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1. Introduction
It has been claimed in a number of publications that the object abstraction may not be adequate in

modeling certain concerns effectively, especially if these concerns incorporate complex semantics

and have a crosscutting property [4, 12]. Various techniques have been proposed to manage such

concerns such as Adaptive Programming [14], Hyperspaces [16], AspectJ [13] and Composition

Filters [1].

This article first presents an example to illustrate the issue of composing and reusing multiple

concerns in object-oriented programs when requirements evolve. As a solution to the identified

problems, the Composition Filters (CF) model is presented.

Filters are used to express complex and crosscutting concerns. The CF model extends the object

abstraction in a modular and orthogonal way. Modular extension means that filters can be attached

to objects expressed in different languages without modifying the definition of objects in these

languages. Orthogonal extension means that the semantics of a filter is independent of the semantics

of other filters. The modular and orthogonal extension properties distinguish the CF model from

most other aspect-oriented techniques. Modular extension makes filters independent of the

implementation. Orthogonal extension makes filters composable. The previous version of the CF

model was used to express concerns for a single object [6, 5]. This article explains how the CF

model can be applied to express and compose concerns within and across multiple objects.

This article is organized as follows. The following section introduces an example application, which

evolves in time due to changes in the requirements. Section 3 explains the CF model and shows

how it can cope with the evolution problems. Finally, section 4 evaluates the CF model and gives

conclusions.
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2. An Example: An Administrative System For Social Security Services
We will now present a simple example to illustrate the issue of composing and reusing multiple

concerns in object-oriented programs when the requirements evolve. This example is a simplified

version of the pilot study [11]. Later, due to evolving business context, the initial software has

undergone a series of modifications.
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Figure 1. Tasks in the example system.

Assume that a government-funded agency is responsible for the implementation of disablement

insurance laws. As shown in Figure 1, the agency implements five tasks. Task RequestHandler

creates an entry for clients. Entries are represented as documents. RequestDispatcher implements

the evaluation and distribution of the requests to the necessary tasks. A request can be dispatched to

MedicalCheck, Payment or OutputHandler. MedicalCheck is responsible for evaluating client's

disablement. Payment is responsible for issuing bank orders. ResponseHandler is responsible for

communicating with the clients. A typical claim is subsequently processed by RequestHandler,

RequestDispatcher, MedicalCheck, Payment and OutputHandler. Various other interaction

scenarios are also possible.

2.1 The Software System
2.1.1 Modeling Client's Requests
The system has been implemented as a set of tasks. For each client's request, a document is created.

Depending on the document type and client's data, the document is edited and sent to the

appropriate tasks using a standard email system. Each relevant task processes the document

accordingly. In this article, we neglect the agency specific user interfacing tools and concentrate

more on the core application classes.
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putId(clId: Integer)
Id(): Integer
putName(clName: PersonName)
name(): PersonName
putClientAddress(clAddress: Address)
clientAddress(): Address
putHandler(clHandler: PersonName)
handler(): PersonName
putClientCategory(clCategory: DisablementCategory)
clientCategory(): DisablementCategory

id: Integer
name: PersonName 
handler: PersonName
clientAddress: Address
clientCategory: DisablementCategory

Document

putReqestedClaim(reqClaim: Claim)
requestedClaim(): Claim
putClaimAmount(clAmount: Currency)
claimAmount(): Currency
putApprovedClaim(appClaim: Currency)
approvedClaim(): Currency
putRequestHandlerData(reqHData: DocumentData)
requestHandlerData(): DocumentData
putRequestDispatcherData(reqDDate: DocumentData)
requestDispatcherData(): DocumentData
putMedicalCheckData(medCData: DocumentData)
medicalCheckData(): DocumentData
putPaymentData(payment: DocumentData)
paymentData(): DocumentData
putOutputHandlerData(outHData: DocumentData)
outputHandlerData(): DocumentData

requestedClaim: Claim
claimAmount: Currency
approvedClaim: Currency
requestHandlerData: DocumentData
requestDispatcherData: DocumentData
medicalCheckData: DocumentData
paymentData: DocumentData
outputHandlerData: DocumentData

ClaimDocument

Figure 2. Part of the document class hierarchy, which is used for representing client requests.

As shown in Figure 2, class Document is the root class of all document types. Every document has 5

attributes. The attributes id, name, clientAddress are used for storing client's data. The attribute

handler represents the clerk who is in charge of processing the request. The attribute clientCategory

specifies the classification of the client with respect to the disablement laws. Class Document

implements 10 operations, which are used to read and write these attributes.

Class Document has several subclasses. For example, ClaimDocument is used to represent the

claims of clients. This class declares 8 attributes. The attribute requestedClaim represents the type

of client's claim, such as medicine, hospital costs, etc. The attribute claimAmount is the claimed

amount of money. The attribute approvedClaim is the amount approved by the agency. The

remaining attributes are filled in by various tasks while the document is being processed.

