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Abstract

Aspect-Oriented Programming (AOP) and related tech-
niques propose solutions to the problem of crosscutting
requirements, usually by providing a weaver that reimple-
ments major parts of a compiler.

This paper proposes XML based “operators” as an ex-
tensible aspect language. We work on XML representa-
tions of abstract syntax trees (AST) for the base language.
These can be generated by modifying an existing compiler
and allow us to use XML tools for tree query and manip-
ulation. A prototype that encompasses constructs from
several aspect languages, in particular AspectJ and Com-
position Filters, has been implemented.

1 Introduction

The need for modularization and separation of con-
cerns has been the topic of several by now classi-
cal publications (like [1]). Although not necessarily
straightforward, this decomposition along the axis of
functional requirements is well understood and has
been subject of extensive research.

On the other hand, requirements that have complex
semantics and a crosscutting impact on software—
such as distribution, persistence, or robustness—still
present well-documented difficulties for software de-
velopment [2]. Various techniques have been proposed
to manage such concerns: Aspect-Oriented Program-
ming [2] (AOP) and related techniques like Composi-
tion Filters [3] (CF) and Subject Oriented Program-
ming [4] (SOP). Increasingly, and furthermore in this
paper, the term aspect-oriented software development
(AOSD) is used to subsume all these concepts.

For the three approaches mentioned above, imple-
mentations exist: AspectJ is a system for AOP and
version 1.0 was released at the time of this writing [2].
Hyper/J is a prototype for MDSOC [4] and ComposeJ
is a prototype implementing a limited subset of CF [5].
All three prototypes use Java as the base language.
Since source code is only available for AspectJ and
ComposeJ and their approach is better documented,
we will mostly refer to these for comparison.

Although AOP seems to become useful in solving
real-world problems, the situation is not perfect from
a research point of view as well as for some practical
applications: there is no strong theoretical basis yet,
the existing prototypes are always bound to a particu-
lar base language and the user usually has no support
to extend the language. Although there is some re-
search on AOSD semantics [6, 7, 8, 9] the semantics
descriptions provided by the available AOSD tools are
neither formal nor give enough hints at the implemen-
tation strategy. Finally, the examined implementa-
tions are large.

The main goal of the operator approach is to provide
a platform for experimentation in AOP techniques
with more flexibility in terms of the aspect language
and the base language and to heavily reuse existing
technologies like compiler front-ends and XML tools
to make the implementation significantly shorter and
the transformation parts succinct and readable. In the
context of this work, a prototype that implements the
new approach has been built and it has been shown
how examples from the AspectJ and ComposeJ liter-
ature can be realized using this technique. In the fol-
lowing we present our XML-based operator approach.
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AspectJ version:
----------------

aspect PointBoundsChecking {

static final int MIN_X = 0;
static final int MAX_X = 100;

...

void checkX( int x) {
check("New x value illegal.",

(MIN_X < x) && (x < MAX_X));
}

void check(String description, boolean test) {
if ( !test ) throw new Error(description);

}

// AspectJ part that does the binding
// corresponding to the operator on the right

before ( int x):
execution( void Point.setX( int )) &&
args (x) {

checkX(x);
}

}

Java part:
----------

class PointBoundsChecking extends Aspect {

static final int MIN_X = 0;
static final int MAX_X = 100;

...

void checkX( int x) {
check("New x value illegal.",

(MIN_X < x) && (x < MAX_X));
}

void check(String description, boolean test) {
if ( !test ) throw new Error(description);

}
}

Operator part:
--------------

<transform >
<operator name="method-execution" modifier="before">

<join-point xpath="//class[@name="Point"]" \
"//method[@name="setX"]"/>

<call-method aspect="PointBoundsChecking"
name="checkX"/>

<parameter-forward >
<forward type="argument" number="1">

</ parameter-forward >
</ operator >

</ transform >

Figure 1: An example for preconditions. AspectJ code on the left, the operator approach on the right.

2 The Operator Approach

We demonstrate the principles of the approach with an
example. Figure 1 shows code for precondition check-
ing in AspectJ and using the proposed operator ap-
proach side by side. The AspectJ version is a slightly
modified version of an example from [2].

