
Towards a Reflective Component-based Middleware Architecture

Nikos Parlavantzas, Geoff Coulson, Mike Clarke and Gordon Blair

Distributed Multimedia Research Group,
Computing Department, Lancaster University,

Bailrigg, Lancaster LA1 4YR, UK.
{parlavan, geoff, mwc, gordon}@comp.lancs.ac.uk

Abstract

Current middleware is inflexible and monolithic and fails
to address emerging needs for adaptation to changing
requirements. As a solution, we propose that middleware
be built as a reflective and component-based system. Our
architecture is based on component frameworks and
component framework-specific meta-interfaces and leads
to extensible, composable, and dynamically flexible
middleware systems. Moreover, it addresses the critical
problem of ensuring integrity in the face of dynamic
adaptation. A pilot implementation, based on an
efficient, lightweight component model, is currently
underway.

1. Introduction

It is now well established that middleware platforms
must accommodate a wide variety of requirements
imposed by both applications and underlying
environments. Moreover, they must be able to absorb
both design-time and run-time changes in these
requirements. Unfortunately, the current generation of
middleware is, to a large extent, monolithic and
inflexible and, thus, fails to address these needs. There
have been some efforts to introduce reconfigurability, but
these are typically piecemeal, ad-hoc, and usually involve
selection between a fixed number of options. In our
opinion, a more systematic and principled solution is
needed.

To this end, we have previously carried out research
on a reflective middleware architecture [2,3,4]. The main
principles of this architecture are the association of a
meta-space per object (as opposed to, for example, per-
class meta-interfaces) and the decomposition of the meta-
space in multiple, orthogonal meta-models. The research
has resulted in a pilot implementation of the architecture
in Python which has focused primarily on achieving as
great a degree of flexibility as possible. The work
described in this paper represents an evolution of our
previous work, based on component technology, which is
additionally focused on efficient implementation and on
ensuring integrity in the face of dynamic adaptation.

Component technology has recently emerged as a
promising approach for building highly adaptable
software systems. This adaptability is a result of the
capability to change configurations by adding, removing
and replacing their constituent components (importantly,
components come in a binary form and thus can be
dynamically deployed within an address space).
Additional benefits of component technology include
reusability, dynamic extensibility, understandability, and
reduced development costs [19].

Currently, component technology is applied only at
the application level on top of middleware
infrastructures, which hide distribution and other non-
functional concerns from component developers.
However, in order to address the need for adaptability,
we believe that middleware itself should be built
according to a component-based architecture.
Furthermore, we believe that the resulting component-
based middleware should be reflective to help facilitate
and manage run-time changes in component
configurations. In other words, it should incorporate
structures representing aspects of itself and offer meta-
interfaces for inspecting and adapting these reified
aspects. Unfortunately, designing these meta-interfaces is
not easy. We have found that the ‘obvious’ solution of
exposing the whole middleware implementation as a
graph of component instances and allowing arbitrary
manipulations is not acceptable for reasons of robustness.
Maintaining integrity is a critical issue arising in the
construction of all reflective systems. Our proposed
approach to addressing this issue is through the notion of
component frameworks. This paper discusses our
proposed architecture for middleware which employs
both reflection and component frameworks.

This paper is structured as follows. Section 2
outlines the basic principles underlying our architecture.
Section 3 then describes our component model in some
detail. Following this, Section 4 outlines the component-
based middleware architecture itself, and Section 5
discusses our implementation work to date. Finally,
Section 6 discusses some related work, and Section 7
presents concluding remarks.



2. Principles

Our proposed reflective component-based architecture for
middleware is based on the following principles:

Use of Component Frameworks A component
framework (CF) is a collection of rules and contracts that
govern the interaction of a set of components [19] (we
say that these components extend the CF). CFs typically
address a specific and focused problem domain (e.g.,
implementing communications protocols as components),
and thus many CFs may need to be integrated in a
component system. The primary motivation for CFs is to
provide built-in architectural properties and invariants by
constraining the design space of extending components.
Moreover, CFs simplify component development and
assembly, enable lightweight components and increase
the understandability and maintainability of systems.

