An Approach for Advice Composition
by a Composable Construct

Fuminobu Takeyama and Shigeru Chiba
Tokyo Institute of Technology

AOAsia/Pacific '10 at University of Tokyo

Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

An aspect oriented development scenario 1/3

A compiler is one of the best case study of AOP
JastAdd [T. Ekman, et al, OOPSLA 07]

Classes represents ASTs and aspects implement features
Programmers can extend compiler by implementing additional
aspects

to support their own language extension

Type checks Type checks for

new type system
Semantics analysys

: Handling
Evaluation /
: H H new language construct
code generation

Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

An aspect oriented development scenario 2/3

Alice extends the interpreter by aspects

Addition of integer values are implemented by IntegerAspect

Override Plus.eval () method by an advice

new Plus(new Constant(1l), new Constant(2)).eval()

=)

An aspect for supporting integer values g
P PP 5 & iba Shigeru Group
@ Tokyo Tech

- 3

IntegerAspect

Object eval() {}

Object around():..

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

An aspect oriented development scenario 3/3

Bob extends the original interpreter by StringAspect

Concatination of character strings using + operator

new Plus(new Constant("Hello "), new Constant("world!")).eval()

— “Hello world!"

H H An aspect for supporting character strings

Chiba Shigeru Group
@ Tokyo Tech

StringAspect
Object around():..

e

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Question 1

How can we get an interpreter supporting both integers
and character strings?

An ideal approach of AOP

just by compiling Alice’s and Bob’s aspects together

H) I Object around():..
Chiba Shigeru Group

@ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

No satisfactory solution in Aspect)

Those advices conflict at a join point

Conflict: multiple advices are woven into the same joinpoint

We need more powerful composition mechanism

than declare precedence
to obtain expected behavior at the join point
This process is called advice composition

’,f IntegerAspect
- Object around():..
Object eval() = gﬁ%

What happen here?

Non-trivial task

StringAspect
Object around():..

Chiba Shigeru Group
@ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

A naive and incomplete solution 1/3

An advice below works well just by compiled together

i

implemented as composable as possible in Aspect)

Object around(Plus t):
target(t) && execution(Object Plus.eval()) {

wdle this type]

1T (Atleast one of operands is String) {

return Converts and concatenates both operands ;

} else {

1 return |nvoke another advice and pass responsibility to it
/)

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

A naive and incomplete solution 2/3

An advice must be aware of composition with others

maybe unknown yet

Object around(Plus t):
target(t) && execution(Object Plus.eval()) {

A Protocol for working together

if (Atleast one of operands is String) {

return Converts and concatenates both operands ;

} else {

A Protocol for working together

return |nvoke another advice and pass responsibility to it

P

'u Group

/1 Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

A naive and incomplete solution 3/3

Composition is another crosscutting concern

scatters over aspects

IntegerAspect

aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getLeft().eval();
if (left instanceof Integer && right instanceof Integer) {
return (Integer)left + (Integer)right;
} else {
return proceed(t);

3}

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getLeft().eval();
if (left instanceof String || right instanceof String) {

return lefttoStr‘lng() + rlghttOStrlng(), Compositlon Code!
} else {

return proceed(t); 1

1} | Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Airia: an extension of Aspect)

Describe composed behaviour by a resolver

A resolver is new kind of advice
Manually implemented by programmers who reuse advices

A resolver is executed only at join points when given
advices conflict

IntegerAspect

NewAspect

conflicting resolver

IntegerAspect

- StrmgAspect

StrmgAspect _ .
Chiba Shigeru Group
@ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

1: Each advice is unaware of composition

Append an advice name to each advice

IntegerAspect Advice name

aspect IntegerAspec' =
Object plusEvalInt around(Plus t):

target(t) && execution(Object Plus.eval()) {

}
}

StringAspect
aspect StringAspect { -
Object plusEvalStr around(Plus t):

target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval(); E

return (String)t.getlLeft().eval() + (String)t.getRight().eval();

}
}

S TR Y UTT O G T —

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

2: Implementing composition by a resolver
|

Object resolver plusEvallntStr(Plus t)
and (IntegerAspect.plusEvallnt(t), StrlngAspect plusEvalStr) {

Confllctmg advice
if (Both operands are Integer values) {1
//Invokes only IntegerAspect))
Select an advice to invoke
return [IntegerAspect.plusEvallnt].proceed(t);

} else if (Both operands are string characters) {

//Invoke only StringAspect

return [StringAspect.plusEvalStr].proceed(t); merged behavior
of the two aspect

} else { //One of operands is string caracters

return Concatenate both operands as string caracters ;

}} LI Group

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Qur constructs in detail

Resolver

and/or clause specifies the join points of the resolver
has no pointcut

Object resolver name() and|or(advicel, advice2) {}

Proceed call with precedence executes a remaining advice

declares precedence order among advices &
depending on dynamic context

remove unnecessary advices at that call

[advicel, advice2].proceed();

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Question 2

Is it enough that composition is separated into a module?

Several research activities like this exist

If Alice and Bob had resolvers, what happens?
The resolvers might conflict each other

Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Resolvers are composable

A resolver is a special around advice

Conflict among normal advices and resolvers can be resolved by
resolvers

Resolvers can be controled by [].proceed
in the same way as normal advice

Declarative precedence order

A proceed call declares A < (precedes) B
Another declaresA<C<B

Compiler can determine the total order: A, C, B

Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

A new advice for the interpreter

CacheAspect saves evaluated value of expressions

3 aspects and a resolver conflict at the execution of Plus.eval()

IntegerAspect

StringAspect

JP

= ConflictLI -~ 'ntegerStringAspect
\

CacheAspect

Chiba Shigeru Group
@ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Advices are composed in a hierarchical manner

Implements new resolver for composition of
CacheAspect and IntegerStringAspect

method ,
IntegerStringCacheAspect
Object resolver eval() ... {

Ll IntegerStringAspect
/

Object resolver eval() ... {

StringAspect [L. :] -proceed();
JP 4 y 3 | [...]1.proceed();

CacheAspect

- 1

— }
- Chiba Shigeru Group
@ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Compile time check of conflict resolution

All conflict among advices (and resolvers) must be
resolved by resolvers consistently

Precedence order is a bit complex
No default precedence

Limitation for enabling compile time check

Static conflict: overlap of shadow

Checks execition order for evary possible control path
Our checking algorithm is conservative

Chiba Shigeru Group
O I Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Ideas of Airia

Aspects are free from composition code

Separating composition code into a resolver

Resolvers are composable

Conflict of resolvers can be resolved by other resolvers in the
same way

Precedence order is checked statically

Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Related work

Meta-programming approach

POPART [T. Dinkelaker, et al, AOSD 09],
JAsCo [D. Suvée, et al, AOSD 03],
OARTA [A. Marot, et al, AOSD 10]

They do not support composition among meta code and advice

Airia is inspired by
Traits [N. Scharli, et al, ECOOP 03]

Context-Aware Composition Rules
[A. Marot, et al, DSAL 08 and SPLAT 08]

Chiba Shigeru Group
U.\ Tokyo Tech

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

Conclusion

Airia enables more powerful advice composition by a
composable construct

Composed behavior of conflicting advices is separated into
resolvers

Composition of resolvers and advices is possible

The Airia compiler is available from
http://www.csg.is.titech.ac.jp/projects/airia/

For more detail,
please refer to our paper published
in Software Composition 2010

2010/09/24 F. Takeyama and S. Chiba, An Approach for Advice Composition by a Composable Construct

http://www.csg.is.titech.ac.jp/projects/airia/

