
Designing an Extensible Distributed Language

with a Meta-Level Architecture

Shigeru Chiba� Takashi Masuda

Department of Information Science, The University of Tokyo

E-mail: fchiba,masudag@is.s.u-tokyo.ac.jp

In Proceedings of 7th European Conference on Object-Oriented
Programming (ECOOP'93), Kaiserslautern, July 1993, LNCS 707, pp.482{501

Abstract

This paper presents a methodology for designing extensible languages for distributed com-
puting. As a sample product of this methodology, which is based on a meta-level (or reective)
technique, this paper describes a variant of C++ called Open C++, in which the programmer
can alter the implementation of method calls to obtain new language functionalities suitable for
the programmer's applications. This paper also presents a framework called Object Commu-

nities, which is used to help obtain various functionalities for distributed computing on top of
Open C++. Because the overhead due to the meta level computation is negligible in distributed
computing, this methodology is applicable to practical programming.

1 Introduction

Languages for distributed computing have been designed mostly to provide a general functionality
that can be used in a broad range of application domains. Designers of these languages have de-
veloped numerous language primitives or functionalities, such as Ada's rendezvous [26], the remote
procedure call [2], and Orca's shared data-object [1]. Each of these functionalities has its own most
suitable domain of applications, so a language that has a single one of these functionalities will be
small and simple but will not be suitable for some applications. It is, on the other hand, possible
to design a language that has many or all such functionalities, but such a language would be large
and awkward.

The goal of this paper is to demonstrate another approach, which is to make a language ex-
tensible. By this approach, we have been able to design a language that is, at the same time,
simple, elegant, and applicable in a wide range of domains. A programmer can tailor the language
to exploit various functionalities. Language extensibility has long been an important issue, and
Kiczales et al., for example, have recently discussed the designing of extensible class libraries [11].
A typical approach to supporting various functionalities within a single language is to provide a set
of reusable code, called a library program, that implements functionalities that are not supported

�JSPS (Japan Society for the Promotion of Science) Fellow-DC

1

by the language alone. Although functionalities implemented by this approach may show lower
performance than ones implemented by altering the language system such as the compiler, this
approach is broadly employed because su�cient performance is usually obtained by this approach
in practice. The library-program approach, however, is limited in that it cannot implement a
functionality that deals with non-�rst-class entities of the language.

This paper proposes methodology using an object-oriented meta-level technique in designing of
an extensible language for distributed computing. To demonstrate the use of this methodology, we
present Open C++, which is a C++ [23] variant including a simple metaobject protocol (MOP) [10].
In Open C++ the implementation of a method call (or in the object-oriented terminology, message
passing) is made open-ended by that MOP. To obtain a new functionality that �ts the application,
the programmer can easily extend the implementation within Open C++ itself. Performance
overheads are one of major issues in meta-level techniques, but they are not critical in domains
such as distributed computing, which Open C++ deals with. The seriousness of the overheads
depends on the inherent cost of functionalities achieved with the meta-level technique. Since the
overhead of Open C++ is negligible in comparison with the implemented functionalities, we believe
that our approach is | like the library-program approach, which is useful in spite of its relative
slowness | applicable to actual problems.

As with other systems using meta-level techniques, an extension of Open C++ is described
in meta code (meta-level program). Although meta code is usually written only by a system
specialist because MOP would be often complicated and extension was not frequent, we expect
normal programmers (who are not \wizards") to write meta code in Open C++ whenever a new
functionality is required for their applications. The Open C++ MOP is therefore designed to
provide an abstraction that encapsulates implementation details unnecessary to the extension of a
method call. To facilitate extension by normal programmers, this paper also provides a framework,
called Object Communities, that includes some basic functionalities for extending a method call
for distributed computing. With this framework, normal programmers can easily obtain various
functionalities for distributed computing on top of Open C++.

2 Open C++: A Simple MOP for C++

In most imperative languages for distributed computing, procedure calls (or in the object-oriented
terminology, method calls) are extended to support remote communication across a network. Those
extended method calls provide not only a functionality invoking a procedure (or a method) at a
remote machine, but also a functionality synchronizing multiple threads of control. In Ada [26]
and Concurrent C [5], for example, a statement syntactically similar to a procedure call is used
for executing a rendezvous, and a procedure call is extended to block the sender thread until the
receiver is ready. In ConcurrentSmalltalk [28], a method call of Smalltalk-80 [6] is extended to
be synchronous or asynchronous: an asynchronous method call lets a sender thread continue its
execution without blocking, whereas a synchronous method call blocks the sender thread until the
receiver thread �nishes a requested task.

By using a meta-level or so-called reection technique [21], Open C++ o�ers normal program-
mers the ability to extend a method call. Normal programmers can modify the implementation of
a method call within a user program to obtain various functionalities for remote communication.

2

The implementation of a method call is exposed to programmers as a metaobject [15], which is
an abstract model of that implementation and conceals implementation details unnecessary to the
extension. A metaobject is almost the same as a normal object, but its behavior corresponds to
the actual execution of the method call. An object at the base level has its metaobject at the meta
level, and the execution of its methods is controlled by the metaobject. If a method of the object
is invoked, the speci�c method of the metaobject, instead of a default implementation embedded
in the compiler, is used to execute the invoked method. Since a metaobject is de�ned in C++,
the programmer can alter the implementation of a method call by de�ning another metaobject and
then substituting it. Our approach does not require rebuilding the compiler but is done within a
user program.

