ }

An instance of ProxyCounter is a proxy object. An RmiStream object handles low-level network
communication. The class RmiStream is provided by a runtime support library.

ProxyCounter can be defined within the confines of Javassist. Thefieldr mi isadded by addFi el d()
in CtClass and the initialization of r mi in a constructor can be specified by a FieldInitializer object
passed to addFi el d() .

The method set Count () isadded by addW apper () in CtClass as a copy of the method i n-
voke() in Exemplar shown below:

cl ass Exenpl ar {
private Rm Streamrm;
hj ect i nvoke(Object[] args, String nmethodNane) ({
} return rm.rpc(met hodNane, args);

}

The gap between the signatures of set Count () and i nvoke() isfilled by addW apper (). If
set Count () is caled, the actual parameter val ue is converted into an array of Object and as-
signed to ar gs. nmet hodName is set to amethod name " set Count "#. Thenr pc() iscalled onthe

41 amethod name is overloaded, this should be set Count 1, set Count 2, ... for distinction.
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RmiStream abject for serializing the given parameters and sends them to the web server. Note that the
parameters can be serialized within the ability of the standard Javaiif they are converted into an array of
Object.

Stub code generation is another example, which is not straightforward to implement with behavioral
reflection. In atypical implementation with behavioral reflection, a proxy object is an instance of the
class Counter athough al method calls on the proxy object are intercepted by a metaobject and for-
warded to a remote object; the class ProxyCounter is not produced. Therefore, if the proxy object
is created, a constructor declared in Counter is called and may cause fatal side-effects since the class
Counter is defined as a class at the server side but the proxy object is not at that side.

5 Reated Work

Reflection in Java:

MetaXa[16, 11] and Kava[21] enable behavioral reflection in Java whereas Javassist enables structural
reflection. They are suitablefor implementing different kinds of language extensions. However, Javassist
indirectly covers applications of MetaXaand Kavasince aclassloader providing functionality equivalent
to MetaXaand Kava can be implemented with Javassist as we showed in Section 4.2.

Although Kava performs bytecode transformation of classfiles before the VM |oads them as Javassist
does, they only insert hooks for interception in bytecode but do not run metaobjects at that time. They
enable reflection at runtime and their ability is not structural reflection but the restricted behavioral
reflection.

The Java reflection API was recently extended in the JDK 1.3 beta to partially enable behaviora
reflection [19]. The new API allows a program to dynamically define aproxy class implementing given
interfaces. An instance of this proxy class delegates all method invocations to another object through a
type-independent interface.

Javassist isnot thefirst system enabling structural reflectionin Java. For example, Kirby et al proposed
a system enabling structural reflection (they called it linguistic reflection) in Java although their system
only allows to dynamically define a new class but not to ater a given class definition at load time [15].
With their system, a Java program can produce a source file of a new class, compile it with an external
compiler such asj avac, and load the compiled class with a user class loader. They reported that their
system could be used for defining a class optimized for a given runtime condition.

Compile-time metaobject protocol:

The compile-time metaobject protocol [3] is another architecture enabling structural reflection without
modifying an existing runtime system. OpenJava[20] is a Javaimplementation of this architecture. As
Javassist does, it restricts structural reflection within the time before a class is loaded into the VM dl-
though it was designed mainly for off-line use at compile time. However, OpenJava s source-code basis
although Javassist is bytecode basis; OpenJava reads source code for creating an object representing a
class, a method, or afield. Alteration to the object is translated into corresponding transformation of
the source code. The bytecode for the atered class is obtained by compiling the modified source code.
Since OpenJavais source-code basis, it can deal with syntax extensions within aframework of structural
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reflection. For example, one can extend the syntax of class declaration and make it possible to add an
annotation to a class declaration.

On the other hand, the source-code basis means that OpenJava needs the source file of every processed
class whereas Javassist needs only a class file (compiled binary). Thisis a disadvantage because source
files are not always available if the class is provided by athird party. OpenJava aso involves a perfor-
mance overhead due to handling source code; the source file of every class must be parsed for reification
and compiled for reflection. Although this overhead is compensation for the capability for fine-grained
transformation of source code (including syntax extension), it is not negligible if OpenJavais used by
aclass loader for altering aloaded class. Some kinds of applications such as a mobile agent system do
not need fine-grained transformation but fast classloading.

Although the implementations of OpenJava or Javassist have not been tuned up, the performance dif-
ference between OpenJava and Javassist is notable with respect to reification and reflection. If a class
loader can be implemented with either OpenJava or Javassist, Javassist achieves shorter loading time.
To show this performance difference, we compared Javassist and OpenJavawith two small applications.
We implemented BCA ° and behavioral reflection presented in Section 4 with both Javassist and Open-
Java and we measured the time needed for atering a given class with each implementation. For fair
comparison, the implementations with Javassist write modified class files back on alocal disk.

Table 5 lists the results. The execution timeis the average of five continuous repetitions, which do not
include the first repetition. Since a program is gradually loaded into the VM during the first repetition,
the first one is tremendously slow. For compiling a modified source file, OpenJava uses a compiler
provided by the Sun JDK for Solaris. However, it never uses the j avac command since it starts the
compiler in aseparate process; instead, it directly runsthe compiler (sun. t ool s. j avac) onthesame
VM.

