
/20

An Approach for Advice Composition
by a Composable Construct

Fuminobu Takeyama and Shigeru Chiba
Tokyo Institute of Technology

AOAsia/Pacific '10 at University of Tokyo

2010/09/24 1F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

/20

An aspect oriented development scenario 1/3

A compiler is one of the best case study of AOP

 JastAdd [T. Ekman, et al, OOPSLA 07]
• Classes represents ASTs and aspects implement features

 Programmers can extend compiler by implementing additional
aspects
• to support their own language extension

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 2

Type checks

Semantics analysys

Evaluation /
code generation

Type checks for
new type system

Handling
new language construct

weave weave

/20

An aspect oriented development scenario 2/3

Alice extends the interpreter by aspects

 Addition of integer values are implemented by IntegerAspect

Override Plus.eval() method by an advice

→ 3

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 3

An aspect for supporting integer values

IntegerAspect

Object around():…
weave

new Plus(new Constant(1), new Constant(2)).eval()

Plus

Object eval() {}

/20

An aspect oriented development scenario 3/3

Bob extends the original interpreter by StringAspect

 Concatination of character strings using + operator

→ “Hello world!"

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 4

An aspect for supporting character strings

StringAspect

Object around():…
weave

new Plus(new Constant("Hello "), new Constant("world!")).eval()

/20

Question 1

How can we get an interpreter supporting both integers
and character strings?

An ideal approach of AOP

 just by compiling Alice’s and Bob’s aspects together

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 5

IntegerAspect

Object around():…

StringAspect

Object around():…

weave

?

/20

No satisfactory solution in AspectJ

Those advices conflict at a join point

 Conflict: multiple advices are woven into the same joinpoint

We need more powerful composition mechanism

 than declare precedence

 to obtain expected behavior at the join point

 This process is called advice composition
• Non-trivial task

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 6

Plus

Object eval()
StringAspect

Object around():…

IntegerAspect

Object around():…

Weave

Weave

What happen here?

/20

A naive and incomplete solution 1/3

An advice below works well just by compiled together

 implemented as composable as possible in AspectJ

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 7

Object around(Plus t):
target(t) && execution(Object Plus.eval()) {

if () {

return ;

} else {

return ;
}}

StringAspect

At least one of operands is String

Converts and concatenates both operands

Invoke another advice and pass responsibility to it

I can handle this type

/20

A naive and incomplete solution 2/3

An advice must be aware of composition with others

maybe unknown yet

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 8

Object around(Plus t):
target(t) && execution(Object Plus.eval()) {

if () {

return ;

} else {

return ;
}}

StringAspect

At least one of operands is String

Converts and concatenates both operands

Invoke another advice and pass responsibility to it

A Protocol for working together

A Protocol for working together

A operands may be an integer

/20

A naive and incomplete solution 3/3

Composition is another crosscutting concern

 scatters over aspects

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 9

aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getLeft().eval();
if (left instanceof Integer && right instanceof Integer) {
return (Integer)left + (Integer)right;

} else {
return proceed(t);

}}}

IntegerAspect

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getLeft().eval();
if (left instanceof String || right instanceof String) {
return left.toString() + right.toString();

} else {
return proceed(t);

}}}

StringAspect

composition code!

composition code!

/20

Airia: an extension of AspectJ

Describe composed behaviour by a resolver

 A resolver is new kind of advice

Manually implemented by programmers who reuse advices

A resolver is executed only at join points when given
advices conflict

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 10

StringAspect

IntegerAspect

NewAspect
resolver

JP

JP

JP
IntegerAspect

conflicting

StringAspect

/20

1: Each advice is unaware of composition

Append an advice name to each advice

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 11

aspect IntegerAspect {
Object plusEvalInt around(Plus t):

target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval();
}

}

IntegerAspect

aspect StringAspect {
Object plusEvalStr around(Plus t):

target(t) && execution(Object Plus.eval()) {

return (String)t.getLeft().eval() + (String)t.getRight().eval();
}

}

StringAspect

Advice name

No composition code

No composition code

/20

2: Implementing composition by a resolver

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 12

Object resolver plusEvalIntStr(Plus t)
and(IntegerAspect.plusEvalInt(t), StringAspect.plusEvalStr) {

if () {

return [IntegerAspect.plusEvalInt].proceed(t);

} else if () {

return [StringAspect.plusEvalStr].proceed(t);

} else {

return ;

}}

IntegerStringAspect

Both operands are Integer values

Both operands are string characters

//One of operands is string caracters

//Invoke only StringAspect

//Invokes only IntegerAspect

Concatenate both operands as string caracters

Select an advice to invoke

merged behavior
of the two aspect

Conflicting advice

/20

Our constructs in detail

Resolver

 and/or clause specifies the join points of the resolver
• has no pointcut

Proceed call with precedence executes a remaining advice

 declares precedence order among advices &
• depending on dynamic context

 remove unnecessary advices at that call

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 13

Object resolver name() and|or(advice1, advice2) {}

[advice1, advice2].proceed();

/20

Question 2

Is it enough that composition is separated into a module?

 Several research activities like this exist

If Alice and Bob had resolvers, what happens?

 The resolvers might conflict each other

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 14

/20

Resolvers are composable

A resolver is a special around advice

 Conflict among normal advices and resolvers can be resolved by
resolvers

 Resolvers can be controled by [].proceed
• in the same way as normal advice

Declarative precedence order

 A proceed call declares A < (precedes) B
Another declares A < C < B

 Compiler can determine the total order: A, C, B

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 15

/20

A new advice for the interpreter

CacheAspect saves evaluated value of expressions

 3 aspects and a resolver conflict at the execution of Plus.eval()

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 16

JP

weave

IntegerAspect

StringAspect

IntegerStringAspect

CacheAspect

Conflict!

/20

Advices are composed in a hierarchical manner

Implements new resolver for composition of
CacheAspect and IntegerStringAspect

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 17

JP

method

IntegerAspect

StringAspect

IntegerStringAspect
Object resolver eval() ... {

:
[..].proceed();
:

}

CacheAspect

Object resolver eval() ... {

[...].proceed();

}

IntegerStringCacheAspect

1
2

3

4

4

/20

Compile time check of conflict resolution

All conflict among advices (and resolvers) must be
resolved by resolvers consistently

 Precedence order is a bit complex

 No default precedence

Limitation for enabling compile time check

 Static conflict: overlap of shadow

 Checks execition order for evary possible control path
• Our checking algorithm is conservative

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 18

/20

Ideas of Airia

Aspects are free from composition code

 Separating composition code into a resolver

Resolvers are composable

 Conflict of resolvers can be resolved by other resolvers in the
same way

Precedence order is checked statically

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 19

/20

Related work

Meta-programming approach

 POPART [T. Dinkelaker, et al, AOSD 09],
JAsCo [D. Suvée, et al, AOSD 03],
OARTA [A. Marot, et al, AOSD 10]

 They do not support composition among meta code and advice

Airia is inspired by

 Traits [N. Schärli, et al, ECOOP 03]

 Context-Aware Composition Rules
[A. Marot, et al, DSAL 08 and SPLAT 08]

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 20

/20

Conclusion

Airia enables more powerful advice composition by a
composable construct

 Composed behavior of conflicting advices is separated into
resolvers

 Composition of resolvers and advices is possible

The Airia compiler is available from

 http://www.csg.is.titech.ac.jp/projects/airia/

For more detail,
please refer to our paper published
in Software Composition 2010

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct 21

http://www.csg.is.titech.ac.jp/projects/airia/