2.1.2 Modeling The Tasks
As shown in Figure 3, TaskProcessor declares the basic operations for all tasks. The operation

processDocument accepts a document as an argument and opens an editor for the document by

calling on startEditorWithDocument. When the document is edited by a particular task, the

operation forwardDocument is called. Both of these operations are overridden by the subclasses.
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processDocument(aDoc: Document)
startEditorWithDocument(aDoc: Document)
forwardDocument(aDoc: Document,
                             nextTask : TaskProcessor )

TaskProcessor

processDocument(aDoc: Document)
forwardDocument(aDoc: Document,
                             nextTask : TaskProcessor )
retrieveClientData(clQ: Query): Document
archieveClientData(aDoc: Document)

RequestHandler

processDocument(aDoc: Document)
forwardDocument(aDoc: Document,
                            nextTask : TaskProcessor )

OutputHandler

processDocument(aDoc: Document)
forwardDocument(aDoc: Document,
                             nextTask : TaskProcessor )

MedicalCheck

processDocument(aDoc: Document)
forwardDocument(aDoc: Document,
                             nextTask : TaskProcessor ) 

RequestDispatcher

processDocument(aDoc: Document)
forwardDocument(aDoc: Document,
                            nextTask : TaskProcessor ) 

Payment

Figure 3. Class hierarchy for tasks.

RequestHandler implements the front-end of the office. For example, if a client wants to issue a

claim, this task creates an object of ClaimDocument, retrieves the necessary client data and opens an

editor for the document object. The responsible clerk should then enter the data on the field defined

for RequestHandler. When the task is completed, the clerk selects the next task and calls

forwardDocument. The operation forwardDocument prepares the document and passes it as an

argument to the operation processDocument on the next task. Subsequently, each clerk in the

process enters data into the appropriate data field and forwards the document according to the office

procedure. In this system, creating a new process can be realized by creating a new structural

document subclass1.

2.2 Evolution 1: Protecting Documents
In the initial system, a clerk could edit any field in a document. A request dispatcher clerk could, for

instance, accidentally edit the medical data field. Therefore, it was found necessary to protect the

documents. We consider two alternatives for enhancing ClaimDocument for protection: to modify

and recompile ClaimDocument or to introduce a new class and reuse class ClaimDocument through

inheritance or aggregation.

Figure 4 shows an inheritance-based solution where class ProtectedClaimDocument inherits from

ClaimDocument, declares a new operation called activeTask, and redefines 15 operations of class

ClaimDocument.

                                                
1 In the actual system, there were approximately 30 different document types.
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ClaimDocument

activeTask (): String;

putId(clId: Integer)
putName(clName: PersonName)
putClientAddress(clAddress: Address)
putHandler(clHandler: PersonName)
putClientCategory(clCategory: DisablementCategory) 
putClaimAmount(clAmount: Currency)
putReqestedClaim(reqClaim: Claim)
putRequestHandlerData(reqHData: DocumentData)

putApprovedClaim(appClaim: Currency)
putPaymentData(payment: DocumentData)

putRequestDispatcherData(reqDDate: DocumentData)

putMedicalCheckData(medCData: DocumentData)

approvedClaim(): Currency

 medicalCheckData(): DocumentData

 putOutputHandlerData(outHData: DocumentData)

ProtectedClaimDocument

if activeTask  = ‘requesthandler’
then super.putId(clId)
else error;

if activeTask  = ‘payment’ OR
   activeTask  =‘outputHandler’
then super.approvedClaim()
else error;

Figure 4. Class ProtectedClaimDocument with the pseudo-code implementations of putId and approvedClaim.

The operation activeTask returns the identity of the active task. The operations putId, putName,

putClientAddress, putHandler, putClientCategory, putClaimAmount, putRequestedClaim, and

putRequestHandlerData are redefined such that only RequestHandler can invoke on them. This is

implemented by calling on the corresponding operation at the superclass only if the current task is

RequestHandler. Otherwise an error message is generated. Similarly, putApprovedClaim and

putPaymentData can only be invoked by Payment, putRequestDispatcherData by Request

Dispatcher, putMedicalCheckData by MedicalCheck and putOutputHandlerdata by OutputHandler.

The operations approvedClaim and medicalCheckData can be invoked by two different tasks. These

are namely, Payment and OutputHandler, and RequestDispatcher and MedicalCheck, respectively.

One of the advantages of using inheritance here is the transitive reuse of the remaining 11

operations, since they do not require any view enforcement.

Aggregation-based reuse has the advantage that the aggregated object can be replaced at run-time,

for example to adapt the behavior of an object [9]. However, in this case, transitive reuse is not

possible and the remaining 11 operations have to be forwarded to the aggregated object.

