
Separation of Distribution Concerns
in Distributed Java Programming

Michiaki Tatsubori
Doctoral Program in Engineering, University of Tsukuba

Tennohdai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan

mt@is.tsukuba.ac.jp

ABSTRACT
Distributed design decisions in a distributed Java program
crosscut the module structure of non-distributed concerns in
the program. We propose a tool supporting aspect-oriented
distributed programming, with which programmers can spec-
ify the distribution aspect of program simply and separately
from non-distributed Java program, for enhancing the mod-
ularity of program. The aspect-weaver of this tool is a byte-
code translator implemented as a customized class loader of
Java virtual machine (JVM). Thus the tool is applicable to
code supplied by third-parties without source code and the
resulting distributed program runs on regular JVMs.

Keywords
Distributed programming, bytecode translation, Java, load-
time weaving, aspect-oriented programming

1. PROBLEM DESCRIPTION
Object-oriented modularization with classes often fails to
encapsulate distributed design decisions that crosscut the
module structure of non-distributed concerns in a distributed
program. Code related to distributed concerns is often tan-
gled with other code and scatters over a number of classes.
Lack of modularization implies low maintainability of the
program which makes programming difficult. For example,
programmers often change the decomposing points of pro-
gram in distributed environment for reducing the overhead
of network communication. But such the change of design
decision brings about changing remote or local object allo-
cation code scattering over the program. Programmers have
to modify a number of code pieces for implementing a simple
change of distributed design decisions.

Design patterns[3] are useful for solving design problems but
they are not almighty. Though programmers can modular-
ize some part of their program using several programming
techniques found in pattern catalogs, such the techniques of-
ten result in redundant code of program and are not always

applicable. For example, a design based on the Abstract
Factory pattern allows programmers to write a centered
code controlling instance allocation. They can change the
policy of distribution of objects by overriding factory meth-
ods in a subclass of the Factory class. But, with this de-
sign, a class of the Factory role provides a number of factory
methods for all the combinations of created classes and con-
texts creating instances. What redundant code they must
write! Furthermore, they cannot edit the boot-strap classes
of the Java virtual machine (JVM) or the classes supplied
by third-parties without source code though implementing
this design requires to do so.

2. GOAL STATEMENT
A distributed programming tool addressing this problem
stated above is desired. Programmers should be able to
specify distributed allocation of software components in a
centered code separated from the non-distributed concerns.
And this tool should be applicable to boot-strap classes and
ones supplied by third-party.

The main goal of our proposing tool for supporting dis-
tributed programming in Java is as follows.

• The tool must preserve the portability of Java program
so that Program developed with the tool should be
able to run on existing regular Java virtual machines.
The runtime support of distributed program should be
written in Java.

• The tool must allow the programmers to easily spec-
ify whether each object is allocated in a distributed
environment. For reducing the programing cost, the
object allocation should be specified at an appropriate
abstract level.

• The tool must hide implementation details of remote
object references from the programmers. The pro-
grammers should not have to modify the program so
that remote references in the program follow a partic-
ular protocol specified by the tool.

There is another contribution of this work. The proposing
tool is to be a domain-specific aspect-oriented programming
(AOP) tool. AOP is a programming paradigm addressing
the problem of tangling code, with advanced separation of
crosscutting concerns[5]. AspectJ is one of the most famous



AOP languages and its design is dedicated to a general pur-
pose AOP support[4] in Java. If its generality were enough
for separating the distribution concerns, we could build our
tool as a translator which translates our domain-specific as-
pect language to the AspectJ language. It is impossible now
and thus our experience contributes, besides to distributed
programming, to researches for the generality of AOP lan-
guages like AspectJ. Generic purpose AOP languages should
have enough writability for expressing the division of the
distribution purpose aspects we propose.

3. APPROACH TO BE USED
An aspect language for distribution concerns and an aspect-
weaver for this language is the key design of the tool we
propose. The proposing tool, named Addistant, accepts
distribution aspects besides code of components for non-
distributed logic of program. Then it produces distributed
Java program.

3.1 Aspect Language
Addistant allows the developers to specify a policy of ob-
ject allocation for each class. They can use special language
constructs for specifying a group of classes related closely.
The language provides a specifier for classes in a package or
sub-packages since they are often related closely and allo-
cated on the same host. Also it provides a specifier for a
subclass-tree for the same reason. For example,

<import ... from="display">

subclass@java.awt.Component

</import>

means that all the subclasses of the class Component, includ-
ing Component itself are allocated on a host specified by a
variable display.

Also, Addistant provides several different techniques for im-
plementing proxy-master model. Programmers can choose
one of these implementation techniques for each class. The
differences among these techniques are mainly how a proxy
class is declared, how caller-side code, that is, expressions of
remote method invocations, is modified, and how a master
class is modified. For example, they can choose a suitable
technique for boot-strap classes.

3.2 Load-time Weaving
In Addistant, weaving of aspects are performed at load time
of classes. The runtime system weaves a distribution aspect
into base Java code of program. This translation of the base
code is implemented in a customized class loader for Java[6].
The class loader of Addistant modifies bytecode of classes
according to the specification given as a distribution aspect,
before loading classes on JVM.

The weaver of Addistant is built using Javassist[1], which
provides a tool for bytecode editing and employs object-
oriented structural reflection for Java[7].

3.3 Evaluation
For evaluating how our tool enhances the maintainability of
distributed program, we need a new kind of metrics. Since

our tool makes it unnecessary for programmers to write pro-
gram code belonging to a distribution aspect, we must mea-
sure difficulty in writing that program code and thus how
the programmers’ efforts are reduced with our tool. Then
we can compare our tool with other tools, which require pro-
grammers to write various amounts of program code for a
distribution aspect.

Existing metrics for object-oriented design[2] are basically
for measuring how the complexity of a program is reduced if
the program is divided into several different aspects. How-
ever, the metrics that we need are, for example, how many
lines or words are needed for a distribution aspect, how the
program code for this aspect is spread over the whole pro-
gram, and so forth.

4. STATUS
We have developed a prototype system which is designed
with the proposing approach[8]. It is concentrated to sepa-
rating the concern of distributed object allocations and the
concern of proxy class implementation method. With this
system, programmers can specify a simple distribution as-
pect for obtaining a distributed program with remote pre-
sentation from existing, non-distributed program, for exam-
ple.

5. REFERENCES
[1] S. Chiba. Load-time structural reflection in Java. In

ECOOP 2000 – Object-Oriented Programming, LNCS
1850, pages 313–336. Springer-Verlag, 2000.

[2] S. R. Chidamber and C. F. Kemerer. Towards a metrics
suite for object oriented design. In Proc. of
OOPSLA’91, ACM SIGPLAN Notices (26) 11, pages
197–212, 1991.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of AspectJ.
In ECOOP 2001 – Object-Oriented Programming,
LNCS 2072, pages 327–353. Springer-Verlag, 2001.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97 – Object-Oriented
Programming, LNCS 1241, pages 220–242.
Springer-Verlag, 1997.

[6] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In Proc. of OOPSLA’98, ACM
SIGPLAN Notices (33) 10, pages 36–44, 1998.

[7] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano.
OpenJava: A class-based macro system for Java. In
Reflection and Software Engineering, LNCS 1826, pages
119–135. Springer-Verlag, 2000.

[8] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of
“legacy” Java software. In ECOOP 2001 –
Object-Oriented Programming, LNCS 2072, pages
236–255. Springer-Verlag, 2001.