2.1 Base-Level Directives

Open C++ provides a very simple MOP (metaobject protocol�) to make a method call extensible.
The objects controlled by metaobjects are called reective objects. Because control by a metaobject
imposes some performance and memory overhead in Open C++, the programmer can specify
whether or not an object is reective. A nonreective object is compiled to be a normal C++
object, which has no metaobject, so that it is executed without overhead. To distinguish between
reective and nonreective objects, a reective object is identi�ed by a di�erent class name. If the
class of an object that may be reective is X, then a reective object is refl X and a nonreective
object is still X. In the current implementation, the class refl X is a subclass of X.

To create a reective object, the class of the object and its metaobject must be declared with
special directives, which are C++ comments that start with //MOP. Note that even if a program
includes the directives of Open C++, that program is still a valid C++ program. The declaration
of a reective object takes the form

//MOP reflect class X : M;

This declaration means that an object of the class refl X is a reective object controlled by a
metaobject of the class M. Note that it never means that the classes X or refl X are subclasses of M.
The class M is a normal C++ class except that it must inherit from the class MetaObj. To extend
its implementation of a method call, a metaobject can be a reective object that is controlled by a
meta-metaobject. Open C++ allows such an ascending tower of metaobjects.

The methods of a reective object are divided into two groups, depending on whether the
invocation of the method is controlled by its metaobject. The methods controlled by the metaobject
are called reflect methods, and although reflect methods are invoked in an extended manner,
the other methods are invoked according to the plain C++ method call semantics. The following
is an example of specifying a reflect method.

class X {
public:

X();
//MOP reflect:

int func(int);

�A metaobject protocol is a meta-protocol organized using object-oriented techniques. Here a meta-protocol is a
protocol about the behavior and implementation of another protocol, such as interface and functionality.

3

private:
int p;

};

The methods following the directive \//MOP reflect:" are speci�ed as reflect methods. Here,
for example, func() is a reflectmethod. Such methods may have a category name to enable their
metaobject to recognize a role of the methods. A metaobject may alter the execution of a method
call according to the category name. Consider the following example: The method update() has
a category name \write".

class Y {
public:

...
//MOP reflect(write):

int update(int);

//MOP reflect(metamethod):
void Meta_operation();
...

The category name \metamethod" has a special meaning: it is used to call meta-methods of
a metaobject from the base level across the boundary of the levels. Calling a reflect method in
this category is regarded as calling a meta-method that has the same method name. The reflect
methods having the category name \metamethod" themselves are never executed.

2.2 Metaobject Protocol

When a reflect method is called, its execution is controlled by its metaobject. A metaobject is
de�ned in C++, and its class must inherit from the base class MetaObj, which mainly de�nes the
following two methods.

� void Meta MethodCall(Id method, Id category, ArgPac& args,

ArgPac& reply);

This method implements a method call at the base level. It is invoked if a reflect method
is called.

� void Meta HandleMethodCall(Id method, ArgPac& args,

ArgPac& reply);

This method is used to actually execute a reflect method.

To alter the implementation of a method call, the programmer de�nes a subclass of MetaObj in
which those methods are rede�ned so that the metaobject acts in the intended way.

Suppose that a reflect method f() is called. If the method f() is called, then the method
Meta MethodCall() is instead invoked at the meta level. The �rst argument of the method
Meta MethodCall() is bound to the integer identi�er of the called method f() (the type Id rep-
resents integers), and the second argument represents the category name of the method f(). The
actual arguments of the method call to f() are passed as the third argument, args. Note that
within a metaobject, the actual argument list of a method call is a �rst-class entity because the

4

third argument, args, is a normal C++ object whose class is ArgPac. The argument args has the
same interface as a stack so that the programmer can access any actual argument stored in args.
The programmer can also transfer the argument args to another metaobject that may reside on a
di�erent machine. Converting the actual arguments to an ArgPac-class object corresponds to the
reifying process, which is impossible in C++ alone without support of the Open C++ compiler.

The method Meta MethodCall() carries out certain computation and stores the result into the
fourth argument, reply. The stored result is returned as a return value to the caller that calls the
reflect method f(). The method Meta MethodCall() usually uses the method Meta Handle-

MethodCall() to compute the result value. This method takes a method identi�er and an actual
argument list, and it returns the result value of the speci�ed method. This method allows any
reflect method to be executed at any time. In the example above, the metaobject can execute
another reflect method as well as f() to compute the result value.

To illustrate the Open C++ MOP, consider a simple example in which this metaobject prints
a message before executing a reflect method called at the base level:

class VerboseMetaObj : public MetaObj {
public:

void Meta_MethodCall(Id method, Id category,
ArgPac& args, ArgPac& reply){

printf("***reflect method %s() was called.\n",
Meta_GetMethodName(method));

Meta_HandleMethodCall(method, args, reply);
};

};

If a metaobject of the class VerboseMetaObj is speci�ed, a message is printed on the console every
time a reflect method is called. The method Meta MethodCall() speci�es that this metaobject
prints the name of the called method before actually executing that method. Note that if we
eliminate the line "printf(...);" from this method, the implementation of a method call by
this metaobject becomes the same as the implementation in plain C++. Figure 1 shows how a
metaobject of the class VerboseMetaObj controls a method call. The metaobject controls an object
of the class refl X (as previously shown, a reective object of the class X). When a reflectmethod
func() of that object is called, the metaobject traps that method call and executes the method
func() according to the method Meta MethodCall().