The code that performs the actual precondition
checking at the top of Figure 1 is identical for both
approaches with one exception: for the operator ap-
proach it is Java code separate from the binding in-
structions whereas in AspectJ it is part of the “as-
pect”. The Java class containing this part of the as-
pect is generated by the weaver. Apart from this sepa-
ration of code and advice in the operator approach, the
binding instructions at the bottom of Figure 1 use a
different syntax: In AspectJ the syntax is close to Java
and is seen as a language extension, whereas for the
operator approach the syntax is defined using XML.
This XML code does not necessarily have to be di-
rectly written by the user, it can be generated by an
IDE offering a user-friendly interface. The actual code
produced by both versions is almost identical.

2.1 Ingredients for an AO language

To motivate the structure of the operators used, we
briefly take a look at existing AO languages and con-
trast them with our approach.

Although no agreement on the requirements for an
AO language has yet been reached, according to Kicza-
les et al. [2], there is a distinction between static and
dynamic crosscutting. For the latter, three language
elements are deemed necessary: a join point model, a
means of identifying join points and a means of spec-
ifying the additional behavior at these join points.

AspectJ’s dynamic join point model characterizes
join points as “certain well-defined points in the exe-
cution flow of the program”[2]. Join points are identi-
fied and combined using pointcut designators such as
execution for method executions, call for method
calls or this for “all join points at which the execut-
ing object (value of this ) is an instance of Point or
a subclass of Point ” [10, Section 3.4].

The advice construct associates code in the advice
body with a particular pointcut and executes it be-
fore , after or instead of (called “around ”) the



public class Test {
String toString( int i ) {
return ""+i;
}
public static void main( String argv[] ) {

System.out.println(
new Test().toString( 42 ) );

}
}

aspect Negation {
before (): !execution(* *.toString( * )) {

System.out.print(".");
}

}

Figure 2: Code causing ajc 1 to generate a non-
terminating recursion for the toString method

original code.
We argue that not all pointcut keywords are equal,

but rather fall into classes. Firstly, there are primitive
join points like call and execution that cannot
reasonably be combined with other pointcut designa-
tors using “and” or “not”. An example to illustrate
this point is a single negated primitive join point like
!execution(* *.toString(*)) . The semantics
definition of AspectJ [11] does not explicitly forbid
this construct, but also does not precisely define its
meaning. Without the negation, all method execu-
tions of methods with the name toString , irrespec-
tive of the return type, arguments, and class mem-
bership are advised. With the negation, probably all
join points except the toString method execution
should be affected. Not only is the semantics defini-
tion unclear on this, but the current version of ajc 1

causes a non-terminating recursion on entry to the
toString method—clearly not what was intended
(complete example in Figure 2). The only reasonable
combination—“or”, or set union—can be replaced by
two separate advice declarations. Thus we argue that
each pointcut should contain at most one primitive
join point and as we will later see actually exactly
one. In the operator approach, this is the name of the
operator. Using a primitive join point thus specifies
the type of pointcuts currently considered. As such,
a primitive join point can be seen as the superset of
the join points that should be selected by providing a
pattern as a parameter.

Secondly, there are syntactical constraints expressed
by the keyword within or the signature of the se-
lected method calls. They narrow the set of join points
selected by the primitive join point. In the operator

1Version 1.0

public class Test // same as in Figure 2

aspect Constraint {
before (): this (Test){

System.out.print(".");
}

}

Figure 3: Aspect with a syntactical constraint only

approach, syntactical constraints are specified using
XPath2 [12] expressions over the AST nodes.

Thirdly, there are dynamic constraints that make
the execution of the advice body dependant on the
state of the program. They do not alter the set of join
points but generally require a check at run-time. Ex-
amples for AspectJ constructs falling in this category
are this , cflow or if . In the first prototype of the
operator approach, these are not modelled, but they
could be added at a later stage. AspectJ resolves these
dynamic constraints as program instructions statically
woven into the base code. Therefore, the current lack
of dynamic constraints is no principal limitation of our
approach.

The AspectJ semantics definition does not explicitly
specify that the constructs just categorized as con-
straints can never stand alone. Again, ajc causes
counterintuitive results: An example using only a con-
straint can be seen in Figure 3. Without being quite
clear why, the code translated with ajc 1 causes four
invokations of the aspect code when main is executed.
When the constraint this(Test) in the example is
exchanged with within(Test) , the aspect code is
executed ten times. We thus argue that constraints
should not stand alone and each pointcut should con-
tain at least one primitive join point, resulting in ex-
actly one primitive join point with the above result.