While CFs are, by standard definition, design-level
entities, in our architecture we explicitly represent CFs
as components that enforce some of these rules by
implementing common mechanisms and regulating
interactions. We refer to these as component framework
representatives (CFRs). Our approach is then to
decompose the middleware architecture into an
extensible set of specialized and focused domains of
concerns, such as buffer management and binding
establishment, each based on a CF/ CFR.

Use of CF-specific meta-interfaces In our
architecture, CFs are associated with meta-interfaces
through which the implementation of CF-based
subsystems (i.e., configurations of component instances
obeying the CF rules) can be exposed in a controlled and
principled way. The meta-interfaces are typically
implemented by CFRs, which maintain information
about the current configuration and apply it to perform
inspection and adaptation.

Because meta-interfaces are designed as an integral
part of the CF, they can easily embody domain-specific
knowledge, and can enforce a desired level of (domain-
specific) consistency and integrity. The degree of
flexibility afforded by the meta-interface has to be
balanced against concerns for efficiency, assured
consistency/ integrity, and understandability. By using
CF-specific meta-interfaces, we can make a different
trade-off for each different domain.

Additionally, the designer can choose the particular
architectural style and meta-interface style that is
appropriate for each domain of concern. For instance, a
CF for building communication protocols may benefit
from an event-based architectural style with data sharing
(like Coyote [1]), whereas a CF for multimedia streaming
may employ a pipes-and-filters style (cf. Microsoft
DirectShow, Open bindings [7]). In the first case, a
possible meta-interface may enable the rebinding of

events to different event handlers, while in the second
case it may enable the reconfiguration of the filter graph.

Use of uniform component model In our
architecture, application and middleware components/
CFs all use the same component model. This is beneficial
in terms of interoperability (e.g., a protocol component
could make use of an application level spreadsheet
component!), portability, and development costs, since
programmers only have to familiarize themselves with a
single programming model.

In addition, this principle removes the hard and fast
distinction between applications and middleware. This,
in turn, dissolves the traditional barrier between
application programmers and system programmers,
enabling the former to adopt the role of the latter when
the need arises.

3. The OpenCOM Component Model

Our OpenCOM component model is closely based on
Microsoft’s COM [13] but enhances the latter with richer
reflective facilities. OpenCOM relies only on the core of
COM (i.e., the basic language-independent binary-level
standard which enables components to be dynamically
combined within a single address space); it avoids
dependency on features of COM such as distribution
(DCOM), persistence, security, and transactions. Note
that our approach enjoys the benefit of interoperability
with the COM world of components. Moreover, the
binary-level nature of interconnections promises
considerably less performance overhead than alternative
component models such as JavaBeans.

A limitation of COM from our perspective is that
COM components are often implicitly coupled to their
environment. This makes it difficult to track
dependencies and thus adapt component configurations
with safety and integrity. In our model, therefore,
components explicitly specify not only their provided
interfaces but also their required interfaces. This is
achieved by declaring an IReceptacles interface through
which required interface references can be passed, so that
connections can be established. OpenCOM thus promotes
a connection-oriented programming model in which
components are instantiated and bound by a third party.

OpenCOM improves on the basic reflective facilities
of COM by supporting introspection, whereby each
component has an IMetaEncapsulation interface
providing meta-information about the interface types.
This meta-information is used to support dynamic
invocation of arbitrary interfaces (like Java’s core
reflection). OpenCOM also supports interception at
specified interfaces. In particular, components
implementing IMetaEnvironment enable dynamic
attachment/detachment of interceptors that insert
wrapping behaviour around method invocations.



4. A Component-Based Architecture for
Middleware

Our proposed middleware architecture is structured as an
extensible set of CFs based on OpenCOM. If we consider
a basic communications middleware platform (e.g.,
without transactions support), the set of CFs described
below are minimally required (our requirements are
influenced by the GOPI platform discussed below). These
CFs are organized in three layers, wherein components
are only aware of interfaces/CFs defined at layers below
themselves. Note that, courtesy of the underlying
OpenCOM infrastructure, components are loaded only
when they are actually needed and unload themselves
when they are not used (exploiting COM’s reference
counting mechanism).