In the actual pilot project, the number of required operation redefinition was several order of

magnitudes higher, since there were multiple document types used in the agency, which required a

similar sort of protection.
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2.3 Evolution 2: Adding Workflow
In the previous implementation, the clerks had to decide which task to be executed next. To enforce

a process, class WorkFlowEngine is introduced. The attribute workFlowSpec of WorkFlowEngine

represents the process to be enforced. This attribute can be set and read by the operations

putWorkFlowSpec and workflowSpec, respectively. The operation selectTask accepts a document as

an argument and based on the workflow specification and the state of the document, returns the

identity of the next task.

Adding a workflow to the system requires redefinition of forwardDocument for all task classes. The

forwardDocument first calls on selectTask of  WorkFlowEngine, which returns the next task. The

operation forwardDocument cannot be implemented at the superclass level, since every task

implements this operation in a specific manner.

2.4 Evolution 3: Adding Document Queues
Each document in the process may require a different processing time. To improve the average

throughput, a document queue is defined for every task. This requires implementing a buffer for

every task class. The operation processDocument has to be mutual exclusive; every call must be

queued until processDocument is ready with its current task. Also the operation noActiveThreads is

introduced to determine if the task is idle.

2.5 Evolution 4: Adding Logging
One of the important concerns of the workflow system is to monitor the process, detect the

bottlenecks and reschedule and/or reallocate the resources, if necessary.

To determine which operations to be monitored is difficult to determine a priori since it depends on

the purpose of monitoring. All the interactions among objects are therefore registered.

Class Logger is introduced to register the interactions in the system. Logger has 7 operations. The

operations loggingEnabled and loggingDisabled activates and deactivates the logging mechanism,

respectively. The operation log accepts an object of class Message as an argument, extracts the

necessary information from the message as desired, and returns. The operations putOperationList

and operationList are used to set or read the list of operations to be monitored, respectively. The

operation reset clears all the registered data. The operation logdata is used to read the registered

calls. Adding a logging facility also requires redefinition of all methods of task and document

classes. This is because before executing any call, the operation log of Logger must be called.

2.6 Evolution 5: Adding Locking
Soon after introducing the logging facility, it was found necessary to temporarily lock a task or

document, for instance, for reallocating resources, debugging or for obtaining a snapshot of the

system. For every class in the system, the operations lock and unlock are introduced. . The operation

lock queues all the requests unless unlock is invoked. The invocation of unlock has no influence if



7

the object has been already unlocked. Note that if a semaphore-like mechanism is used to implement

locking, every operation of a class has to be redefined.

3. The Composition Filters Approach
In this section we will introduce the CF approach to aspect-oriented programming and composition

of multi-dimensional concerns. First we will briefly explain the CF object model, which modularly

extends the 'conventional' object-oriented model with a filter specifications. The recent version of

the CF model includes the so-called superimposition specification. The superimposition

specification describes the places in the program –rather than just within the class– where concern

behavior is to be added. This CF model supports crosscutting behavior across the set of methods

supported by a single or multiple classes. For space reasons, we have left out details in several

places.

3.1 A Conceptual Model of Composition Filters
The composition filters model adopts declarative specifications: these describe what should be

done, rather than how. This means, for example, that many different implementations are possible

for each specification. The semantics of composition filters are best explained in terms of a run-time

model. Therefore we will adopt the run-time perspective to describe the conceptual model in this

section2.

3.1.1 Basic Structure of Composition Filters Objects
The composition filters model is a modular extension to the conventional object-based model [17]

as adopted e.g. by programming languages such as Java, C++ and Smalltalk, and component models

such as CORBA and Enterprise JavaBeans. Since in an object-based system, all behavior is

implemented by sending messages between objects, the manipulation of incoming and outgoing

messages of objects can express a large category of behavior changes. To support such

manipulation, a layer called the interface wraps the implementation object. Any object-based model

can define the implementation object. The composition filters model and its elements are shown in

Figure 5.

                                                
2 Note that this model is intended as a representation, which is independent of both the programming language

syntax, and of the actual implementation in executable code.
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Figure 5. Simplified representation of the CF model.

The filters define the (observable) behavior of the object. Each filter specifies a particular inspection

and manipulation of messages. Input and output filters can manipulate messages received by

respectively sent from an object. These are declared in separate filtersets. Filters may refer to

internal objects or external objects. Internal objects are instantiated and encapsulated within the CF

object whereas external objects are references (by name) to objects outside the CF object, such as

globals or shared objects.

Filters define the behavior of the object as a composition of the behavior of its implementation part,

its internal and its external objects. The interface part is a modular, language-independent3

extension to the implementation part. In Figure 6, an example is shown of the specification of a CF

object with most of the elements we have mentioned so far. The specification of the filters will be

explained in 3.1.3.

The implementation part can define two types of methods: regular methods and condition methods

(conditions for short). The regular methods, which implement the functional behavior of the object,

may be invoked through messages, if the filters of the object allow this. Conditions must implement

side-effect free Boolean expressions that provide information about the state of the object4.