For AspectJ’s static crosscutting, the introduc-
tion operator is used. It takes a location and what
should be introduced as parameters.

Constructs from other AO languages seem to fit as
well. For example, a forward operator that intro-
duces unconditional forwarding methods to selected
inner objects has been implemented (cf. “Nutshell
Classes” [13]). Forwarding and delegation are used
for object composition.

Composition filters [3] allow messages sent and re-
ceived by objects to be intercepted and manipulated.
The ComposeJ prototype [5] implements the input fil-

2XPath seems expressive enough, but upcoming XML query
languages like XQuery could also be used once they are stan-
dardized
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ters Error and Dispatch . Both input filters that
were modelled in the ComposeJ prototype [5] have suc-
cessfully been implemented in our approach and the
“USVMail ” example provided with ComposeJ works
as intended. As our focus was to show the general fea-
sibility to integrate other approaches, our prototype
at this point shares the limitations of the ComposeJ
prototype. Again this is no principal limitation of our
approach.

2.2 Operator structure

The operator structure will be briefly presented by
revisiting the example in Figure 1.

All operators are enclosed by the transform tag
and in general ordering is important. The type of op-
erator is given as the name parameter and for this
example specifies the primitive join point type. Syn-
tactic restrictions are specified in the join-point
tag using XPath. The following tags describe which
aspect method to call and which parameters should be
passed to the aspect method.

The general operator structure can be described
using XML Schema [12], which allows for automatic
schema validation.

2.3 Implementation

All examined prototypes have to parse regular Java
code and perform semantic analysis at least to a cer-
tain point. They all use ASTs internally to represent
and manipulate Java programs. Since open-source im-
plementations of Java compilers—such as jikes —
exist that do semantic analysis and build an AST

as part of the compiler front-end, this is an obvious
source for reuse. There even has been work [14] where
an annotated AST in XML format is generated and ex-
ternalized during a run of a slightly modified version
of jikes (about 1650 lines of code were added [14, p.
7]). This XML representation can directly be parsed
using an XML API that exists for most languages in-
cluding Java. Our prototype has been realized using
Badros’s JavaML work [14].

Figure 4 shows the translation process using the op-
erator approach in comparison to AspectJ. The input
in both cases consists of Java source code and aspect
code. The Java input is identical and the aspect con-
structs are specified in a different format as detailed
above. Parsing, semantic analysis, transformation and
output to Java source code or compilation to class
files are all implemented internally in AspectJ. The
operator approach takes an annotated AST from the
modified jikes compiler, using it for parsing and se-
mantic analysis. The prototype then transforms the
input as specified using XML tools to operate on the
tree. The output from the tree is either performed by
using XSLT stylesheets to generate Java source code
or alternatively the XML interface to jikes could be
made bi-directional and the back-end directly used for
compilation of the transformed AST.

Basing the transformation process on abstract syn-
tax trees has the benefit of being independent of the
concrete syntax. Additionally, the implementations of
existing operators are easier to adapt to a different,
but similar base language. Although other existing
prototypes work on ASTs, they seem to have a tighter
coupling between the language dependant parsing and
semantic analysis part and later stages. Separating the



base language part from the operator part and using
an independent syntax for the latter further helps to
prevent coupling. Some other prototypes like Com-
poseJ also keep the base language part separate and
decoupling on a similar level has been proposed in [15].
Admittedly, a syntactically close language extension
like AspectJ has some appeal for developers used to
the base language and keeping advice and binding in-
struction together is intuitive. Flexibility is lost, how-
ever, and we think that IDE support will get more
important, for example to automatically list all advice
at join points in the source. This IDE support could
also show the operator next to both the corresponding
Java part and the points where it crosscuts.

XML is used to model the AST as well as for tree
query and manipulation. This helps to keep the imple-
mentation of the prototype short and concise. Extensi-
ble stylesheet language transformations (XSLT) have
been used to unparse the AST as proposed in [14],
with features, such as syntax-highlighting or hyper-
links from variable references to the corresponding
variable definitions, being possible. XPath is a tree
query language and was successfully used to select
primitive join points and model static restrictions. Us-
ing a standardized query language also helps to realize
performance gains from newer implementations.