4.1 Binding Layer

This layer contains a binding CF, which defines a set of
interfaces and associated rules/ semantics that govern the
collaboration between to-be-bound components, binder
components, and the CFR itself. Binder components,
which extend the binding CF, are used to establish
remote access paths (bindings) between to-be-bound
components; their specific responsibilities include
marshalling/unmarshalling interface references to/from
appropriate binary representations and producing the
required infrastructure (such as proxies, stubs and
protocols). Third party components are given control
over the process through CFR-specific meta-interfaces.

The binding CF can be extended with various binder
components (dynamically downloadable) providing
different binding types (e.g., request-reply invocations,
event emission, stream bindings, group bindings). At
run-time, binders create a component instance that
locally represents each binding and offers a standard,
minimal interface for adaptation. Additional interfaces
can be provided by specific binders.

4.2 Communication Layer

This layer contains components/CFs that are used by
binders to establish required communication paths.
Minimally, it contains the protocol CF, which defines an
architecture for dynamically composing and
reconfiguring protocol stacks using lightweight
protocols. This is extended with protocol components
that are organized in a graph and offer various value-
added services on top of OS-provided transports. The
protocol CFR provides to the upper layer a generic base
interface for communications services. It also maintains
information about current protocol configurations and
offers a meta-interface for performing dynamic
adaptations. Note that the CF embodies rules that
constrain permissible configurations. In particular, it

performs sanity checks on the topology of protocol
configurations based on CF-defined attributes attached to
protocols. It also provides specialised operations to add/
remove/ replace protocols in a local stack in such a way
that connection state is preserved across the change.

The communication layer may contain additional
CFs depending on the needs of the binding layer. For
example, we provide a binder that establishes and
manages multimedia streams and requires a multimedia
streaming CF in the communication layer. This CF is
extended with filter components (such as compressors,
buffers, and renderers) and defines a series of protocols
for the exchange of media samples, control and QoS
information, error detection, etc. (cf. Microsoft
DirectShow). The multimedia streaming CFR has a
meta-interface that permits modifications of the filter
graph (constrained by rules from the above mentioned
protocols) and controls the state of processing.

4.3 Resource Layer

This layer contains a collection of components/CFs that
provide a uniform API for using and controlling low-
level resources. Resource control is essential for
supporting applications and bindings with QoS
requirements [3]. Components from the higher layer CFs
(e.g., filters or protocols) are explicitly associated with
the resource layer CFRs that serve their resource needs.
This achieves a separation of the resource management
aspect and facilitates component reuse.

The resource layer minimally contains the buffer
management CF and the transport management CF.
The associated CFRs provide base interfaces to buffer
allocation and OS-level transport services respectively.
The buffer management CF is extended with buffer
policy components. The transport management CF is
extended with transport plug-in components that
encapsulate the network dependent aspects of transport
protocols (like OCI for Orbacus [15]). It is associated
with a meta-interface for adding and selecting between
transport plug-ins at run-time. We also provide a thread
management CF that handles user-level threads. It is
extended with application-specific scheduler components
each of which is associated with a particular scheduling
policy (such as priority-based, or rate-monotonic). The
thread management CFR meta-interface enables dynamic
installation of scheduler components and migration of
existing threads between schedulers.

5. Implementation

Our pilot implementation of the above architecture,
referred to as OpenORB, is based on an existing
middleware platform called GOPI [5]. GOPI provides a
rich set of middleware services, including stream
interfaces, third-party binding and QoS support, but is



implemented as a traditional procedural system.
Specifically, GOPI is structured as a set of layered
modules, comprising: iref (supporting communication
endpoints called irefs, and a binding protocol/ QoS
negotiation framework), asp (a framework that is
extended with user level ‘application–specific protocols’
or asps), tp (a framework extended with transport
protocols), buf (providing buffer management), and
threads (a user-level real-time thread package extended
with ‘application-scheduler contexts’, or ascs, which are
essentially pluggable schedulers).

As well as reimplementing and repackaging GOPI’s
asp, tp, buf and threads modules as OpenCOM CFRs, the
OpenORB implementation adds numerous additional
degrees of flexibility. For example, whereas GOPI offers
essentially one binder/ binding protocol which supports a
fixed set of binding types (signal, request/reply and
stream), OpenORB offers multiple binder components as
part of the binding CF. Furthermore, whereas the GOPI
asp module provides only a simple static scheme of
protocol composition, the OpenORB protocol CF is being
extended to support dynamic composition and
adaptation. A number of coarse-grained protocol
components have already been developed for this CF
including GIOP, components for shared memory
communication, and networked (RTP-based) audio/ video
protocols. We intend to investigate the provision of finer
grained protocols in the future.