Conditions support the filters to decide how to manipulate messages. In the interface, methods and

conditions are declared to verify consistency and for type-checking purposes.

                                                
3 We adopt the UML notation for declaring objects and methods.
4 Although it would be preferable if the constraint of being side effect free could be statically enforced, this is not

possible in general without sacrificing some of the expression power of the condition expressions.
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concernconcernconcernconcern ProtectedClaimDocument beginbeginbeginbegin

filterinterface filterinterface filterinterface filterinterface documentWithViews begin begin begin begin

internalsinternalsinternalsinternals
document: ClaimDocument;

externalsexternalsexternalsexternals // no externals defined by this class

conditionsconditionsconditionsconditions
inactiveRH; inactiveRD; inactiveMC; inactiveP; inactiveOH;

methodsmethodsmethodsmethods
activeTask();

inputfiltersinputfiltersinputfiltersinputfilters

// introduced later in this paper
end filterinterfaceend filterinterfaceend filterinterfaceend filterinterface DocumentWithViews;

implementation in implementation in implementation in implementation in Java  // for example

class ProtectedClaimDocument    {
boolean inactiveRH() { return this.activeTask().class()!=RequestHandler };
boolean inactiveRD() { … };
boolean inactiveMC() { … };
boolean inactiveP()  { … };
boolean inactiveOH() { … };

String activeTask()  { … };
}

end implementationend implementationend implementationend implementation

end concern end concern end concern end concern ProtectedClaimDocument;;;;

Figure 6. Specification of ProtectedClaimDocument, illustrating the elements of a CF object.

3.1.2 The Principle of Message Filtering
We will explain the basic mechanism of message filtering with the aid of Figure 7. In the

description we will assume input filters, but output filters work in exactly the same manner.

Figure 7. An intuitive schema of message filtering.

To properly understand Figure 7, the following should be kept in mind: filters are defined in an

ordered set. Each message5 has to pass the filters in the set, until it is discarded or can be dispatched.

Dispatching means that the message is activated again, for example to start the execution of a local

method, or to be delegated to another object. Each filter can either accept or reject a message. The

                                                
5 Messages are first reified, i.e. a first-class representation is created. Composition filters thus –conceptually– apply a

form of message reflection [Error! Reference source not found.], but note that actual implementations, may
'optimize away' the reification.
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semantics associated with acceptance or rejection depend on the type of the filter. Examples of

predefined filter types are:

Dispatch: if the message is accepted, it is dispatched to the current target of the message, otherwise

the message continues to the subsequent filter (if there is none, an exception is raised) [1].

Error: if the filter rejects the message, it raises an exception, otherwise the message continues to the

next filter in the set [1].

Wait: if the message is accepted, it continues to the next filter in the set. The message is queued as

long as the evaluation of the filter expression results in a rejection [5, 6].

Meta: if the message is accepted, the reified message is sent as a parameter of another –meta

message– to a named object, otherwise the message just continues to the next filter. The object

that receives the meta message can observe and manipulate the message, than re-activate its

execution [2].

Figure 7 visualizes the processing of messages. Each filter tries to match messages based on its own

filter expression. All filters use a simple common –declarative– pattern matching language. The

matching process is primarily based on the target object and the selector of the message, together

with the conditions of the object.

3.1.3 Specifying Filters
We will explain filter specifications in more detail through class ProtectedClaimDocument that was

introduced in section 2.2 and for which the skeleton code has been shown in Figure 6.

ProtectedClaimDocument composes the view behavior with the existing ClaimDocument

abstraction through inheritance. We will first illustrate how filters can express views in a modular

way, and then show how filters can express inheritance.

ProtectedClaimDocument requires constraints on the execution of the methods that are available on

the interface, based on the task that is currently processing the document. For example, the

following filter specification can express these views:
 protection: Error = { PaymentActive => {putApprovedClaim, approvedClaim},

MedicalCheckActive => {putMedicalCheckData, medicalCheckData},
…  // etc. for the other views
};

This specification declares a filter of type Error with the name protection, followed by the filter

(initialization) expression. The filter expression consists of a number of filter elements, each of

these is a pair "<condition> => <message expressions>". The meaning of this pair is that the

message expressions are only evaluated if the condition evaluates to true. For the first filter element

this means that only if the condition PaymentActive is true and if the selector of the received

message is either putApprovedClaim or approvedClaim, the message is accepted at the first element

and can proceed to the next filter. Otherwise the subsequent filter element (in this case verifying
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messages that apply to the MedicalCheck task) will be evaluated. If the message is not accepted by

any of the filter elements –i.e. the filter rejects the message–, the Error filter will raise an exception.