Converting the actual arguments to an ArgPac-class object is similar to the marshal-
ing/unmarshaling process in remote procedure calls. In the current implementation, the class
refl X (which the Open C++ compiler generates) rede�nes a reflect method so that the method
carries out such conversion and then invokes the method Meta MethodCall() of its metaobject.
The current Open C++ compiler converts some atomic types (integers, pointers, etc.) implicitly
but does not class types (i.e., objects). The class types that can be an argument of a reflect

method must have some speci�c methods for the conversion. A similar limitation also appears in
the marshaling/unmarshaling process because the e�ciency of converting complex data, such as an
object, often depends on the program semantics. Such conversion should be under programmer's
control [8]. Open C++, however, provides a convenient library to implement the methods for the
conversion, and it also provides some prede�ned classes that facilitate to use a character string
etc. as an argument of a reflect method. Thereby, the limitation on argument types of reflect

5

object (refl_X)

int func() {
 :
}

metaobject (VerboseMetaObj)

void Meta_MethodCall() {
 printf(...);
 Meta_HandleMethodCall();
}

Call

Trap

Return

Meta-level

Base-level

1

2 34

Figure 1: Metaobject protocol of Open C++

methods is not awkward.

2.3 Why Meta? Pros and Cons

Open C++ does not expose the implementation of a method call directly, but through an ab-
stract interface. Although the original implementation of a method call, which is embedded in the
compiler, is described in assembly code, the programmer who attempts to extend the method call
describes a new implementation of C++ methods such as Meta MethodCall() instead of assembly
code. Because of the description through the abstract interface, the programmer need not consider
such details of the implementation as a stack image and the number of arguments. The programmer
can thus concentrate on matters strongly relevant to the extension.

This feature of Open C++ is due to the meta-level technique that Open C++ uses. When a
method of an object is invoked, the computation of the method call is rei�ed to be entities available
in a C++ program, and operations on these entities are reected in the actual computation. This
is a di�erence from \pseudo-open" systems, which directly expose their internal structure to be
extensible. Smalltalk-80, for example, provides the whole source code of its runtime system. Thus
in a sense, it is an open-ended system because user programmers can freely modify classes of kernel
objects to extend the system behavior. This feature of Smalltalk-80 may be a kind of reectiony.
Such modi�cation of kernel objects, however, can easily lead the system into collapse because the
programmer deals with the complicated kernel code directly, without an abstract interface.

On the other hand, the reifying process implies that the performance of Open C++ degenerates.
The cost of reifying and reecting is not negligible compared with the original implementation fully
described in assembly code. This is because the reifying process bridges the wide gap between
the assembly level and the C++ level. The higher the abstract interface Open C++ provides for
extension, the bigger the performance degeneration of the reifying process will be. This degenera-

yPeter Deutsch pointed this out at the BOF session in the '92 workshop on reection and meta-level architecture.

6

tion is negligible, however, when Open C++ is used for distributed computing. The method call
extended for distributed computing is so slow that the performance degeneration becomes relatively
insigni�cant. This issue is discussed in detail in Section 5.

Another bene�t of Open C++ is that meta code de�nes the extension independently of each
object so that meta code has high reusability. The same meta code can be used to extend method
calls to di�erent objects. Because meta code is organized according to the metaobject protocol,
furthermore, part of it is also reusable by class inheritance.

Open C++ improves the expressive power of a class library, which is also a technique for
supporting various functionalities within a single language. If a functionality like remote method
calls is implemented solely by means of class libraries, the translation of an argument list into
a network message becomes responsibility to the programmer. This is because the class library
alone cannot deal with any entities except these available at the base level, and an argument list
is available not at the base level but at the meta level. On the other hand, Open C++ enables a
class library to deal with an entity available at the meta level through a metaobject. For example,
it can use a metaobject for transferring an argument list to a di�erent machine and can execute a
remote method.

3 Object Communities | An Additional MOP for Distributed

Computing

Because a method call is a good basis of functionalities for distributed computing, various func-
tionalities can be implemented on top of Open C++. Most imperative languages include a method
call statement, and it has been used to implement a lot of existing functionalities for distributed
computing. A method call can be extended to support not only a remote method call but also
asynchronous message passing and message broadcasting. It can also be extended to be a synchro-
nization mechanism such as a rendezvous or a distributed semaphore.

To obtain a functionality suitable for the application, normal programmers should themselves
describe meta code to extend a method call. Although previous systems usually expected meta code
to be written only by a specialist, the simple MOP of Open C++ makes meta programming possible
for programmers with little knowledge as well as for specialists. The MOP of Open C++, however,
does not in itself support distributed computing; it only provides a platform on top of which a
functionality for distributed computing is implemented. This section proposes a framework, called
Object Communities, that facilitates to implement such a functionality on top of Open C++. This
framework is a class library of metaobjects and includes facilities that are commonly used to extend
a method call. Object Communities add a layered protocol onto the MOP of Open C++. It provides
the classes of metaobjects that implement some typical functionalities for distributed computing
so that programmers can obtain functionalities tailored to their applications by rede�ning some
methods of those classes.

3.1 Background Problem

Object Communities are designed to be a framework for implementing various application-speci�c
functionalities for distributed computing, such as distributed shared data, distributed transactions,

7

Process

Process

Processcommunication

method call

Meta Level

Base Level

metaobject

object

object community

Figure 2: An object community

remote procedure calls. Such a frameworkmust provide a facility managing computation distributed
to multiple processes on di�erent machines. A simple client-server framework based on remote
procedure calls is not su�cient as such a framework because although it can request computation
to another process, it cannot synchronize computation between processes.