6. Related Work

FlexiNet [9], FlexiBind [8] and Jonathan [6] are Java
ORBs that, like OpenORB, employ an extensible binding
framework. TAO [16] and Quarterware [17] are other
flexible ORBs. However, all these platforms are built in
terms of OO frameworks rather than CFs. Our
component-based approach has important advantages
over OO frameworks; in particular, CFs are not bound to
a specific programming language, and there is no
implementation inheritance between components and the
framework. As a result, components and CFs can be
distributed in binary form, be independently developed,
be combined at run-time, and evolve independently from
each other.

OpenCorba is an open, dynamically adaptable ORB
but depends on a reflective language (NeoClasstalk) [12].
COMERA [20] enables customisation of the remoting
infrastructure of COM (i.e., DCOM), but the components
are coarse-grained; we apply more aggressive
componentisation guided by a set of CFs. DynamicTAO
and LegORB are reflective ORBs that rely on a set of
configurators which maintain dependencies among
components and provide a set of hooks at which
components can be attached or detached dynamically
[11]. The adaptation approach seems to favour replacing

shared, platform-wide components (e.g., the scheduling
strategy or the IIOP protocol); it is not clear how finer-
grained adaptation can be performed (e.g., changing the
scheduling parameters of a thread of a specific binding),
and the interface that triggers adaptation is generic and
potentially unsafe. In [10], a component-based ORB
architecture is presented that supports run-time
reconfiguration on a per remote method invocation basis.
The configuration is driven by declarative, application-
specific policies. The presented meta-interface is thus
very usable, but its power is restricted to selecting
between alternative implementations of a given
component type. Declarative meta-interfaces for specific
CFs are, of course, also possible in our architecture.

COM+[13], Enterprise JavaBeans [18] and CORBA
Components [14] all support similar container-based
models for building distributed applications. The
significance of these architectures lies in that they
achieve a separation of concerns between the functional
aspects of the application and the non-functional aspects
that are managed by the container (distribution,
concurrency, transactions, etc.). The drawback is that the
configurability of these aspects is severely limited. The
implementation of the container services is, essentially,
hidden and out of the control of the application
developer. Following our approach, we can engineer
containers as CFs with associated meta-interfaces that
open up the container’s internal machinery and expose
the components responsible for handling those non-
functional aspects.

7. Final Considerations

In this paper, we have presented an approach to the
design of flexible middleware platforms that relies upon
component technology and reflection. In particular, we
proposed that both middleware and applications be built
from components following the same lightweight,
efficient component model. This is based on a popular
commercial standard, COM, which we have enhanced
with richer reflective facilities. Our OpenCOM-based
middleware architecture is decomposed into multiple
CFs/ CFRs, each associated with a specific aspect of
middleware functionality. CFRs are first-class
components and implement meta-interfaces. The
architecture has a number of benefits: extensibility via
independently developed components, a uniform
programming model for applications and middleware,
and the opportunity to use diverse architectural and
meta-interface styles within the platform. Importantly,
we exploit the fact that CFs enforce framework-wide
rules and policies in order to constrain the dynamic
adaptation permitted by meta-interfaces.

An implementation of the architecture, based on the
GOPI platform, is underway. At the current stage of our



work, we are convinced that the component/ CF
paradigm is a powerful and promising way of
engineering adaptable and reflective middleware
platforms. However, the design of appropriate CFs and
meta-interfaces is a challenging task, and further work is
needed before we can confidently propose sets of
generally applicable guidelines/styles for CF
development.

Acknowledgements

The research described in this paper is funded by CNET,
France Telecom (Grant 96-1B-239). We would also like
to thank a number of people from Lancaster’s Reflective
Middleware Group who have contributed to the work
described in this paper, including Anders Andersen,
Lynne Blair, Fabio Costa, Hector Duran, Tom
Fitzpatrick, Lee Johnston and Katia Saikoski.