Although the sizes of the programs implementing the applications are almost equal between Javassist
and OpenJava, Javassist processed a class more than ten times faster than OpenJava. Note that the
execution time by Javassist is shorter than the time needed only for compiling a modified source file.
Thisis because Javassist can move compilation penalties to an earlier stage. Even a method body is not
compiled while Javassist is running; it is pre-compiled in advance and the resulting bytecode is directly
copied to atarget class at run time.

Bytecodetrandators:

Bytecode tranglators such as JOIE [5] and the JavaClass API [ 7] provide afunctionality similar to Javas-
sist. They enable a Java program to alter a class definition at load time. However, they are toolkits
for directly dealing with bytecode, that is, the raw data structure of a class file. For example, classes
included in JOIE are ClassInfo, Code, and Instruction. They show that JOIE was designed for ex-
perienced programmers who have a deep understanding of the Java bytecode and want to implement
complex transformation. On the other hand, Javassist was designed to be easy to use; it does not require
programmers to have knowledge of the Java bytecode but instead it provides source-level abstraction
for manipulating bytecode in arelatively safe manner. Although arange of instrumentation of a method
body is restricted, we showed that Javassist can be used to implement non-trivial applications. Javassist

50f course, the implementation of BCA with OpenJava does not modify aclass filein binary form. It emulates equivalent
adaptation at source-code level.
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Table 5: Performance comparison between Javassist and OpenJava

execution program original modified
time size source classfile classfile
(msec) (lines)  (lines)  (bytes) (bytes)
BCA Javassist 42 26 24 372 551
OpenJava 543 (172%) 17 24 548
Reflection  Javassist 142 205 35 946 3932
OpenJava 4108 (3021) 247 35 2244

Sun JDK 1.2.2 (HotSpot VM 1.0.1), UltraSPARC || 300MHz
tcompilationtime by sun. t ool s. j avac (Java compiler).

can be regarded as a front end for easily and safely using a bytecode trandator like JOIE; it is not a
replacement of the bytecode tranglators.

Using bytecode instrumentation for implementing areflectivefacility isaknown techniquein Smalltalk
[1]. A uniqueness of Javassist against thisis the design of the API providing source-level abstraction.
The Javassist APl was carefully designed to avoid wrongly producing a class definition containing type
incorrectness.

Others:

OpendIT [18] isajust-in-time compiler that allows a Java program to control how bytecode are compiled
into native code. It provides better flexibility than Javassist with respect to instrumenting a method body
while OpendIT does not alow to add a new method or field to a class. However, using OpendI T is more
difficult than using Javassist because OpenJI T requires programmersto have knowledge of both the Java
bytecode and native code. Although OpendIT can be used without knowledge of the Java bytecode if
programmers use a mechanism of OpendIT for trandating bytecode into a parse tree of an equivalent
Java program, overheads due to that translation has not been reported.

The idea of enabling reflection only at load time for avoiding performance problems is found in the
CLOSMOP [14]. For example, the CLOS MOP allows a program to ater the algorithm of determining
the super classes of agiven class but the super classes are statically determined when the classisloaded,;
the program cannot dynamically change the super classes at runtime.

Some readers may think that Javassist is very similar to BCA. However, Javassist was designed for
a wider range of applications than BCA, which is specialized for on-line class adaptation. BCA only
allows to modify a given class but not to dynamically define a new class from scratch. On the other
hand, BCA alows programmers to describe the algorithm of adaptation in declarative form.

6 Conclusion
This paper presented Javassist, which is an extension to the Javareflection API. Unlike other extensions,

it enables structural reflection in Java; it allows a program to alter a given class definition and to dynam-
ically defineanew class. A number of language extensions are more easily implemented with structural
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reflection than with behavioral reflection.

For avoiding portability and performance problems, the design of Javassist is based on our new archi-
tecture for structural reflection. Javassist performs structural reflection by instrumenting bytecode of a
loaded class. Therefore, it can be used with a standard VM and compiler although structural reflection
isallowed only beforeaclassisloaded into the VM, that is, at load time. Since astandard VM is used,
the classes processed by Javassist are subject to the bytecode verifier and the SecurityManager of Java.
Javassist never breaks security guarantees given by Java.

The followings are important features of Javassist:

e Javassist is portable. It is implemented in only Java without native methods and it runs with a
standard JVM. It does not need a platform-dependent class library. Portability is significant in
Java programming.

e Javassist provides source-level abstraction for manipulating bytecode in a safe manner while byte-
code trandators, such as JOIE [5] and the JavaClass API [7], provide no higher-level abstraction.
The users of Javassist do not have to have a deep understanding of the Java bytecode or to be
careful for avoiding wrongly making an invalid class rejected by the bytecode verifier.

e Javassist never needs source code whereas OpenJava[20], which is another system for structural
reflection with source-level abstraction, does. Since OpenJava performs structural reflection by
transforming source code, it must parse and compile source code for reifying and reflecting aclass.
Thus a class loader using Javassist can load a class faster than one using OpenJava. However,
OpenJava enables fine-grained manipulation of class definitions so that the resulting definitions
may be smaller and more efficient than ones by Javassist.

The architecture that we designed for Javassist can be applied to other object-oriented languages if
a compiled binary program includes enough symbolic information to construct a class object. How-
ever, the APl must be individually designed for each language so that it allows a program to alter class
definitions in a safe manner with respect to the semantics of that language.
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