The simple client-server framework, for example, cannot in an easily understandable way im-
plement the functionality required by groupware[4] (or multiuser applications), which supports
collaborative work by multiple users. The essential feature of groupware is that an application
program consists of multiple autonomous processes that are responsible for interaction with each
user. Those processes interfere with each other because the users manipulate shared entities, such
as shared documents and pictures, and their actions are therefore restricted by the actions of other
users. The processes may also notify each other when shared entities are updated and they can
request computation, such as redrawing the displays, in order to keep consistent images of the enti-
ties on the displays. To do these things, the application needs a functionality that makes it possible
to block the execution of other processes as well as to request computation to other processes.

3.2 Overview of Object Communities

The fundamental functionality of Object Communities is the management of a group of objects
distributed in di�erent machines. Such a group is called an object community (Figure 2). We
assume that each object belongs to a single process that has its own address space separated from
others and communicates with other processes across a network. A process is invoked explicitly by
the user, and it performs cooperatively with other processes in the same application.

Each object of an object community acts in a manner that depends on behavior of other

8

objects of that object community. The method calls to the objects are executed cooperatively by
the metaobjects so that the objects provide a certain functionality for distributed computing. Note
that although a group of objects as a whole provides some functionality, the de�nition of the objects
does not include any distributed concepts: these appear only in the de�nition of the metaobjects.
The functionality provided is implemented at the meta level, and the base-level programmer has
only to know how a method call is extended at the base level. Object Communities provide a
clear separation between distributed computation and the substantial computation executed in the
application.

In Object Communities, a metaobject has the following additional abilities.

� Concurrency Control . A metaobject controls the internal concurrency of its object. It can
ignore and delay execution of a called method of the object until some condition is satis�ed. A
metaobject can also execute multiple methods of its object concurrently. And a metaobject
can execute a method of its object when other metaobjects request that the method be
executed.

� Communication. A metaobject has two means of communicating with other metaobjects of
the same object community: a remote method call and message broadcasting. A metaobject
can call a remote method of other metaobjects. This is done in a manner similar to that
of a local method call. The caller metaobject is blocked until a reply is returned from the
called object. A metaobject can also send a message to all metaobjects of the same object
community. Because broadcast messages are serialized by the underlying system, all metaob-
jects receive the messages in the same order. A broadcast message is also delivered to the
metaobject that sent the message.

Although a metaobject controls the internal concurrency of its object, there is with few ex-
ceptions no internal concurrency of the metaobject by default. The methods of a metaobject are
executed sequentially, so the behavior of a metaobject is easily understandable. If internal concur-
rency of a metaobject is necessary, it must be controlled by an explicitly speci�ed meta-metaobject.

3.3 MOP of Object Communities

To append the Concurrency Control and Communication abilities, Object Communities provide the
class OcCoreMetaObj, which is a subclass of MetaObj, and the other classes of metaobjects that
implement functionalities based on Object Communities must inherit from this subclass.

The class OcCoreMetaObj de�nes some methods for manipulating an object community, for
network communication, for controlling concurrency, and so on. The following methods are to
manipulate an object community.

� Meta CreateOc(...) creates an object community.

� Meta DestroyOc(...) destroys an existing object community.

� Meta Join(...) lets an object join a speci�ed object community.

� Meta Leave(...) lets an object leave a speci�ed object community.

9

An object community is treated if it were a communication channel. An object can join or leave
an object community at any time, but the object community remains even if no object belongs to
it. It exists until it is destroyed explicitly. To give initial information to a metaobject that joins an
object community, the underlying system holds an initializing message for each object community.
This message, which can be dynamically updated by a metaobject, is passed to a metaobject when
its object joins to an object community.

The class OcCoreMetaObj de�nes three methods for communication with other metaobjects.

� Meta EventNotify(...) broadcasts a message to the other metaobjects of the same object
community.

� Meta Query(...) calls a method of other metaobjects in a manner like that of the remote
procedure call. The metaobject is blocked until a reply message arrives.

� Meta WaitForEvent(...) blocks a metaobject until it is ready to receive a broadcast mes-
sage. A metaobject can use this method to wait for a message broadcast by itself.

A message sent with the �rst two methods must be a pair consisting of an method identi�er (Id) and
an actual argument list (ArgPac). By sending a message, a metaobject requests other metaobjects
to execute a method of their object so that the methods are executed cooperatively.

The behavior of a metaobject receiving a message is de�ned by the following methods. The
class OcCoreMetaObj only declares these methods; their bodies are de�ned in its subclasses to alter
the behavior of each metaobject.

� Meta EventCallbackBody(...) is executed when a broadcast message is received.

� Meta SelfEventCallbackBody(...) is executed when a broadcast message that the metaob-
ject itself sent is received.

� Meta ReplyQueryBody(...) is a method exported to other metaobjects. This method can
be called by other metaobjects with the method Meta Query().

Although basically there is no internal concurrency of a metaobject, these three methods may
be executed concurrently when the metaobject is blocked by either the method Meta Query() or
Meta WaitForEvent(). This exception is necessary to prevent a deadlock.