An alternative filter specification of the same concern is shown in the following:
inputfiltersinputfiltersinputfiltersinputfilters

viewP :Error = {inactiveP  ~> {putApprovedClaim, approvedClaim} };
viewMC:Error = {inactiveMC ~> {putMedicalCheckData,medicalCheckData} };

// etc. for the other views

In this case, the view is specified 'inversely': each Error filter rejects the methods that are only

allowed for a particular task, if this task is not active. These filters use instead of the '=>' enable

operator between the condition and the message expression, the '~>' exclusion operator, which

specifies that if the condition is satisfied, all messages match except the ones that are specified on

the right hand side. This is a more 'open' specification, since it is now possible to introduce

additional constraints upon messages (similarly): either in separate filter specifications, or in

separate (derived) classes.

The last input filter of ProtectedClaimDocument specifies inheritance from ClaimDocument as

follows:
inh:Dispatch = { inner.* , document.* };

This filter of type Dispatch adopts the '*' wildcard which means that it matches the received

message if the selector of the message is in the signature of the target object specified before the dot

(in this case inner respectively document). The target inner is a pseudo-variable that refers to the

'bare' implementation object. The target document is declared as an internal instance of class

ClaimDocument (see Figure 6). Evaluation of this filter will thus result in a dispatch to inner (i.e.

the execution of a local method) if the message is in the signature of inner. Otherwise, if it is in the

signature of ClaimDocument, the message will be delegated to document. This filter effectively

simulates inheritance (including a dynamically bound notion of self).

3.2 Superimposition of Crosscutting Behavior
So far, we have shown only examples of behavior that crosscuts a number of methods within a

single object. An important category of aspect-oriented programming problems are those where

concerns crosscut multiple objects. The Composition Filters model provides superimposition, which

means that one abstraction can enhance other abstractions with additional concerns by decorating

('superimposing') concern specifications.

Figure 8 illustrates the CF model including superimposition. Here, the declaration of a filterinterface

has been separated from its instantiation and multiple declarations are allowed. In addition, multiple

instantiations of filterinterfaces are possible as well. Incoming and outgoing messages have to pass
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through all the instantiated filterinterfaces6. We added a superimposition element that specifies

where filterinterfaces are superimposed: on the concern itself, or on other concerns7.

methods

conditions

instance
variables

implementation
...

filterinterface
declarations

superimposed
filterinterfaces:

(impose
on self)

(impose on
other concerns)

(imposed by
 other concerns)

messages

superimposition

Figure 8. The CF model with superimposition.

As illustrated in the figure, it is possible to compose multiple, crosscutting concerns by

superimposing filterinterfaces. The concerns are defined by filters, and thus work by manipulating

incoming and outgoing messages of the implementation object only. This brings two important

properties: first, the encapsulation of the implementation object is not violated, and second,

composability of concerns is improved.

Consider, for example, the implementation of the workflow concern using the CF model. As shown

in Figure 9, this concern consists of two parts: a (shared) part that implements the workflow engine

itself, and a crosscutting part that ensures that all relevant concerns in the application will actually

use the engine for selecting the next task.

                                                
6 In this paper we will simply assume that the filterinterfaces are ordered sequentially in order of instantiation. We

will not discuss (interesting) issues such as how to influence the ordering and alternatives to sequential evaluation.
7 The superimposition element can also impose a binding of methods and conditions to other concerns, but this is not

shown in the figure.
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concernconcernconcernconcern WorkFlowEngine beginbeginbeginbegin // introduces centralized workflow control

filterinterfacefilterinterfacefilterinterfacefilterinterface useWorkFlowEngine beginbeginbeginbegin // this part declares the crosscutting code
externalsexternalsexternalsexternals

wfEngine : WorkFlowEngine; // *declare* a shared instance of this concern
inputfiltersinputfiltersinputfiltersinputfilters

redirect : Meta = { [forwardDocument]wfEngine.selectTask };
endendendend filterinterfacefilterinterfacefilterinterfacefilterinterface useWorkFlowEngine;

filterinterfacefilterinterfacefilterinterfacefilterinterface engine begin begin begin begin //defines the interface of the workflow engine object
methodsmethodsmethodsmethods

selectTask(Message);
setWorkFlow(WorkFlow);

inputfiltersinputfiltersinputfiltersinputfilters
disp : Dispatch = { inner.* };  // accept all methods implemented by myself

endendendend filterinterfacefilterinterfacefilterinterfacefilterinterface engine;

superimpositionsuperimpositionsuperimpositionsuperimposition beginbeginbeginbegin
selectorsselectorsselectorsselectors

allTasks = { *=RequestHandler, *=RequestDispatcher, *=OutputHandler,
   *=MedicalCheck, *=Payment};

filterinterfacesfilterinterfacesfilterinterfacesfilterinterfaces
self <- self::engine; 
allTasks <- self::useWorkFlowEngine;

endendendend superimpositionsuperimpositionsuperimpositionsuperimposition;

implementationimplementationimplementationimplementation inininin Java;
classclassclassclass WorkFlowEngineClass{

WorkFlow workFlowRepr;
void selectTask(mess Message) { … };
void setWorkFlow(WorkFlow wf) { … };

}
end implementation;end implementation;end implementation;end implementation;

end concernend concernend concernend concern WorkFlowEngine;

Figure 9. Specification of WorkflowEngine, illustrating the elements of a (crosscutting) CF concern.