We took some measurements to compare the code
sizes of the various approaches using the non commen-
tary source statements (NCSS) metric3. AspectJ4 has
about 34.6 kNCSS in the org.aspectj.compiler
package, the ComposeJ prototype has 16.8 kNCSS
and our prototype currently totals 1.4 kNCSS includ-
ing a graphical user interface. Even with adding the
1.7 kLOC of JavaML and a rough estimate of a maxi-
mum of about 0.5 kLOC of XSLT code, our prototype
is still an order of magnitude smaller. However, we
have not researched if and how much of the other ap-
proaches’ code is generated.

3 Related Work

There have been a few papers suggesting to use trans-
formational techniques—like the ones used in the con-
text of compiler optimizations—for AOP implemen-
tations [16, 17]. However, in contrast to its early
days, the focus of AOSD has developed from lower-

3The NCSS metric measures code size similar to the lines of
code (LOC) metric but is independent of the coding style. We
used the JavaNCSS tool for our measurements
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level to design level code manipulation. This has actu-
ally made implementations easier since the join points
must be specified explicitly and transformations are
just applied once. So although the transformations
used by newer AOP approaches are different and avoid
the problems of confluence and termination, they still
use source-to-source transformations.

The fact that data structures used internally by
compilers such as ASTs are more useful than source
code as input for many tools is widely acknowledged.
JavaML [14] is a tool that externalizes an AST in XML
format and has been used as a basis for our work.

The concept of an operator as a construct for com-
position has been used in various contexts, such as for
mixin-based inheritance [18] or design patterns [19].

Criticism of the AspectJ pointcut constructs has
been issued in [20], where the authors come to similar
conclusions. However, their classification is slightly
different and they do not present concrete examples.

Furthermore, it has been suggested [21] to use com-
pact representations of abstract syntax trees as inter-
mediate languages for mobile code. In the context of
this work, this would enable the techniques used here
to transform source code at compile time to work on
the intermediate representation at class-load time.

Intentional Programming (IP) is another AOSD ap-
proach that is implemented using AST transforma-
tions [22]. Its focus is on domain specific languages
and not on transformations for crosscutting concerns.
Ten years after its inception in 1991 neither a pro-
totype was released to the general public nor is the
source code available and the project’s future at Mi-
crosoft seems unclear.

4 Further work

The next logical steps will be to study how the ap-
proach extends to further AOP techniques like Hy-
per/J, how easily the base language can be changed
and to gather empirical evidence on how well the dif-
ferent AOP approaches can be used in combination.

Refactorings strive to improve system architectures
by applying semantics preserving transformations.
Having access to the annotated AST, it should be rel-
atively straightforward to implement some of them as
operators.

It has been suggested to view the introduction of de-
sign patterns as code transformations [19]. In fact, ex-
amples for both AspectJ and composition filters show
the aid of AOSD for the implementation of certain

http://www.kclee.com/clemens/java/javancss/


design patterns. Thus it may be worthwhile to in-
vestigate the suitability of higher level operators for
pattern introduction.

In general, more research in the area of operators
is planned. Besides the extension with additional AO
and composition operators, other categories of opera-
tors will be explored and integrated.

5 Conclusion

Empirical studies [23] suggest that aspect-oriented
programming is a useful new programming technique.
Most existing AOSD languages and prototypes seem
to suffer from several problems: there is little guidance
on how to combine different approaches, the AO lan-
guages are hard to extend, the base language is fixed,
and the prototype sources are relatively large.

This work contributes by proposing an experimen-
tal platform, the operator approach, that shows steps
towards possible solutions for these problems. The
issues we found with language design in AspectJ un-
derline this need for experimentation. We base our
transformations on abstract syntax and work on AST
nodes expressed in XML and generated in a separate
step. This make the migration to other base languages
possible. Basing the aspect language on XML makes it
easy to extend the language and to combine different
approaches. The implementation of our individual op-
erators is relatively short and succinct since we can use
various standardized XML libraries for tree query and
manipulation. Reusing a compiler front-end through
JavaML [14] is feasible and further helps towards a
lean implementation.

The work with a prototype for this approach, so
far, has been encouraging, but the results must still
be considered preliminary.
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