The current implementation of Object Communities does not provide a preemptive sched-
uler. The programmer must therefore voluntarily cause a context switch at short intervals. The
class OcCoreMetaObj de�nes methods like WakeupTaskSv() and RecvMessage() to cause a con-
text switch. Note that implementing a preemptive scheduler is possible, and that a preemptive
scheduler can, in fact, be obtained if a timer-signal handler is available. The reason that a non-
preemptive scheduler is selected is to prevent the internal concurrency of a metaobject that has no
meta-metaobject. The methods of a metaobject are executed atomically; they are not preempted.

4 Examples of Method-Call Extension

Many functionalities for distributed computing can be implemented as a group of objects on dif-
ferent machines. Since Object Communities provide the ability to manage a group of objects,

10

MetaObj

OcCoreMetaObj

AbsOcMetaObj

QuickOcMetaObj

OcMetaObj

NullMetaObj

OcShareMetaObj

intermediate class

OcLockMetaObj

refl_RpcMetaObj

OcRemoteMetaObj

Figure 3: Class hierarchy of metaobjects

such a functionality is implemented on top of Open C++ by de�ning a subclass of the class
OcCoreMetaObj. In fact, Object Communities already include some subclasses of OcCoreMetaObj,
which implement various functionalities for distributed computing. Figure 3 illustrates the class
hierarchy of metaobjects provided by Object Communities in default.

The class NullMetaObj is irrelevant to Object Communities: it implements a method call that
is done in the original manner of C++ method calls. The other subclasses correspond to various
functionalities. They implement distributed shared data, transactions, and remote procedure calls.
They also implement remote object pointers with which an object can transparently call a method
of an object on a di�erent machine. The implementation of remote object pointers exploits other
programming techniques such as \smart pointers" [23] so that remote object pointers are naturally
available in C++. Furthermore, another subclass implements persistent objects by using the ability
of Open C++ to deal with instance variables of an object by the metaobject. Because of space
limitation, the details of this ability are not given here; we will present them in another paper.

Here we explain two of the subclasses of Object Communities: distributed shared data and
transactions. Distributed shared data are implemented by the class OcMetaObj. The shared data
are replicated and held by the objects that belong to the same object community. The metaobjects
control those objects to hold consistent values of the shared data. Suppose that the shared data is
an integer and is represented as a variable p of the class SharedData at the base level. To update
the variable p, the class SharedData has a method Update(). If the variable p is updated, this
method redraws a graphical display according to the new value of p:

class SharedData {
...

public:
//MOP reflect:

void Update(int new_p) { p = new_p; RedrawDisplay(); }
private:

void RedrawDisplay();
int p; // inaccessible from the outside of the object

};

//MOP reflect class SharedData : OcMetaObj;

11

An object of the class SharedData can be a reective object, and the class of the metaobject is
OcMetaObj. The method Update() is a reflectmethod. If an object of the class refl SharedData

is created, the metaobject makes the object join the speci�ed object community. Then the variable
p of the object is maintained by the metaobject to hold the same value as the values of p of the
other objects of the same object community. If the method Update() is called, the metaobject
requests the other metaobjects to use the same argument new p, and execute the same method of
their objects. Thus if the method Update() of an object of the object community is called, then
the methods of all the objects are executed and the values of p are updated keeping consistency.
Note that the de�nition of the class SharedData does not include any code concerning distributed
computation; such code is in the de�nition of the metaobject. Methods of the metaobject are
de�ned as follows:

void OcMetaObj::Meta_MethodCall(Id method_id, Id category,
ArgPac& args, ArgPac& reply){

// notifying others of a method call
Id event = Meta_EventNotify(method_id, args);
// waiting until that noti�cation is serialized
Meta_WaitForEvent(event, args);
// executing the called method actually
Meta_HandleMethodCall(method_id, args, reply);

}

void OcMetaObj::Meta_EventCallbackBody(Id method_id,
ArgPac& args, ArgPac& reply){

// if other metaobjects report a method call,
// the metaobject executes the called method.
Meta_HandleMethodCall(method_id, args, reply);

}

The consistency between the values of p is guaranteed even if two metaobjects attempt to execute
the method Update(). This is because the noti�cations by those metaobjects are serialized so that
every metaobject receives the noti�cations in the same order.

Since there is no restriction in terms of the de�nition of the method Update(), the program-
mer can de�ne any action that is executed whenever the shared data are updated. This kind of
processing cannot be adequately treated by other mechanisms for distributed shared data, such
as distributed shared memory [13], because they do not support a functionality that invokes user-
de�ned actions on each machine that shares the data.

Although in the example above other metaobjects are noti�ed of a method call immediately,
some mechanisms for distributed shared data improve performance by using an algorithm in which
the noti�cation is delayed [24]. Such an algorithm is also available in Open C++ if the programmer
de�nes a subclass of OcMetaObj to implement it. When implementing such an algorithm, it is
necessary to distinguish methods that modify the shared data from methods that simply read the
data. Category names of reflect methods are useful for this. For example,

class SharedData2 {
...

public:
//MOP reflect(write):

void Update(int new_p) { p = new_p; RedrawDisplay(); }

12

//MOP reflect(read):
int Get() { return p; }
...

};

The category names let the metaobject identify the method Update() as a \write" method, and
the method Get() as a \read" one.