The useWorkFlowEngine filterinterface defines a filter of type Meta, which intercepts

forwardDocument messages and sends them in reified form, as the argument of message selectTask,

to wfEngine. The engine filterinterface and the implementation part together implement the

workflow engine. Next to some methods for accessing and manipulating the workflow

representation (in this case only the method setWorkFlow is shown), it defines the method

selectTask. This method determines the next task that should handle the document, modifies the

corresponding argument of the message object, and then fires the message so that it continues its

original execution–but with an updated argument.

The superimposition clause specifies how the concerns crosscut each other. The superimposition

clause starts with a selectors part that specifies a number of join point selectors: a selector is an

abstraction of all the locations that designate a specific crosscut. Concern WorkFlowEngine defines

a single selector named allTasks. This selector repeatedly uses the "*=<ConcernName>" expression to

specify all objects that are instances of the various classes that represent tasks. The selectors part is

followed by a number of sections that can specify which objects, conditions, methods respectively

filterinterfaces are superimposed upon locations as designated by one or more selectors. In this

example the filterinterface engine, is superimposed upon self: this means that instances of

WorkFlowEngine will include an instance of the engine filterinterface. In addition, the
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useWorkFlowEngine filterinterface (which can be found in the same concern, as designated by

"self::"8) is superimposed upon all the instances defined by the allTasks selector.

The Appendix shows the implementation using the CF model of the remaining evolution steps of

the application as introduced in sections 2.4 to 2.6.

4. Evaluation
In this section we evaluate the work presented in this paper from two perspectives: first we discuss

the design of the social security services system and its evolution, and then we discuss the main

characteristics of the CF model.

In section 2.1, to implement the administrative system, 41 operations were defined in 8 classes. The

evolution of the initial requirements introduced new concerns, such as multiple views on

documents, re-directing calls to the workflow and logger objects and synchronization of tasks.

These concerns could not be adequately separated from the implementation of the initial system. As

a consequence, the corresponding operations had to be redefined each time a new concern was

introduced. Moreover, certain concerns had a crosscutting characteristic. For example, enforcing

views was repeated in multiple operations in ProtectedClaimDocument, buffering documents had to

be implemented for every task, and logging and locking operations had to be repeated for every

class.

In our pilot study, redefinition was designed in 4 ways: edit & recompile, inheritance, aggregation

and using the CF model. The edit & recompile approach required approximately 2 new classes and

(re)-compilation of 123 operations in 30 classes. Inheritance gave a similar result: 2 new classes and

123 operation definitions in 30 subclasses were implemented. The aggregation approach required

about 166 operation definitions in 32 classes. The CF approach required approximately 6

filterinterface and 5 superimposition declarations, 8 filter condition implementations, and 13

operations in 5 new classes. The main reason for the relatively low number of definitions of the CF

approach is that it exploits the ability to separate concerns and express their crosscutting: this avoids

many repeated definitions that the other approaches are forced to do.

We will now discuss the important characteristics of the CF model and evaluate it with respect to

the example and some of the related work.

•  Declarative: concerns are specified declaratively in a simple pattern matching language allowing

various implementation strategies. For example, by using a dedicated compiler [18], filters of

ProtectedClaimDocument can be in-lined in operations as conditions. Filters can also be

implemented as run-time meta-level objects [14]. Approaches such as Adaptive Programming

                                                
8 Note that the prefix "self::" is optional, shown here for illustrative purposes mainly.
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[14] and AspectJ [13] typically adopt a general-purpose language to express concerns9. The

actual realization of concerns is therefore incorporated in the concern specifications.

•  High-level semantics: filter specifications use a common pattern matching language, and adopt

filter types to add concern semantics. The semantics of filter types are well defined and highly

expressive in the concern domains [5, 6]. As shown in the example, Error, Dispatch, Meta and

Wait filters could effectively express multiple views, delegation, message reflection and

synchronization, respectively. Since most related approaches adopt general-purpose

programming languages for specifying concerns, in general little or no reasoning about the

semantics of the concerns is possible.

•  Open ended: new kind of concern semantics can be introduced as new filter types; for example,

in [3] we introduced a filter type that allows for expressing real-time constraints on message

executions. HyperJ [16] also supports an open-ended set of composition operators.