References
[1] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu,

“Coyote: A System for Constructing Fine-Grained
Configurable Communication Services”, ACM
Transactions on Computer Systems, vol. 16, no. 4,
November 1998, pp. 321-366

[2] G.S. Blair, G. Coulson, P. Robin, M. Papathomas, “An
Architecture for Next Generation Middleware”, Proc. IFIP
International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’98),
Springer, 1998.

[3] G.S. Blair, F. Costa, G. Coulson, H. Duran, N.
Parlavantzas, F. Delpiano, B. Dumant, F. Horn, J.B.
Stefani, “The Design of a Resource-Aware Reflective
Middleware Architecture”, Proceedings of the 2nd
International Conference on Meta-Level Architectures and
Reflection (Reflection’99), St-Malo, France, Springer-
Verlag, LNCS, Vol. 1616, pp115-134, 1999.

[4] F. Costa, H. Duran, N. Parlavantzas, K. Saikoski, G.S.
Blair and G. Coulson. “The Role of Reflective
Middleware in Supporting the Engineering of Dynamic
Applications”. In Walter Cazzola, Robert J. Stroud and
Francesco Tisato, editors, Reflection and Software
Engineering, Lecture Notes in Computer Science 1826.
Springer-Verlag, 2000

[5] G. Coulson, "A Distributed Object Platform Infrastructure
for Multimedia Applications", Computer Communications,
Vol. 21, No. 9, pp 802-818, July 1998.

[6] B. Dumant, F. Dang Tran, F. Horn, and J.B. Stefani,
“Jonathan: an open distributed processing environment in
Java”, Middleware'98, The Lake District, U.K., September
1998.

[7] T. Fitzpatrick, G.S. Blair, G. Coulson, N. Davies and P.
Robin, "Supporting Adaptive Multimedia Applications
through Open Bindings", Proceedings of the 4th
International Conference on Configurable Distributed
Systems (ICCDS'98), Annapolis, Maryland, U.S.A., 1998.

[8] Ø. Hanssen, F. Eliassen, “A Framework for Policy
Bindings”, Proc. DOA’99, Edinburgh September 1999,
IEEE Press

[9] R. Hayton, A. Herbert, D. Donaldson, “Flexinet: a
flexible, component oriented middleware system”,
Proceedings of the 8th ACM SIGOPS European
Workshop: Support for Composing Distributed
Applications, Sintra, Portugal, 7-10 September 1998

[10] B.N. Joergensen, E. Truyen, F. Matthijs, W. Joosen.
“Customization of Object Request Brokers by Application
Specific Policies”. IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware'2000). New York. April 3-7,
2000.

[11] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L.C.
Magalhães, and R.H. Campbell, “Monitoring, Security,
and Dynamic Configuration with the dynamicTAO
Reflective ORB”. IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware'2000). New York. April 3-7,
2000.

[12] T. Ledoux, “OpenCorba: a Reflective Open Broker,”
Reflection'99, Saint-Malo, France, Springer-Verlag,
LNCS, Vol. 1616, 1999.

[13] Microsoft, COM Home Page,
http://www.microsoft.com/com/default.asp Last updated:
December 29, 1999

[14] Object Management Group, CORBA Components Final
Submission, OMG Document orbos/99-02-05

[15] Object Oriented Concepts, “ORBacus User Manual –
Version 3.3.1”, www.ooc.com/ob, 2000

[16] D.C. Schmidt and C. Cleeland, “Applying Patterns to
Develop Extensible ORB Middleware”, IEEE
Communications Magazine Special Issue on Design
Patterns, April, 1999.

[17] A. Singhai, A. Sane, and R. Campbell “Quarterware for
Middleware”, 18th IEEE International Conference on
Distributed Computing Systems (ICDCS 1998).
Amsterdam, The Netherlands. May 1998.

[18] Sun Microsystems, Enterprise JavaBeans Specification
Version 1.1, http://java.sun.com/products/ejb/index.html

[19] C. Szyperski, “Component Software. Beyond Object-
Oriented Programming”, Addison Wesley, ISBN: 0-201-
17888-5, 1997.

[20] Y. M. Wang and Woei-Jyh Lee, "COMERA: COM
Extensible Remoting Architecture," in Proceedings of
COOTS, April 1998.