Next we show another subclass of Object Communities. The class OcLockMetaObj of metaob-
jects implements atomic transactions. Although the concept of atomic transactions includes recov-
erability (a transaction causes no side-e�ect if it fails), the class OcLockMetaObj does not support
recoverability. It only guarantees atomicity; the sequence of the operations in a transaction is
executed continuously. The method Meta MethodCall() of the class OcLockMetaObj is as follows.

void OcLockMetaObj::Meta_MethodCall(Id method_id, Id category,
ArgPac& args, ArgPac& reply){

while(locked)
Meta_WaitForEvent(); // block until a lock is released.

// the following is the same as the method of OcMetaObj
Id event = Meta_EventNotify(method_id, args);
Meta_WaitForEvent(event, args);
Meta_HandleMethodCall(method_id, args, reply);

}

The metaobject of the class OcLockMetaObj delays the method execution while the execution
is locked. To begin a transaction, the programmer calls a method of the metaobject, which locks
method execution with a broadcast message. Receiving the message, the other metaobjects of
the same object community stop method execution until that metaobject releases the lock. The
variable lock indicates whether execution is locked or unlocked. It is maintained by messages
between metaobjects.

5 Overheads due to having a Meta Level

E�cient implementation of meta-level techniques is a major research topic. Because execution of
a reective object in Open C++ is partly interpreted by a metaobject, its execution is slower than
that of a nonreective object. This section briey shows the result of measurements in terms of
the execution speed.

The current Open C++ compiler is a preprocessor of the C++ compiler. Because no modi�ca-
tion is added to the C++ compiler, an Open C++ program is translated into a plain C++ code.
Calling a reflect method thus imposes some overhead that by some standards is not small.z We
show the result of performance measurements of method calls.

Table 1 lists latency time for three kinds of null method calls. These values were measured on
a SPARC station 2 (SunOS 4.1.1), and the compiler was Sun C++ 2.1. The latency was measured
for di�erent numbers of arguments. The type of arguments was int except for the data of the
rightmost column, for which the type was double. Although the 0-argument method does not

zThe initial version of the Open C++ compiler showed that a reflect method call was 100 times slower than a
virtual method call of C++.

13

Table 1: Average Latency (�sec.) of a null method call

number of arguments 0 1 5 5� double

C++ function 0.3 0.6 1.3 2.1

C++ virtual method 0.8 1.0 1.8 2.2

reflect method 1.8 6.3 13.8 21.7

reflect/virtual ratio 2.3 6.3 7.7 9.9

SPARC 40 MHz (28.5 MIPS) and Sun C++ 2.1

return anything, the other methods return an int value. A method that takes 5 double arguments
returns a double value. The three kinds of null method calls are a C++ function, a virtual

method, and a reflect method. The �rst two are supported by both C++ and Open C++,
whereas the last is available only in Open C++. A C++ function call is to call a method of an
object pointed to by a variable. This takes a form like ptr->func(). A virtual method call is to
call a method of an object whose class is unknown at compile time; a method name is dynamically
bound to a method body. A reflect method call is one controlled by a metaobject of the class
NullMetaObj, which implements a method call so that its behavior is the same as that of a C++
function call.

The last line of the table shows the ratio of the latency of a reflect method call to that of
a virtual method call. This ratio increases with the number of arguments because the overhead
of a reflect method call is mainly due to the reifying process of the argument list of the method
call. Arguments are copied to an ArgPac class object separately when the reflect method is
called. The overhead for this copying increases in proportion to the number of arguments. Since
the 0-argument method takes no argument, its overhead is smaller than that of the other methods.

The result of these measurements shows that a reflect method call is 6 to 8 times slower than
a virtual method call. Although this overhead seems important, it is actually negligible if Open
C++ is used for distributed computing, since the network latency time is between several hundred
microseconds and several milliseconds. The overhead is also reduced by a proper designing of the
applications. In carefully designed applications, distributed computation is localized in a small
number of objects, which would be reective, and the other objects are executed without overhead
since Open C++ allows to specify whether or not an object is reective. We believe that meta-level
techniques are already applicable to practical programming if the programmer selects a domain in
which the overhead is negligible in comparison with the overhead for performance of a functionality
implemented with the meta-level technique.

Furthermore, from the viewpoint of distributed computing, the overhead of Open C++ is due
to the cost of the marshaling/unmarshaling process, in which transferred data are converted into a
network message. Because this process commonly appears in distributed computing, the overhead
of Open C++ is almost equivalent to that of other approaches such as Sun's RPC [25]. When Sun's
RPC library is used, each conversion of an int argument takes a few microseconds because that
library is a general one, and a few nested function calls are needed whenever a converting routine

14

(an XDR routine) is called.
If the increased overhead of a meta-level technique is limited to within a factor of 10, then the

advantage of that meta-level technique is worthwhile. In the concurrent language ABCL/R2 [17],
for example, the execution that involves a meta-level operation is 6 or 7 times slower than a normal
execution [16]. As in Open C++, the programmer can select whether or not an object is controlled
by a metaobject. As a result, ABCL/R2 improves the execution speed of a program by a meta-level
technique.

6 Related Work

C++ provides some meta-level operations. The macro set of handling a variable argument list
can be considered to provide a few restricted meta-level operations. It allows the programmer
to traverse an argument list whose length and element types are variable, as if the argument list
were a �rst-class entity. Operator overloading is also a meta-level operation because it enables the
replacement of prede�ned operators, such as + and ->, with user-de�ned procedures. No meta-
level information is available in a overloading procedure, however, because operator overloading is
not implemented by using the concept of reection.