•  Strong encapsulation: The implementation part is a strongly encapsulated object;

superimposition of filter-interfaces, objects, methods and conditions is restricted to the interface

level. Therefore superimposed concerns do not rely on the details of the implementation (even

the implementation language is encapsulated). Several other, more fine-grained approaches,

such as AspectJ [13], allow the crosscutting concerns (aspects) to 'break encapsulation', which

makes the aspects less reusable and more vulnerable to implementation changes.

•  Modular: the CF model unifies traditional object behavior with crosscutting behavior. The

workflow and logging concern specifications in the CF implementation illustrate this: these are

both modules that contain both 'object-like' and crosscutting behavior. In addition, concerns can

crosscut any other concern; for instance the logging concern is superimposed upon all other

concerns in our example. Many approaches that adopt the aspect-base level distinction (such as

in AspectJ [13]) are not able to express this while retaining aspect modularity.

•  Composable: the CF model supports composability at two levels: first, composition is supported

because all filters are based on the same underlying model of message manipulation; second,

filter expressions support composition of signatures, for example through the conditional-OR

operator "," that we have shown in this paper. This is an important topic for all related work in

this area, since the original developer of an abstraction may be unaware of (later)

superimpositions, and thus only at instantiation time one can reason whether the composition of

superimposed concerns actually works and makes sense. This may be difficult, if possible at all,

for approaches that adopt general-purpose languages for expressing concern behavior.

                                                
9 In those cases where the predefined semantics are insufficiently expressive, application-specific semantics can be

implemented as a CF concern and applied through the use of the Meta filter [2]. In this case obviously part of the
behavior is no longer specified declaratively.
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The CF model has been implemented in the past on top of several languages: Smalltalk [14], C++

[10], and Java [18], but these implementations only supported crosscutting within a class, not

between classes. The implementation of the latter (as an extension of the Java-based ComposeJ

implementation) has just started as of submitting this article. Future work includes development of

compiler support for the generation of both static, in-lined, code as well as dynamic, run-time

representations, and research into predicting the composability of crosscutting concerns.
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Appendix: Modeling the Evolution Steps 3-5 with Composition Filters

This section shows the implementation of the evolution scenario using the CF model. For space

reasons, we will explain only the interesting concepts..

Evolution 3: Adding Document Queues

The requirement was to avoid processing multiple documents simultaneously. This is specified by

the concern MutEx in Figure 10. MutEx is an abstract concern because it has an empty

superimposition part. This concern defines a filter of type Wait that buffers all messages if there is

an active thread within the concern instance.
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concernconcernconcernconcern MutEx beginbeginbeginbegin // implements the mutual exclusion synchronization concern
filterinterfacefilterinterfacefilterinterfacefilterinterface mutExSync beginbeginbeginbegin

conditionsconditionsconditionsconditions
NoActiveThreads;

inputfiltersinputfiltersinputfiltersinputfilters
buffer : Wait = { NoActiveThreads=>* };

endendendend filterinterfacefilterinterfacefilterinterfacefilterinterface mutExSync;

superimpositionsuperimpositionsuperimpositionsuperimposition beginbeginbeginbegin  // not imposed anywhere; abstract concern
endendendend superimpositionsuperimpositionsuperimpositionsuperimposition;

implementationimplementationimplementationimplementation inininin Java;
classclassclassclass MutExSupport{

Boolean NoActiveThreads() { … };
}

end implementation;end implementation;end implementation;end implementation;
end concernend concernend concernend concern MutEx ;

concernconcernconcernconcern ConcurrentDocumentProcessing beginbeginbeginbegin // allows concurrency without interference
superimpositionsuperimpositionsuperimpositionsuperimposition beginbeginbeginbegin

conditionsconditionsconditionsconditions
WorkFlowEngine::allTasks <- MutEx::NoActiveThreads;

filterinterfacesfilterinterfacesfilterinterfacesfilterinterfaces
WorkFlowEngine::allTasks <- MutEx::mutExSync;

endendendend superimpositionsuperimpositionsuperimpositionsuperimposition;
end concernend concernend concernend concern ConcurrentDocumentProcessing;

Figure 10. Specification of the concerns MutEx and ConcurrentDocumentProcessing.

To apply this abstract concern, the concern ConcurrentDocumentProcessing defines the

superimposition of the MutEx concern upon the task classes. The selector allTasks is reused from

the WorkFlowEngine concern to avoid redundant selector definitions. The condition

NoActiveThreads (this is declared by the filterinterface) is superimposed to the same tasks as well.

