
/20

An Approach for Advice Composition
by a Composable Construct

Fuminobu Takeyama and Shigeru Chiba
Tokyo Institute of Technology

AOAsia/Pacific '10 at University of Tokyo

2010/09/24 1F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

/20

An aspect oriented development scenario 1/3

A compiler is one of the best case study of AOP

 JastAdd [T. Ekman, et al, OOPSLA 07]
• Classes represents ASTs and aspects implement features

 Programmers can extend compiler by implementing additional
aspects
• to support their own language extension

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 2

Type checks

Semantics analysys

Evaluation /
code generation

Type checks for
new type system

Handling
new language construct

weave weave

/20

An aspect oriented development scenario 2/3

Alice extends the interpreter by aspects

 Addition of integer values are implemented by IntegerAspect

Override Plus.eval() method by an advice

→ 3

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 3

An aspect for supporting integer values

IntegerAspect

Object around():…
weave

new Plus(new Constant(1), new Constant(2)).eval()

Plus

Object eval() {}

/20

An aspect oriented development scenario 3/3

Bob extends the original interpreter by StringAspect

 Concatination of character strings using + operator

→ “Hello world!"

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 4

An aspect for supporting character strings

StringAspect

Object around():…
weave

new Plus(new Constant("Hello "), new Constant("world!")).eval()

/20

Question 1

How can we get an interpreter supporting both integers
and character strings?

An ideal approach of AOP

 just by compiling Alice’s and Bob’s aspects together

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 5

IntegerAspect

Object around():…

StringAspect

Object around():…

weave

?

/20

No satisfactory solution in AspectJ

Those advices conflict at a join point

 Conflict: multiple advices are woven into the same joinpoint

We need more powerful composition mechanism

 than declare precedence

 to obtain expected behavior at the join point

 This process is called advice composition
• Non-trivial task

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 6

Plus

Object eval()
StringAspect

Object around():…

IntegerAspect

Object around():…

Weave

Weave

What happen here?

/20

A naive and incomplete solution 1/3

An advice below works well just by compiled together

 implemented as composable as possible in AspectJ

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 7

Object around(Plus t):
target(t) && execution(Object Plus.eval()) {

if () {

return ;

} else {

return ;
}}

StringAspect

At least one of operands is String

Converts and concatenates both operands

Invoke another advice and pass responsibility to it

I can handle this type

/20

A naive and incomplete solution 2/3

An advice must be aware of composition with others

maybe unknown yet

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 8

Object around(Plus t):
target(t) && execution(Object Plus.eval()) {

if () {

return ;

} else {

return ;
}}

StringAspect

At least one of operands is String

Converts and concatenates both operands

Invoke another advice and pass responsibility to it

A Protocol for working together

A Protocol for working together

A operands may be an integer

/20

A naive and incomplete solution 3/3

Composition is another crosscutting concern

 scatters over aspects

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 9

aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getLeft().eval();
if (left instanceof Integer && right instanceof Integer) {
return (Integer)left + (Integer)right;

} else {
return proceed(t);

}}}

IntegerAspect

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getLeft().eval();
if (left instanceof String || right instanceof String) {
return left.toString() + right.toString();

} else {
return proceed(t);

}}}

StringAspect

composition code!

composition code!

/20

Airia: an extension of AspectJ

Describe composed behaviour by a resolver

 A resolver is new kind of advice

Manually implemented by programmers who reuse advices

A resolver is executed only at join points when given
advices conflict

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 10

StringAspect

IntegerAspect

NewAspect
resolver

JP

JP

JP
IntegerAspect

conflicting

StringAspect

/20

1: Each advice is unaware of composition

Append an advice name to each advice

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 11

aspect IntegerAspect {
Object plusEvalInt around(Plus t):

target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval();
}

}

IntegerAspect

aspect StringAspect {
Object plusEvalStr around(Plus t):

target(t) && execution(Object Plus.eval()) {

return (String)t.getLeft().eval() + (String)t.getRight().eval();
}

}

StringAspect

Advice name

No composition code

No composition code

/20

2: Implementing composition by a resolver

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 12

Object resolver plusEvalIntStr(Plus t)
and(IntegerAspect.plusEvalInt(t), StringAspect.plusEvalStr) {

if () {

return [IntegerAspect.plusEvalInt].proceed(t);

} else if () {

return [StringAspect.plusEvalStr].proceed(t);

} else {

return ;

}}

IntegerStringAspect

Both operands are Integer values

Both operands are string characters

//One of operands is string caracters

//Invoke only StringAspect

//Invokes only IntegerAspect

Concatenate both operands as string caracters

Select an advice to invoke

merged behavior
of the two aspect

Conflicting advice

/20

Our constructs in detail

Resolver

 and/or clause specifies the join points of the resolver
• has no pointcut

Proceed call with precedence executes a remaining advice

 declares precedence order among advices &
• depending on dynamic context

 remove unnecessary advices at that call

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 13

Object resolver name() and|or(advice1, advice2) {}

[advice1, advice2].proceed();

/20

Question 2

Is it enough that composition is separated into a module?

 Several research activities like this exist

If Alice and Bob had resolvers, what happens?

 The resolvers might conflict each other

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 14

/20

Resolvers are composable

A resolver is a special around advice

 Conflict among normal advices and resolvers can be resolved by
resolvers

 Resolvers can be controled by [].proceed
• in the same way as normal advice

Declarative precedence order

 A proceed call declares A < (precedes) B
Another declares A < C < B

 Compiler can determine the total order: A, C, B

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 15

/20

A new advice for the interpreter

CacheAspect saves evaluated value of expressions

 3 aspects and a resolver conflict at the execution of Plus.eval()

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 16

JP

weave

IntegerAspect

StringAspect

IntegerStringAspect

CacheAspect

Conflict!

/20

Advices are composed in a hierarchical manner

Implements new resolver for composition of
CacheAspect and IntegerStringAspect

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 17

JP

method

IntegerAspect

StringAspect

IntegerStringAspect
Object resolver eval() ... {

:
[..].proceed();
:

}

CacheAspect

Object resolver eval() ... {

[...].proceed();

}

IntegerStringCacheAspect

1
2

3

4

4

/20

Compile time check of conflict resolution

All conflict among advices (and resolvers) must be
resolved by resolvers consistently

 Precedence order is a bit complex

 No default precedence

Limitation for enabling compile time check

 Static conflict: overlap of shadow

 Checks execition order for evary possible control path
• Our checking algorithm is conservative

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 18

/20

Ideas of Airia

Aspects are free from composition code

 Separating composition code into a resolver

Resolvers are composable

 Conflict of resolvers can be resolved by other resolvers in the
same way

Precedence order is checked statically

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 19

/20

Related work

Meta-programming approach

 POPART [T. Dinkelaker, et al, AOSD 09],
JAsCo [D. Suvée, et al, AOSD 03],
OARTA [A. Marot, et al, AOSD 10]

 They do not support composition among meta code and advice

Airia is inspired by

 Traits [N. Schärli, et al, ECOOP 03]

 Context-Aware Composition Rules
[A. Marot, et al, DSAL 08 and SPLAT 08]

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 20

/20

Conclusion

Airia enables more powerful advice composition by a
composable construct

 Composed behavior of conflicting advices is separated into
resolvers

 Composition of resolvers and advices is possible

The Airia compiler is available from

 http://www.csg.is.titech.ac.jp/projects/airia/

For more detail,
please refer to our paper published
in Software Composition 2010

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 21

http://www.csg.is.titech.ac.jp/projects/airia/