The stub generator [2] of remote procedure calls, such as Sun's rpcgen [25], has a functionality
similar to that of the Open C++ compiler. It reads the description �le of a remote procedure and
then generates a stub routine, which is a utility routine for calling the remote procedure. Unlike
the Open C++ compiler, however, the stub generator does not expose the inside of a stub routine,
so the programmer cannot alter the implementation of a stub routine in a well-organized manner.
The FOG compiler [7] provides the ability of extending a generated code. It allows to use in C++
a fragmented object (FO), which is a distributed object. In the FOG compiler, the programmer
can specify a communication protocol of a remote procedure call.

Meta-level (or reection) techniques have been applied in various domains and they are still
an active area of research. CLOS MOP [10] is the �rst try to apply the meta-level techniques to
a practical language. It provides an extensible implementation of CLOS [22]: all speci�cations
of CLOS are modi�able. The mechanism for method lookup, for example, is extensible by a
metaobject. There are several reective language systems other than CLOS MOP. ABCL/R2
applies a meta-level technique to parallel computation, and RbCl [9] tries to minimize the run-time
kernel that is not extensible. AL1/D [18] provides multiple abstract models for each aspect of the
implementation, and this is e�ective when many aspects of the implementation are exposed. The
programmer can alter each aspect independently, without considering other aspects.

Meta-level techniques are also beginning to be used for commercial systems. The Meta-
Information-Protocol (MIP) [3] used in some commercial systems, is a mechanism for accessing
the type information of a C++ object at run time. It represents type information by a metaobject
so that typesafe downcast is available in C++. Because a metaobject in the MIP exposes internal
information but a change of the metaobject does not inuence behavior of an object, the overheads
of the MIP is obviously small with respect to execution speed compared with Open C++. Meta-
level techniques are also used for developing systems other than languages, such as an operating
system and a window system. Apertos [27] is an operating system completely based on a meta-
level technique, and Silica [19] is a window system with which the programmer can alter how the

15

system draws an image on a window, how the relationship of windows is maintained, and so on.
The Choices operating system uses a meta-level technique to implement its kernel and subsystems
[14]. Using macros and programmer conventions, Choices exploits a meta-level technique within
the con�nes of plain C++.

Some researchers try to reduce the cost associated with having the meta level. CLOS MOP,
for example, has no costs beyond these of plain CLOS. This is achieved by careful protocol design
and by implementation devices in which, for example, calls to the meta-level functions are partially
evaluated. Because the execution mechanism of CLOS has inherent complexity and costs, the cost
due to the meta level can be recovered by those techniques. On the other hand, C++ is designed
so that the program is directly translated into e�cient assembly code. The C++ method call, for
example, is compiled into a few machine instructions. The techniques used for CLOS MOP are
therefore insu�cient to implement Open C++ MOP without overhead.

Anibus [20] and Intrigue [12] support \compile-time" MOPs to reduce the cost due to the meta
level. They are Lisp compilers that are extensible according to MOP. The \compile-time" MOPs
modify the compilers to compile a program in a di�erent scheme. Because a meta code replaces
an internal code of the compilers instead of a compiled code, this approach, like that of CLOS
MOP, does not generate overheads. In this approach, however, meta code must describe not how
an object behaves, but how the compiler generates compiled code that makes an object behave
according to the programmer's intention. Although this approach has no overhead, its meta code
is less straightforward than those in CLOS MOP and Open C++.

7 Conclusion

This paper described Open C++ in order to demonstrate a methodology for designing extensible
languages for distributed computing. Open C++ is designed on the basis of an object-oriented
meta-level (or reection) technique so that the implementation of a method call is made open-ended.
The programmer can alter the implementation of a method call according to a simple metaobject
protocol (MOP), and obtain on top of Open C++ a new language functionality for distributed
computing. Open C++ MOP is made so simple and easily understandable that programmers who
are not familiar with the meta system can implement a new functionality e�ortlessly on top of Open
C++. The MOP exposes the implementation of a method call with some abstraction. Open C++
also provides Object Communities, which is a framework that facilitates meta-level programming
for implementing a functionality for distributed computing.

Open C++ clearly separates distributed computation from the other computation that is more
substantial to the programmer. Computation concerning communication and synchronization no-
tions appears only at the meta level, and need not be considered by the programmer writing a
program at the base level. This feature of Open C++ makes a program more understandable and
easier to describe.

The overhead associated with Open C++ MOP is negligible when Open C++ is used for
distributed computing, since even though it is not small, it is negligible in comparison with network
latency time. How much performance the system using the MOP must achieve depends on the
operations controlled by the MOP. Although meta-level techniques are still di�cult to implement
e�ciently, they are already applicable to practical programming if the domain is selected properly.

16

Unlike CLOS MOP, Open C++ introduces a meta-level technique into a compiler-based lan-
guage. Because Open C++ must bridge an abstraction gap between C++ and an assembly lan-
guage, its design considered implementation issues that the design of CLOS MOP did not. It
restricts the extensible part of the language speci�cations in order to reduce the cost associated
with the meta level. The entities that the MOP rei�es are only those necessary for distributed
computing. To apply Open C++ in application domains such as parallel computing as well as
distributed computing, however, the overhead due to extensibility needs to be further reduced.

Acknowledgments

We thank Satoshi Matsuoka for his suggestions on clarifying and organizing this work. We also
thank Gregor Kiczales, Hidehiko Masuhara, and Frank Buschmann for their helpful comments on
earlier drafts of this paper.