Evolution 4: Adding Logging

The Logging concern consists of NotifyLogger, which is superimposed upon all concerns except

Logging. Logging is implemented by sending all received messages as objects to the global object

logger, using a Meta filter. The Logging concern creates an internal Boolean object logOn for every

instance, which is used to enable or disable the logging of messages. More details of the

implementation are shown in Figure 11. Note that logging is also supported for the methods of the

WorkFlowEngine concern.
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concernconcernconcernconcern Logging beginbeginbeginbegin // introduces centralized logger
filterinterfacefilterinterfacefilterinterfacefilterinterface notifyLogger beginbeginbeginbegin // this part declares the crosscutting code

externalsexternalsexternalsexternals
logger : Logging; // *declare* a shared instance of this concern

internalsinternalsinternalsinternals
logOn : boolean; // created when the filterinterface is imposed

methodsmethodsmethodsmethods
loggingOn();  // turn logging for this object on
logginOff();  // turn logging for this object off
log(Message);  // declared here for typing purposes only

conditionsconditionsconditionsconditions
LoggingEnabled;

inputfiltersinputfiltersinputfiltersinputfilters
logMessages : Meta = { LoggingEnabled=>[*]logger.log };
dispLogMethods : Dispatch = { loggingOn, loggingOff };

endendendend filterinterfacefilterinterfacefilterinterfacefilterinterface notifyLogger;

filterinterfacefilterinterfacefilterinterfacefilterinterface logger begin begin begin begin //defines the interface of the logger object itself
methodsmethodsmethodsmethods

log(Message);
 // various methods for information retrieval from the log
inputfiltersinputfiltersinputfiltersinputfilters

disp : Dispatch = { inner.* };  // accept all methods implemented by myself
endendendend filterinterfacefilterinterfacefilterinterfacefilterinterface logger;

superimpositionsuperimpositionsuperimpositionsuperimposition beginbeginbeginbegin
selectorsselectorsselectorsselectors

allConcerns = { *!=Logging };  //everything except instances of Logging
conditionsconditionsconditionsconditions

allConcerns <- LoggingEnabled;
filterinterfacesfilterinterfacesfilterinterfacesfilterinterfaces

allConcerns <- notifyLogger;
self <- logger;

endendendend superimpositionsuperimpositionsuperimpositionsuperimposition;

implementationimplementationimplementationimplementation inininin Java;
classclassclassclass LoggerClass {

boolean LoggingEnabled() { return logOn };
void loggingOn()  { logOn:=true; };
void loggingOff()  { logOn:=false; };
void log(Message mess) { … }; // get information from message and store

}
end implementation;end implementation;end implementation;end implementation;

end concernend concernend concernend concern Logging;

Figure 11. Specification of the Logging concern.

Evolution 5: Adding Locking

The final example shows (in Figure 12) how the locking concern can be added to other concerns. It

defines a generic (and abstract) concern Locking, which can implement per-instance locking by

superimposing a Boolean object lockState, two methods lock and unlock, the condition UnLocked

and two inputfilters upon all concerns. The filters are respectively a Wait filter that blocks all

messages except the unlock message when the concern is in the locked state, and a Dispatch filter

that is required to make the methods lock and unlock available on the interface of the concerns.
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concernconcernconcernconcern Locking beginbeginbeginbegin // implements the locking synchronization concern
filterinterfacefilterinterfacefilterinterfacefilterinterface lockBehavior beginbeginbeginbegin

internalsinternalsinternalsinternals
lockState : boolean;  // state is true when locked

methodsmethodsmethodsmethods
lock();
unlock();

conditionsconditionsconditionsconditions
UnLocked;

inputfiltersinputfiltersinputfiltersinputfilters
lockAll : Wait = { unlock, UnLocked=>* };
disp : Dispatch = { lock, unlock };

endendendend filterinterfacefilterinterfacefilterinterfacefilterinterface lockBehavior;

superimpositionsuperimpositionsuperimpositionsuperimposition beginbeginbeginbegin // this is an abstract concern
endendendend superimpositionsuperimpositionsuperimpositionsuperimposition;

implementationimplementationimplementationimplementation inininin Java;
classclassclassclass LockingSupport{

void lock() { lockstate:=true };
void unlock() { lockstate:=false };
boolean UnLocked() { return !lockstate; };

}
end implementation;end implementation;end implementation;end implementation;

end concernend concernend concernend concern Locking;

concernconcernconcernconcern WorkflowLocking beginbeginbeginbegin // applies the locking concern to the workflow appl.
superimpositionsuperimpositionsuperimpositionsuperimposition beginbeginbeginbegin

selectorsselectorsselectorsselectors
applObjects = {*:Document, *:TaskProcessor};  // the ':' means that the
selector includes all instances of derived concerns of the named concern

methodsmethodsmethodsmethods
applObjects <- {Locking::lock, Locking::unlock};  // impose these methods

conditionsconditionsconditionsconditions
applObjects <- Locking::UnLocked;  // impose the UnLocked condition

filterinterfacesfilterinterfacesfilterinterfacesfilterinterfaces
applObjects <- Locking::lockBehavior;

endendendend superimpositionsuperimpositionsuperimpositionsuperimposition;
end concernend concernend concernend concern WorkflowLocking;

Figure 12. Specification of the generic Locking and the specific WorkFlowLocking concerns.