References

[1] Bal, H. E., M. F. Kaashoek, and A. S. Tanenbaum, \Orca: A Language For Parallel Pro-
gramming of Distributed Systems," IEEE Trans. Softw. Eng., vol. 18, no. 3, pp. 190{205,
1992.

[2] Birrell, A. D. and B. J. Nelson, \Implementing Remote Procedure Calls," ACM Trans. Comp.

Syst., vol. 2, no. 1, pp. 39{59, 1984.

[3] Buschmann, F., K. Kiefer, F. Paulisch, and M. Stal, \The Meta-Information-Protocol: Run-
Time Type Information for C++," in Proc. of the Int'l Workshop on Reection and Meta-Level

Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 82{87, 1992.

[4] Ellis, C., S. Gibbs, and G. Rein, \Groupware {Some Issues and Experiences," Commun. of the

ACM, vol. 34, no. 1, pp. 38{58, 1991.

[5] Gehani, N. and W. Roome, \Concurrent C," Software{Practice and Experience, vol. 16, no. 9,
pp. 821{844, 1986.

[6] Goldberg, A. and D. Robson, Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, 1983.

[7] Gourhant, Y. and M. Shapiro, \FOG/C++: a Fragmented-Object Generator," in Proc. of

USENIX C++ Conference, pp. 63{74, 1990.

[8] Herlihy, M. and B. Liskov, \A Value Transmission Method for Abstract Data Types," ACM

Trans. Prog. Lang. Syst., vol. 4, no. 4, pp. 527{551, 1982.

[9] Ichisugi, Y., S. Matsuoka, and A. Yonezawa, \RbCl: A Reective Object-Oriented Concurrent
Language without a Run-time Kernel," in Proc. of the Int'l Workshop on Reection and Meta-

Level Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 24{35, 1992.

17

[10] Kiczales, G., J. des Rivi�eres, and D. G. Bobrow, The Art of the Metaobject Protocol. The MIT
Press, 1991.

[11] Kiczales, G. and J. Lamping, \Issues in the Design and Speci�cation of Class Libraries," in
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and Applications,
pp. 435{451, 1992.

[12] Lamping, J., G. Kiczales, L. Rodriguez, and E. Ruf, \An Architecture for an Open Compiler,"
in Proc. of the Int'l Workshop on Reection and Meta-Level Architecture (A. Yonezawa and
B. C. Smith, eds.), pp. 95{106, 1992.

[13] Li, K., Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Dept. of
Computer Science, Yale Univ., 1986.

[14] Madany, P., P. Kougiouris, N. Islam, and R. H. Campbell, \Practical Examples of Rei�ca-
tion and Reection in C++," in Proc. of the Int'l Workshop on Reection and Meta-Level

Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 76{81, 1992.

[15] Maes, P., \Concepts and Experiments in Computational Reection," in Proc. of ACM Conf.

on Object-Oriented Programming Systems, Languages, and Applications, pp. 147{155, 1987.

[16] Masuhara, H., S. Matsuoka, T. Watanabe, and A. Yonezawa, \Object-Oriented Concurrent
Reective Languages can be Implemented E�ciently," in Proc. of ACM Conf. on Object-

Oriented Programming Systems, Languages, and Applications, pp. 127{144, 1992.

[17] Matsuoka, S., T. Watanabe, and A. Yonezawa, \Hybrid Group Reective Architecture for
Object-Oriented Concurrent Reective Programming," in Proc. of European Conf. on Object-

Oriented Programming '91, no. 512 in LNCS, pp. 231{250, Springer-Verlag, 1991.

[18] Okamura, H., Y. Ishikawa, and M. Tokoro, \AL-1/D: A Distributed Programming System
with Multi-Model Reection Framework," in Proc. of the Int'l Workshop on Reection and

Meta-Level Architecture (A. Yonezawa and B. C. Smith, eds.), pp. 36{47, 1992.

[19] Rao, R., \Implementational Reection in Silica," in Proc. of European Conf. on Object-

Oriented Programming '91, no. 512 in LNCS, pp. 251{267, Springer-Verlag, 1991.

[20] Rodriguez Jr., L. H., \Coarse-Grained Parallelism Using Metaobject Protocols," Techincal
Report SSL-91-61, XEROX PARC, Palo Alto, CA, 1991.

[21] Smith, B. C., \Reection and Semantics in Lisp," in Proc. of ACM Symp. on Principles of

Programming Languages, pp. 23{35, 1984.

[22] Steele, G., Common Lisp: The Language. Digital Press, 2nd ed., 1990.

[23] Stroustrup, B., The C++ Programming Language. Addison-Wesley, 2nd ed., 1991.

[24] Stumm, M. and S. Zhou, \Algorithms Implementing Distributed Shared Memory," IEEE Com-

puter, vol. 23, no. 5, pp. 54{64, 1990.

18

[25] Sun Microsystems, Network Programming Guide. Sun Microsystems, Inc., 1990.

[26] U.S. Dept. of Defense, Reference Manual for the Ada Programming Language. ANSI/MIL-
STD-1815A, 1983.

[27] Yokote, Y., \The Apertos Reective Operating System: The Concept and Its Implemen-
tation," in Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and

Applications, pp. 414{434, 1992.

[28] Yokote, Y. and M. Tokoro, \The Design and Implementation of ConcurrentSmalltalk," in
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and Applications,
pp. 331{340, 1986.

19

